
ABSTRACT

Title of dissertation: MODEL-BASED GENOMIC/PROTEOMIC
SIGNAL PROCESSING IN CANCER
DIAGNOSIS AND PREDICTION

Peng Qiu
Doctor of Philosophy, 2007

Dissertation directed by: Professor K. J. Ray Liu
Department of Electrical and Computer Engineering

In recent years, high throughput measurement technologies (gene microarray,

protein mass spectrum) have made it possible to simultaneously monitor the ex-

pression of thousands of genes or proteins. A topic of great interest is to study

the difference of gene/protein expressions between normal and cancer subjects. In

the literature, various data-driven methods have been proposed, i.e. clustering and

machine learning methods. In this thesis, an alternative model-driven approach

is proposed. The proposed dependence model focuses on the interactions among

genes or proteins. We have shown that the dependence model is highly effective in

the classification of normal and cancer data. Moreover, different from data-driven

methods, the dependence model carries specific biological meanings, and it has the

potential for the early prediction of cancer. The concept of dependence network is

proposed based on the dependence model. The interactions and co-regulation re-

lationships among genes or proteins are modeled by the dependence network, from

which we are able to reliably identify biomarkers, important genes or proteins for



cancer prediction and drug development.

The analysis extends to cell cycle time-series, where one subject is measured at

multiple time points during the cell cycle. Understanding the cell cycle will greatly

improve our understanding of the mechanism of cancer development. In the cell cycle

time-series, measurements are based on a population of cells which are supposed to

be synchronized. However, continuous synchronization loss is observed due to the

diversity of individual cell growth rates. Therefore, the time-series measurement

is a distorted version of the single-cell expression. In this thesis, we propose a

polynomial-model-based resynchronization scheme, which successfully removes the

distortion. The time-series data is further analyzed to identify gene regulatory

relationships. For the identification of regulatory relationships, existing literatures

mainly study the relationship between several regulators and one regulated gene. In

this thesis, we use the eigenvalue pattern of the dependence model to characterize

several regulated genes, and propose a novel method that examines the relationship

between several regulator and several regulated genes simultaneously.
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Chapter 1

Introduction

1.1 Background

As reported by the Center of Disease Control, cancer is the fourth most com-

mon disease and the second leading cause of death in the United States. More than

500,000 people die from various forms of cancer each year in the US. Cancer causes

a significant financial burden to the health care system, in addition to the tremen-

dous toll on patients and their families. Therefore, understanding the mechanism of

cancer development, accurate detection, classification and early prediction of cancer

is a research topic of significant importance.

Life science-based research has evolved rapidly during the past decade, driven

largely by the sequencing of the complete genome of many organisms and high-

throughput technological advances, such as microarray technology and mass spec-

trum (MS) technology, with a shift from a reductionist approach towards an in-

tegrated approach. The new integrated approach investigating “complex” systems
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instead of individual components leads to the emerging field of systems biology,

which aims at a system-level understanding of biology systems.

The microarray and MS technologies provide us with high throughput mea-

surements at gene and protein level. The gene microarray technology measures the

abundance of mRNAs of thousands of genes, and thereby infers how much each gene

is expressed [1]. On the other hand, the MS technology measures the proteins. For

protein samples, MS converts proteins or peptides to charged pieces that can be

separated on the basis of the mass-to-charge ratio (m/z). By measuring the inten-

sity for different m/z ratio, the abundances of different proteins and peptides can

be assessed [2].

These high throughput technologies make it possible to systematically study

the genes and proteins related to cancer, and would eventually lead to breakthroughs

in cancer research. Recently, gene microarray techniques are shown to provide in-

sight into cancer research [3, 4]. In this thesis, we place our emphasis on signal

processing and modeling of genomic and proteomic data from microarray and MS

technologies, as they are clearly among the leading frontiers that will rapidly reshape

cancer study.

1.2 Related Prior Work and Motivation

The expression data from microarray and MS technologies share a common

format, as shown in Table 1.1. For each sample, the expression data is a long vector,

with each element being the expression level (relative abundance) of a particular gene
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or protein. In current available datasets for cancer study, there are usually about

one hundred samples, containing both normal and cancer cases. While on the other

axis, there are more than ten thousand gene/protein features. The expression data

post challenges: the dimension of the data is very high, and all the gene/protein

features are potentially inter-correlated. Thus, it is hard to interpret the data. This

is where statistics and signal processing can provide help, to systematically interpret

the expression data.

Sample 1 Sample 2 ... Sample 100
gene/protein 1 1.4 5.46 ... 1.41
gene/protein 2 3.8 3.08 ... 0.67
gene/protein 3 2.34 9.5 ... 0.32
gene/protein 4 1.85 1.05 ... 1.2
gene/protein 5 3.8 0.19 ... 0.2
gene/protein 6 2.23 1.12 ... 6.47
gene/protein 7 1.75 2.79 ... 0.22
gene/protein 8 6.2 3.96 ... 1.27

... ... ... ... ...
gene/protein 12000 1.85 0.19 ... 3.01

︸ ︷︷ ︸︸ ︷︷ ︸
Normal samples Cancer samples

Table 1.1: Format of microarray and MS expression datasets for cancer research.

In the literature, microarray and MS expression data have been examined for

cancer classification, biomarker identification, cell-cycle analysis, regulatory network

discovery, etc. The rationale behind these applications is based on the belief that

the overall behavior of cancer is determined by the expression at the gene/protein

level. We now give some specific examples of microarray and MS’s applications in

cancer research and present the motivation of our study.
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1.2.1 Cancer Classification and Prediction

For the purpose of cancer classification, various methods have been proposed

for classifying normal samples vs cancer samples or classifying different subtypes

of cancer samples. Current methods for cancer classification can be divided into

two categories. One is based on the clustering of samples. Some example schemes

include Hierarchical Clustering [5], Local Maximum Clustering [6], Self-Organizing

Map [7], and K-means Clustering and its variations [8]. These clustering methods

usually do not require many prior assumptions, i.e., the underlying model. How-

ever, determining the number of clusters is a challenging problem itself, and there is

lack of widely-accepted measures to evaluate the clustering performance. The other

category is mainly based on machine-learning. Motivated by the success of machine

learning algorithms in image and speech processing, many researchers have applied

them to the analysis of gene and protein expression data. For example, K-Nearest

Neighbors (KNN) [9], Support Vector Machine [10] and Neural Network [11]. Ma-

chine learning methods generally yield better results than those of the clustering

methods. The clustering and machine learning methods are mostly data-driven,

which are quite powerful in exploring the data’s numerical domain. However, in

these methods, gene/protein features are usually treated in a quite separated fash-

ion. The features group behavior and interactions are not considered. Also, in these

data-driven methods, without a model to describe the system, it is hard to draw

biology insights.

In our work, we propose an alternative model-driven approach, called the
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dependence model, which focuses on the gene/protein’s group behavior and interac-

tions. Because of the limited size of current available datasets and the noisy nature

of the expression data, it is not feasible to reliably examine the relationships among

all features. Therefore, we propose to group features into clusters, so that the noise

level will be reduced and we will be able to reveal the big picture, the ensemble

dependence dynamics of the clusters. By doing that, our hypothesis is: the health

status information can be reflected by the ensemble dependence relationships among

gene clusters. And the hypothesis is validated by the excellent classification perfor-

mance of the dependence model. In Chapter 2, we will present the dependence model

in detail. In addition to the classification performance, we will show the uniqueness

of the dependence model, in terms of its biology meaning and its potential in early

prediction of cancer.

1.2.2 Biomarker Identification

Biomarker identification is another interesting topic in cancer research. Dur-

ing cancer development, the cancerous cells may release unique genes, proteins and

other molecules, which may be regarded as biomarkers. Here biomarkers are defined

as the alternations of patterns at the cellular, molecular or genetic level. Caused by

the presence of specific diseases, these biomarkers normally serve as the indicators

of diseases. Correctly identifying biomarkers for cancer holds enormous potential

for the early detection of cancer and drug development [12]. Recently, microarray

and MS data have been applied for cancer biomarker identification. For instance, in
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[13], a panel of three biomarkers that best separate cancer and normal samples are

selected using the linear combination based Unified Maximum Separability Analysis

(UMSA). In [14], a particle swarm optimization technique is combined with support

vector machine to identify protein biomarkers. In the literature, classification-based

biomarker identification criteria are quite popular. The basic idea is to identify

features that have the highest discrimination power (classification performance) be-

tween normal and cancer cases. However, the performance-based identification re-

sults are not quite consistent and reproducible.

The lack of reproducibility is a serious concern. For a particular method, if

the conclusion based on one dataset cannot be generalized to other datasets (for the

same type of disease), the validity of the conclusion is questionable and the validity

of the method is also questionable. In our study, we address this issue by propos-

ing an alternative network-based criterion for reliable biomarker identification. We

build dependence networks for both normal and cancer cases, and identify biomark-

ers by comparing these networks. The basic idea is to identify features with most

topology change as biomarkers. In Chapter 3, the results show that the network-

based identification criterion yields much more consistent and reproducible results

than the performance-based criterion. The biological relevance of the network-based

biomarkers is validated by the analysis of their sequence annotations and function-

alities.
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1.2.3 Resynchronization of Microarray Time-Series

Besides the direct comparison between normal and cancer cases, the under-

standing of the fundamental cell-cycle system could also contribute a lot to cancer

research. One interesting topic is to study the regulatory network in yeast cell-cycle

based on the time-series data [15]. The time-series data is obtained by measuring

one sample at multiple time points during a certain biology process, such as cell-

cycle. Therefore, different from Table 1.1, in time-series data, the horizontal axis

of the table represents different time points (rather than different samples). From

time-series data, we are able to see how the sample evolves along time. The first

critical task in understanding the cell-cycle system is to identify the genes which are

periodically expressed during the cell-cycle.

In the current technologies, most expression data are measured based on a

population of cells which are synchronized to exhibit similar behaviors [16]. How-

ever, even with the most advanced synchronization method, maintaining a tightly

synchronized population even over a couple of cycles is a challenging research issue,

since continuous synchronization loss is gradually observed due to the diversity of

individual cell growth rates [17]. Because of the synchronization loss, the gene ex-

pression data observed from a population of cells is different from the gene expression

data of a single cell. Therefore, in addition to the noise effect on the measurements,

a significant difficulty in identifying cell-cycle regulated genes from time-series data

arises from synchronization loss. Direct periodicity test could be misleading or fail

due to the fact that the time-series measurements are contributed by a mixture of
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cell population growing at different rates, rather than a synchronized population.

Several approaches for identifying cell-cycle regulated genes, when taking into

consideration the issue of synchronization loss, have been proposed in the litera-

ture. They can be divided into two major categories, differentiated by the absence

or presence of other complementary information besides time-series gene expression

data. Most studies in the literature belong to the former category, which relies

solely on the expression data. Fourier analysis is employed for periodicity test in

[17, 18, 19]. The authors present an exact statistical test to identify periodically ex-

pressed genes by distinguishing periodicity from random processes in [20]. In [21], a

periodic-normal mixture (PNM) model is proposed to fit the transcription profiles of

periodically expressed genes. In the second category, an algorithm combining bud-

ding index and gene expression data is recently proposed to deconvolve expression

profiles in [22]. Regardless these developments, efforts are still needed to accurately

identify cyclic genes and recover a more accurate single cell time-series expression

compared with the current expression measurements.

In our study, we developed an efficient scheme for identifying periodically ex-

pressed genes and reconstructing the underlying single cell gene expression profiles.

Our main contributions are two fold. (1) We propose a synchronization loss model

by representing the gene expression measurements as a superposition of different

cell populations growing at different rates, and we develop a model-based estima-

tion algorithm to reconstruct the underlying single cell gene expression. In previous

studies, the single cell expression is often assumed to be sinusoids. However, the

proposed algorithm does not make such assumption. It is able to handle a much
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larger variety of single cell expression. (2) Using the fitting residue error as crite-

rion, we develop a supervised learning scheme for identifying the cell-cycle regulated

genes. The performance of the proposed scheme are examined via both simulations

and real microarray gene expression data of Saccharomyces Cerevisiae.

1.2.4 Discovering Regulatory Network from Time-Series

The resynchronization analysis of time-series serves as a good pre-processing

step to improve the data quality by removing the effect of synchronization loss. After

this pre-processing step, a more significant topic is to identify the regulatory net-

work from the time-series data, where the regulatory network describes the complex

relationship about how a cell system evolve along time. Discovering and identifying

such regulatory network will greatly improve our understanding of cell systems at

the gene level. The knowledge of regulatory network will lead to the discovery of

the signaling pathways of different biological processes and different diseases, which

will greatly facilitate the development of effective drugs.

In the literature, many methods have been proposed to model the gene reg-

ulatory network (GRN). In [23, 24], the boolean network is introduced to model

the gene regulatory network as boolean relationship in combinatorial logic circuits.

In [25], the boolean network is extended to a probabilistic boolean network (PBN),

which is a probabilistic mixture of several boolean networks. [26] apply PBN to iter-

atively grow a regulatory network from microarray time-series data. The Bayesian

network models the relationship among genes in terms of conditional probability
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distributions and joint probability distributions. Recently, Bayesian network has

been used to analyze gene microarray data [27], where the gene regulatory network

is modeled as a directed acyclic graph. Further, the Dynamic Bayesian Network

(DBN) is proposed in [28], followed by a number of studies [29, 30, 31, 32]. Differ-

ential equations are also used to model gene regulatory networks in the literature.

In [33], the relationship among genes, mRNAs and proteins are modeled as differ-

ential equations. In [34, 35], differential equations are used to model the regulatory

relationship among genes, and the parameters are determined through evolutionary

programming. In [36, 37], maximum likelihood criterion is applied to determine the

parameters of the differential equations. [38] propose to model gene regulatory net-

work using stochastic differential equations. In [39], regulatory relationships with

different time lags are examined. In [40] pairwise mutual information and minimum

description length (MDL) is applied to infer existence of regulatory relationships.

In [41], fuzzy logic is applied to model gene regulatory network.

There is a common property among existing methods, boolean network, Bayesian

network, differential equations, etc. The relationship between one or several regu-

lators and one regulated gene is examined. To our knowledge, there is no method

that examines several regulated genes simultaneously. In our study, we will address

this issue by providing a tool to examine the relationship between one or several

regulators and several regulated genes. Since the proposed dependence model and

its eigenvalue pattern are able to describe the group behavior of several genes, we

will infer the regulatory relationship between the regulators and a group of regulated

genes from the relationship between the regulators’ expressions and the regulated
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genes’ group behavior (eigenvalue pattern). Therefore, we are able to examine the

regulatory relationships in a novel way, compared with the existing literature.

1.3 Thesis Organization and Contributions

This thesis focuses on the concept of model-driven approach in genomic and

proteomic signal processing. Models are developed to address several challenges in

bioinformatics and cancer research.

We begin, in Chapter 2, with the cancer classification problem. We first intro-

duce the dependence model and apply it to examine the big picture (the ensemble

dependence among clusters of genes), yielding excellent classification performance.

Then, we present the biological meaning of the dependence model, which is the

uniqueness that distinguishes our work with the dominating data-driven approaches.

We show that the eigenvalue pattern of the dependence model is a consistent indica-

tor of dependency and subjects health status. Further, we show that the dependence

model has the potential for the early prediction of cancer, and our arguments are

supported and validated by several gene and protein datasets.

In Chapter 3, we zoom in to study the details, the dependence relationships

among individual gene and protein features. The dependence network is constructed,

with each connection representing the dependence relationship between connected

features. By comparing the dependence networks constructed for normal and can-

cer cases, we are able to identify biomarkers. Compared with existing biomarker

identification methods, the dependence-network-based biomarkers are much more
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consistent and reproducible. The biological relevance of the dependence-network-

based biomarkers is validated.

In Chapter 4 and Chapter 5, we shift our attention to time-series analysis.

In time-series experiments, there is an inherent problem of synchronization loss,

which degrades the data quality. In Chapter 4, we present a polynomial approach

that successfully removes the effect of synchronization loss. This is an effective

pre-processing step that greatly improves the quality of the data. Comparisons

with existing literature show that we are able to better discover cell-cycle regulated

genes based on the resynchronized data.

In Chapter 5, the resynchronized data is examined to identify gene regulatory

relationships. Existing methods in the literature can only examine one regulated

gene at one time. In our study, we propose a method that examines several regulated

genes at one time. In order to test the regulatory relationship between a pair of

genes (a regulator and a regulated gene), existing methods examine the time-lagged

correlation between their expressions. However, for a pair of regulator and regulated

genes, such correlation could be weak because of the noisy nature of the expression

data. On the other hand, the proposed method uses the eigenvalue pattern of the

dependence model to identify regulatory relationships. Analysis on yeast cell-cycle

time-series shows that the proposed method performs better than the time-lagged

correlation from the Neyman-Pearson point of view. Therefore, we are able to better

discover regulatory relationships based on the eigenvalue pattern.

Finally, in Chapter 6, we draw conclusions and discuss some possible future

directions.

12



Chapter 2

Ensemble Dependence Model for

Cancer Classification and

Prediction

2.1 Motivation

With the rapid development of microarray technology [1] and protein mass

spectrum technology [2], it is possible to monitor the expression level of thousands of

genes and proteins simultaneously. The large amount of data generated by these high

throughput technologies have stimulated the development of many computational

methods to study different biological processes at the gene and protein level. Among

them, understanding the difference between cancer and normal cells is of particular

interest. This includes the difficult task of distinguishing cancerous subtypes, such

as benign, invasive, neoplastic or metastatic.
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Current methods for the classification of gene and protein expression data can

be divided into two categories. One is based on the clustering of samples, which can

be used to distinguish cancer and normal samples and to distinguish subtypes of

cancers. Some example schemes include Hierarchical Clustering [5], Local Maximum

Clustering [6], Self-Organizing Map [7], and K-means Clustering and its variations

[8]. These clustering methods do not require many prior assumptions, i.e., the under-

lying model. However, determining the number of clusters is a challenging problem

itself, and there is lack of widely-accepted measures to evaluate the clustering per-

formance. The other category is mainly based on machine-learning. Motivated by

the success of machine learning algorithms in image and speech processing, many

researchers have applied them to analyze gene and protein data. For example, K-

Nearest Neighbors (KNN) [9], Support Vector Machine [10] and Neural Network

analysis [11]. Machine learning methods generally yield better results than those of

the traditional clustering methods. However, in many machine-learning methods,

although gene and protein features form a feature vector and are processed jointly,

they are still treated in quite a separate fashion. Gene and protein features’ group

behaviors and interactions are not considered. Moreover, the existing methods are

mostly data-driven methods. Without a model to describe the system, it is hard to

draw biology insights.

In our study, we propose to take gene and protein features’ group behaviors

and interactions into account. We propose a dependence model to study the big

picture, the ensemble dependence relationship among clusters of gene and protein

features. Because of the limited size of current available datasets and the noisy
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nature of the expression data, it is not feasible to reliably examine the relationships

among all features. However, if features are clustered properly, the noise level in

the resulting cluster expression will be reduced, and we will be able to reveal the

ensemble dependence dynamics of gene and protein clusters. We will show that,

different from the data-driven methods, the dependence model not only has excellent

classification performance, but also carries certain biology meanings. Moreover, the

dependence model has the potential for cancer prediction.

2.2 Dependence Model

Because of the limited size of current available datasets, it is not feasible to ex-

amine the relationships among all genes. In the proposed dependence model, genes

are clustered into several clusters and the clusters’ ensemble dependence relation-

ship is studied. We predict, given appropriate and well-sorted clustering results,

that genes’ group behavior and ensemble dynamics can be revealed. In the follow-

ing section, several clustering methods are compared, and we will discuss what is

appropriate way to cluster genes. In this section, we assume we can cluster genes

appropriately and focus on the proposed ensemble dependence model.

After clustering, each cluster contains specific genes that have a well-defined

mathematical relationship to one another. To average out experiment noise and

enhance genes’ common expression within each cluster, the average gene expression

profile is used to represent each cluster. Without any prior knowledge, we assume

that each cluster is, to some extent, dependent on all the other clusters. Linear
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Figure 2.1: Ensemble dependence model.

dependence relationship is studied here, as shown in Figure 2.1, where each arrow

represents an inter-cluster dependence relationship. There is a weight aij associated

with each arrow, which indicates to what extent cluster i depends on cluster j. The

so-called self-regulation is assumed to be zero, i.e. aii = 0, i = 1, 2, 3, 4. Because

the cluster average is used to represent each cluster, the intra-cluster dependence

relationship within each cluster is averaged out. Later, it is clear that, from a

mathematical point of view, allowing non-zero aii terms will make the model-learning

process trivial and un-reasonable, since the results will simply be aii = 1 for any i,

and aij = 0 for any i 6= j.

The dependence relationship shown in Figure 2.1 can be expressed as the
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following linear equation:
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, (2.1)

or equivalently defined as

X = AX + N, (2.2)

where, A matrix is what we call the dependence matrix; xi, i = 1, 2, 3, 4, are the

expression profiles for each gene cluster, which are considered to be random vari-

ables. There is a noise-like term N, which could be contributed by model mismatch

(i.e. those clusters’ expression profiles may not be linearly related) and measure-

ment uncertainty from microarray experiments. For simplicity, the noise-like term is

modeled as a Gaussian random vector. Later, we will show that the dependence ma-

trix and statistics of the noise term could be used to distinguish cancer and normal

samples.

Equation (2.1) may appear similar to the space-time model of a discrete linear

time invariant system in control theory. However, they are quite different. In the

state-space model of a discrete linear time invariant system, matrix A describes how

the system state will evolve from the current time step to the next time step. In

our case, there is no time concept in the dependence model. The X vectors on both

sides are actually the same. Therefore, each element of the dependence matrix A

does not imply any time evolvement, while it only indicates to what extent one gene

cluster is dependent on another cluster.
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In this section, the dependence model is introduced in the context of examining

the ensemble dependence among gene clusters. However, the dependence model is

also applicable to examine protein clusters. Also, the dependence model is not only

applicable in studying feature clusters.In Chapter 3, we will see that the dependence

model is also applicable to examine the dependence relationship among individual

gene and protein features.

2.3 Classification Framework

Since not all genes’ expression profiles are informative in understanding the

difference between normal and cancer cases, feature selection is needed to exclude

irrelevant genes. As required in the ensemble dependence model, gene clustering

is performed to group together genes with similar expressions. After feature selec-

tion and clustering, selected genes are divided into several groups, each of which is

represented by the group average expression. Then, the proposed ensemble depen-

dence model is used to describe the dynamics of gene clusters, one model for the

normal case, and another for the cancer case. With these two dependence models,

a hypothesis-testing based method is applied to classify normal and cancer data.

The main flow of the proposed classification method is shown in Figure 2.2. It

includes four main components: feature selection, gene clustering, ensemble depen-

dence model and hypothesis-testing. We will discuss these components as follows.
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Figure 2.2: Classification framework.

2.3.1 Feature Selection

In this study, we employ two feature selection methods. T-test feature selection

criterion is quite popular in microarray analysis. In T-test, each gene is given a score,

which evaluates the similarity between its expression profiles in normal and cancer

samples. All genes are ranked according to their T-test scores. A p-value is chosen,

and genes with scores lower than the chosen p-value are believed to behave most

differently between normal and cancer samples.

We also apply another feature selection criterion used in [42, 43]. Equation

(2.3) is used to calculate a score for each gene,

F (j) = |µ
+
j − µ−j

σ+
j + σ−j

|, (2.3)

where, µ+
j and σ+

j are the mean and standard deviation of gene j ’s expression level

19



in cancer samples, µ−j and σ−j are the mean and standard deviation of gene j ’s

expression level in normal samples. Similarly, genes are ranked according to F (xj)

scores. Compared with T-test approach, in this criterion, genes with highest scores

are believed to behave most differently between normal and cancer samples.

2.3.2 Feature Clustering

As mentioned above, a proper way of gene clustering is required by the en-

semble dependence model. Three standard clustering algorithms are compared:

Self-Organizing Map (SOM) [7], K-means [8], and Gaussian Mixture Model (GMM)

[44]. In these clustering algorithms, the number of clusters can be pre-defined, as we

do in the proposed dependence model. However, K-means clustering is an unstruc-

tured method, and it depends more on algorithm initials. SOM is a soft clustering

method, but it blurs the difference between adjacent clusters, which is what we want

to examine. Therefore, GMM is chosen to cluster genes, since it is a soft clustering

method, it can capture cluster difference, and it is much more stable than K-means

clustering.

No matter which clustering method is chosen, a similarity measure should be

defined. In this study, Euclidean distance of genes’ expression profiles is chosen

to measure the similarity, because genes with similar expression profiles are likely

to share similar functionality [5]. One may argue that Euclidean distance may not

cluster genes correctly in terms of their functionalities, and genes in different clusters

may share similar functions or are functionally closely related. For example, suppose
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that two genes, gene a and gene b, are directly down-regulated by each other. When

expression of gene a increases, the expression of gene b decreases, and vice versa.

In terms of the Euclidean distance of their expression profiles, gene a and gene b

could be far away from each other, thus it is likely that they will fall into different

clusters. In this case, mutual information or Euclidean distance of expressions’

derivatives would be more appropriate similarity criteria. However, in the proposed

method, the average gene expression profile over all genes within one cluster is used

to represent each cluster. Even if gene a and gene b are in the same cluster, the

example above will be averaged out. That’s why we choose the Euclidean distance

of genes’ expressions as the similarity criterion. Although functionally related genes

may fall into different clusters, at least, genes with similar behaviors will be grouped

together, thus would represent ensemble mean behaviors more clearly.

Before clustering, the number of clusters needs to be decided. The optimal

number of clusters is difficult to determine, because it may depend on different dis-

eases, and different sets of genes under investigation. To determine this parameter,

we examined different choices, apply the proposed classification method and suggest

the best one by comparing the overall classification performance. In this study, the

number of clusters is chosen to be four, according to section 2.4.2. In two of the

investigated datasets, the number of normal samples is only around 6, which means

we cannot afford to analyze many clusters with the limited size of the available

datasets. Although the appropriate number of clusters is hard to determine, in gen-

eral, the more clusters, the more the dependence relationship is examined, and the

more the difference between normal and cancer samples could be revealed.
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2.3.3 Estimating Ensemble Dependence Model

Given the gene clustering result, cluster expression profiles can be easily ob-

tained by taking the cluster average. Then, the dependence matrix A can be esti-

mated row by row, based on the least squares (LS) criterion. For example, for the

first row of A matrix,

x1 = a12x2 + a13x3 + a14x4 + n1, (2.4)

by using the LS criteria, coefficients a1i, i = 2, 3, 4 that minimize the noise-like term

n1 are estimated. The statistics of the noise-like term n1 is estimated at the same

time.

For each dataset, after feature selection and gene clustering, we can estimate

two dependence models. One for the normal case, and the other for the cancer

case. Part of the cancer samples are used to estimate a model for the cancer case,

represented by the dependence matrix (Ac) and the distribution of the noise term

(Nc); part of the normal samples are used to estimate a model for the normal case,

the dependence matrix (An) and the distribution of the noise term (Nn). With

these two models, the classification problem becomes a hypothesis testing problem.

2.3.4 Hypothesis Testing

In binary hypothesis-testing problems [45], there are two possible hypotheses,

H0 and H1, associated with two probability distribution functions, f0 and f1, on

the observation space. In this study, H0 and H1 represent the normal case and

the cancer case, respectively. Under each hypothesis, the observation Y —-gene
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expression, follows a certain probability distribution, written as

H0 : Y ∼ f0.

H1 : Y ∼ f1.

(2.5)

where f0 and f1 are the distribution of the gene expression in normal and cancer

samples, respectively. A decision rule δ is a partition of the observation space Γ into

Γ1 and Γ0 = Γc
1, where Γc

1 is the complement set of Γ1. In this study, the Maximum

Likelihood (ML) approach is used to form the decision rule, that is to compare the

conditional probability of observation Y , given underlying hypothesis H0 or H1,

Γ1 = {Y ∈ Γ|f1(Y ) > f0(Y )}. (2.6)

Therefore, the two dependence model can be written in the following hypothesis-

testing formulation:

H1 : X = AcX + Nc.

H0 : X = AnX + Nn.

(2.7)

For each incoming unknown sample X (samples not used in model learning),

the ML decision rule is applied to predict whether it is normal or cancer. That is, we

check whether the incoming sample fits the normal dependence model better, or fits

the cancer dependence model better, by comparing the following two log-likelihoods

Pr(X|H1) = −0.5 log((2π)k|Vc|)− 0.5(X−AcX−Mc)
TVc

−1(X−AcX−Mc)

Pr(X|H0) = −0.5 log((2π)k|Vn|)− 0.5(X−AnX−Mn)TVn
−1(X−AnX−Mn)

(2.8)

where, k is the number of clusters, Vc, Mc, and Vn, Mn are the first- and second-

order statistics of the Gaussian noise-like terms in cancer and normal cases, respec-

tively.
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From equation (2.8), it can be seen that the noise-like term N is assumed to

be multivariate gaussian. In order to validate this assumption, we analyzed some

real microarray and mass spectrum data and examined the kurtosis of the noise-like

term. Some results are shown in Appendix A. The kurtosis of the elements of the

noise-like vector are close to 3, which validates the gaussian assumption.

2.4 Classification Results of Microarray Data

2.4.1 Microarray Datasets

Since in general the cDNA microarray gene expression data follows standard

format and pre-processing operations (e.g. normalization), five public-available

cDNA datasets are investigated in detail first. Each of them contains both nor-

mal samples and cancer samples. They are, a gastric cancer dataset [46], containing

90 cancer samples and 22 normal samples; a liver cancer dataset [47], containing 82

cancer samples and 74 normal samples; a prostate cancer dataset [48], containing

four stages of samples: normal adjacent prostate (NAP), benign prostatic hyperla-

sia (BPH), localized prostate cancer (PCA) and metastatic cancer (MET), which

can be roughly regarded as 15 normal samples (7 NAP and 8 BPH) and 25 cancer

samples (14 PCA and 11 MET); a cervical cancer dataset [49], containing 25 cancer

samples and 8 normal samples; and a lung cancer dataset [50], containing 37 cancer

samples and 6 normal samples.

To be complete, we also investigate three Affymetrix datasets:, a colon cancer
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dataset [51], containing 40 cancer samples, 22 normal samples; a prostate cancer

dataset [52], containing 77 cancer samples and 59 normal samples; and a lung cancer

dataset [53], containing 150 cancer samples and 31 normal samples.

2.4.2 Classification Results for Microarray

As mentioned in the subsection “Feature Clustering”, the number of clusters

has to be pre-determined for the dependence model. The optimal number of clus-

ters is difficult to determine. In this study, we heuristically choose the parameter as

follows: we examine different choices, apply the proposed classification method and

suggest the best one by comparing the overall classification performance. In Ta-

ble 2.1, for the dependence model, different choices of feature selection and number

of clusters are examined on the gastric cancer dataset. The performance is shown

under leave-one-out cross-validation [54]. From this table, we can see that the choice

of feature selection does not affect the classification performance significantly. We

believe that using a purely mathematical criterion to select genes is not enough,

and that a more meaningful gene selection method which can incorporate biology

knowledge is desirable. In the dependence model, different choices of the number of

clusters yield slightly different results. Although it is hard to conclude which choice

is the best, in general, with sufficient samples, the more clusters, the more the de-

pendence relationship is examined, thus, the better the classification performance

could be achieved. Since the number of samples is limited, we can not afford to

analyze many clusters. As illustrated in Table 2.1, the performance of the 5-cluster
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case is worse than that of the 4-cluster case. The number of clusters is heuristically

chosen to be four. We also investigated four other datasets, and observed similar

results.

Golub’s approach Golub’s approach T-test All features
100 genes 500 genes 3319 genes 6688 genes

EDM 2 98.8% / 95.4% 98.8% / 95.4% 98.8% / 100% 98.8% / 100%
EDM 3 98.8% / 100% 98.8% / 95.4% 100% / 100% 98.8% / 100%
EDM 4 98.8% / 100% 98.8% / 100% 100% / 100% 98.8% / 100%
EDM 5 98.8% / 90.9% 98.8% / 100% 100% / 100% 98.8% / 100%

Table 2.1: Classification performance comparison on gastric cancer dataset. “EDM
# ” means ensemble dependence model with choice of # clusters. In each block, “#/#”
means “correct classification rate for cancer samples / correct classification rate for normal
samples”

For each dataset, we use Golub’s approach for feature selection, employ the

gaussian mixture model to group selected genes into four clusters, and apply the

proposed classification scheme to do leave-one-out cross-validation. The results are

shown in Table 2.2, where we can see that the proposed scheme yields high classi-

fication accuracy. In the reference papers mentioned in the “Microarray Datasets”

section, Hierarchical Clustering method is applied to group samples. Since Hierar-

chical Clustering does not give precise classification results, it is hard to compare

the proposed method with it. To examine the proposed scheme, we compare it

with the widely-applied linear support vector machine (SVM) approach. The SVM

algorithm is a supervised machine learning algorithm. It is a powerful tool in clas-

sification and pattern recognition, commonly used in the areas of face detection

[55], speaker/speech recognition [56], and handwritten recognition [57]. It also has

been applied in the problem of microarray data classification [10, 58], where it is

illustrated that SVM provides excellent classification performance. In Table 2.2,
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we compare the dependence model and SVM based on several cDNA microarray

datasets, and we notice that the linear SVM and the proposed algorithm perform

comparably, both providing very high classification accuracy. An interesting ob-

servation during the result-checking procedure is that, the classification errors in

nearly all leave-one-out validation experiments happen with the same two samples,

which may be because of sample mis-labelling. We also compare the dependence

model with SVM based on several Affymetrix datasets, with results shown in Table

2.3. We notice that the overall classification performance ranges from 85% to 98%

for different types of cancer. Also, we notice that the performance of the proposed

dependence model is comparable to that of SVM.

cDNA datasets Dependence model SVM
gastric cancer 100% 99.1%
liver cancer 98.72% 98.72%

prostate cancer 97.5% 100%
cervical cancer 93.9% 93.9%

lung cancer 95.35% 97.67%

Table 2.2: Correct classification rate of the dependence model and SVM for cDNA
datasets

Affymetrix datasets Dependence model SVM
colon cancer 88.71% 85.48%

prostate cancer 85.29% 91.18%
lung cancer 97.79% 99.45%

Table 2.3: Correct classification rate of the dependence model and SVM for
Affymetrix datasets

Although SVM and the dependence model provide comparable classification

performance, it is worth mentioning that the proposed approach has its advantages.

The linear SVM is a hard test approach since a hyper-plane in the feature space

is generated to classify test samples. In the proposed ensemble dependence model,
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two likelihoods are evaluated to determine the class index. The proposed scheme

is a soft test approach, where not only the class index is determined, but also the

confidence level of each classification operation can be obtained.

2.5 Classification Results of Mass Spectrum Data

2.5.1 Protein Mass Spectrum Datasets

The two investigated protein mass spectrum (MS) datasets are an ovarian

cancer dataset, with 91 normal samples and 161 cancer samples, and a prostate

cancer dataset, with 81 normal samples, 84 early stage cancer samples and 84 late

stage cancer samples. Datasets are gathered from the National Cancer Institute

and Eastern Virginia Medical School. In mass spectrum data, the features are not

actual proteins. The features are mass-to-charge (m/z) ratios. In the data matrix for

protein data, the horizontal axis represents different samples, and the vertical axis

is the m/z ratio. Each m/z ratio corresponds to a protein or a segment of a protein.

Because of the noisy nature of mass spectrum datasets, proper pre-processing is

needed before any analysis. The details of pre-processing is available in Appendix

B. After pre-processing, peaks in the mass spectra are identified as features for

further analysis.
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2.5.2 Classification Results for Mass Spectrum

Similar with microarray datasets, for protein mass spectrum (MS) datasets, we

also need feature selection and feature clustering. The model estimation component

and the hypothesis-testing component are also the same. The only difference is how

to find a representative to effectively represent each cluster. A most straightforward

way would be using the average of all features within one cluster as the cluster

representative. However, due to the specific properties of the protein MS data,

we propose a concept of virtual protein. Here virtual protein is defined as a linear

weighted combination of different MS features within a cluster. In order to represent

each cluster, a virtual protein is generated as the cluster representative.

We argue that a virtual protein representation makes more sense than a

straightforward averaging for two main reasons. First, in MS data, some features

correspond to high intensity peaks, while some features correspond to low inten-

sity peaks. In order to avoid high intensity features dominating its cluster, the

virtual protein is generated by the weighted average of the cluster members, which

can provide more information than the straightforward averaging. Secondly, MS

measures the abundance of different peptides with different mass-to-charge (m/z)

ratios. Due to the measurement process of MS, one particular cancer-related pro-

tein can be represented by several peptides, each of which corresponds to a certain

m/z feature. Thus, a linear combination of m/z features may lead to a virtual

protein which represents the underlying cancer-related protein. For the purpose of

constructing a virtual protein, i.e. determining the weights, we employ the linear
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discriminant analysis (LDA) [60]. Since we are interested in the virtual proteins

which are cancer-related and thus best represent the difference between a cancer

and non-cancer sample, we believe LDA provides an efficient way to construct such

a virtual protein.

In one cluster, each feature contains some information of the difference between

normal and cancer samples. Through linear discriminant analysis, a set of weights

is determined in order to extract one virtual feature that best distinguishes the

two cases. For one cluster, denote the training dataset as a matrix [P, Q], where

each row corresponds to one feature in this cluster; each column of P corresponds

to one cancer sample; and each column of Q corresponds to one normal sample.

Linear discriminant analysis finds a linear combination w that maximizes the ratio

of between class variance and within class variance, which is wSBwT /wSW wT . SB

and SW can be calculated as follows,

SB = (µP − µ)(µP − µ)T + (µQ − µ)(µQ − µ)T

SW = (P − µP )(P − µP )T + (Q− µQ)(Q− µQ)T

(2.9)

where µP is the average of cancer sample; µQ is the average of normal sample;

and µ is the average of all samples. Through the Lagrange method, the w that

maximizes wSBwT /wSW wT is the eigenvector of S−1
W SB that corresponds to the

largest eigenvalue. Then, weights w are used to generate the virtual protein of this

cluster.

With the virtual protein as cluster representative, we follow the classification

framework in Figure 2.2 to assess the classification performance of the dependence

model. The performance of the dependence model and SVM is compared under
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leave-one-out cross-validation. From Table 2.4, we can see that in the ovarian can-

cer dataset, the proposed model and SVM have comparable performance. In the

prostate cancer dataset, when we classify normal samples against late stage can-

cer samples, the two schemes also have comparable performance. However, in the

prostate cancer dataset, when we classify normal samples against early stage can-

cer samples, where the classification task appears to be more difficult, the proposed

ensemble dependence model out performs SVM. Since SVM produces a linear bound-

ary that best separates the training data, in the case where normal and early cancer

samples are not well separated, SVM does not perform well. However, the proposed

model fits the data well. It can reduce the noise, and yield satisfactory separation

between normal and cancer data.

Protein Mass Spectrum Dependence model SVM
ovarian cancer 96.60% 96.83%

prostate: normal vs early cancer stage 98.79% 78.79%
prostate: normal vs late cancer stage 99.39% 98.79%

Table 2.4: Correct classification rate of the dependence model and SVM for protein
mass spectrum datasets.

2.6 Early Prediction of Cancer

In the previous section, we have shown that the dependence model and SVM

achieve comparable performance, while the dependence model is sometimes better.

In this section, we will present the uniqueness of the dependence model as a model-

driven approach, in terms of its biology meaning and its potential for early prediction

of cancer.
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Below are typical examples of the estimated cancer dependence matrix Ac and

the normal dependence matrix An:

Ac =




0 0.3676 0.1098 −0.0398

1.6274 0 −0.5400 0.0067

0.2103 −0.2336 0 0.3922

−0.1537 0.0058 0.7912 0




. (2.10)

An =




0 0.4502 0.5154 −0.4208

1.8188 0 −1.0142 0.5021

0.6592 −0.3210 0 0.7028

−0.7767 0.2294 1.0145 0




. (2.11)

Comparing these two matrices entry-wisely does not reveal a clear difference. How-

ever, when exploring the eigenvalue domain, we observe that, there are clearly two

different patterns, in Figure 2.3. Figure 2.3 is derived from the gastric cancer mi-

croarray dataset. In order to obtain Figure 2.3(a), we randomly pick 80% of the

normal samples, estimate the normal dependence model, calculate the eigenvalues,

and repeat this 200 times. Therefore, we have 200 sets of eigenvalues derived from

different subsets of the normal samples, and we plot the eigenvalues in Figure 2.3(a).

From this figure, we can see that the eigenvalue pattern derived from different sub-

set of the normal samples is quite consistent. We did exactly the same thing on

the cancer samples to obtain Figure 2.3(b). It can be observed that, in general, the

eigenvalues for the normal dependence matrix have larger absolute values than those

of the cancer case. The difference is most distinguishing at the smallest eigenvalue.
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We believe that the different patterns in eigenvalue domain could play an important

role in predicting whether an unknown sample is normal or cancer.

(a) (b)

Figure 2.3: Eigenvalue pattern of gastric dataset. Fig.(a) shows the four eigenvalues
of normal dependence matrices, form 200 subsets of normal data. Fig.(b) shows the
eigenvalues of cancer dependence matrices, from 200 subsets of normal data.

Recall that, after gene clustering, the dependence matrix is obtained from the

cluster representative expression profiles. What is the relationship between cluster

expression profiles and the eigenvalue pattern of the dependence matrix? What

kind of cluster expression profiles will result in the two different patterns observed

in Figure 2.3? To answer these questions, an ideal case is defined, where there is

no noise-like term in equation (2.1), meaning the four cluster expression profiles are

completely linearly dependent. In the other words, each cluster expression profile

could be exactly written as a linear combination of the other clusters’ expression

profiles. Thus, the noise-like term is zero. More specifically, if the four clusters’

expression profiles satisfy

x1 = α1x2 + α2x3 + α3x4, (2.12)

then the noise-like term is zero. In this case, the dependence matrix will have a
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special structure as follows,

Aideal =




0 α1 α2 α3

1
α1

0 −α2

α1
−α3

α1

1
α2

−α1

α2
0 −α3

α2

1
α3

−α1

α3
−α2

α3
0




. (2.13)

We can show that the eigenvalues of the above matrix are 1,1,1,-3, no matter what

are the values of αi, i = 1, 2, 3. We define the above case in (2.13) as the ideal

case. This property can be generalized into cases with higher dimensions. For

example, if we have M clusters, the eigenvalues of the M -by-M matrix Aideal are

{1, 1, ..., 1,−(M−1)}, no matter what are the values of αi, i = 1, 2, ..., M−1. (Proof

in Appendix C).

We simulate the ideal case. Based on the ideal case, we gradually introduce

larger and larger random variation to make the four cluster expression profiles more

and more noisy, thus more and more independent. At each variation level, a depen-

dence matrix is estimated, and the corresponding eigenvalues are calculated. Com-

pared with the ideal case, as the cluster expression profiles suffer more and more

noisy variations, the eigenvalues of their dependence matrix will change and follow

the trends shown in Figure 2.4. Compared with Figure 2.3, it can be suggested that

the cluster expression profiles in cancer samples correspond to a much larger varia-

tion level than that of the normal samples, which means the gene clusters’ behavior

in cancer samples is much more noisy than that of the normal samples. Here we

propose to explain this intuitively. In the normal samples, gene clusters’ dependence

relationship is clearer, and gene clusters work more cooperatively. Therefore, we ob-
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Figure 2.4: The horizontal axis is variation level, which indicates how noisy the four clus-
ter expression profiles are. As the cluster expression profiles become more noisy because
of diseases, the eigenvalues of the correspondent dependence matrix will change, following
the above curves.

serve that the clusters behave more dependently. On the other hand, in the cancer

case, the dependence relationship among gene clusters is overwhelmed by a large

variation caused by diseases, which thus make gene clusters work less cooperatively,

and make the cell system become worse and worse.

This is the biology meaning behind the dependence model, where normal and

cancer cases are distinguished by the strength of dependence among gene clusters.

On the other hand, in SVM, a data-driven method, we can find a hyperplane that

best separates normal and cancer cases. But SVM can not explain why this side

corresponds to normal and the other side corresponds to cancer, why not the other

way around. This is one big advantage of the dependence model, compared with

existing data-driven methods.
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Figure 2.5: Trend of eigenvalue change in the four stages of samples in the prostate
dataset

Moreover, the transition stage between normal and cancer eigenvalue patterns

suggests that the eigenvalue pattern from the dependence model can be used as fea-

tures to predict early stage of cancer development, whether a sample is in transition

from healthy to cancer. For example, if the eigenvalue pattern of a patient falls

between the normal and cancer eigenvalue patterns, we will tell the patient to take

treatments to prevent the possible development of cancer. To support the above ar-

gument, we use the prostate cancer dataset as an example. As mentioned earlier, it

contains four stages of data, NAP, BPH, PCA, MET, which can be simply regarded

as from normal (NAP and BPH), to cancer stage (PCA), to cancer in stage (MET).

The dependence matrix and eigenvalues of each stage are calculated. As shown in

Figure 2.5, the overall trend of eigenvalues from normal to cancer follows the trend

in Figure 2.4, which verifies the above argument. In the future study, we will obtain

more datasets to further verify the argument. This argument of early prediction of

cancer is the biggest implication and significance of the dependence model.
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2.7 Chapter Summary

In this chapter, we develop a model-driven approach, called the dependence

model. The dependence model is highly efficient in classification of normal and

cancer samples, using gene microarray data and protein mass spectrum data. We

compare the proposed approach with the widely-applied support vector machine

algorithm. Although these two algorithms show comparable performance, our algo-

rithm presents a fundamental departure from the existing SVM approach because

it develops a more plausible ensemble dependence model by taking genes group

behaviors and interactions into account, and thus may have potential to classify

intransigent data on which other classifiers balk.

An interesting observation is noted in the eigenvalue domain: two distinguish-

ing eigenvalues patterns of the dependence models are noted for the normal and

cancer cases. From the eigenvalue pattern, we derived the biology meaning behind

the dependence model, showing that the gene clusters are working more coopera-

tively in the normal case and less cooperatively in the cancer case. By examining

one prostate cancer dataset, we also illustrated the dependence model’s potential

in early prediction of cancer. The biology meaning and the ability for cancer pre-

diction represent the key difference between our study and the existing literature.

More details can be found in [61, 62, 63]. In the future study, we will obtain more

datasets to further verify the dependence model.
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Chapter 3

Dependence Network for

Biomarker Identification

3.1 Motivation

The functionality of a gene or a protein is not solely characterized by its own

structure. Its surroundings and interacting genes and proteins also play important

roles in determining the function. In short, the gene and protein interaction network

can provide detailed functional insights [64]. In Chapter 2, we develop the depen-

dence model and apply it to examine the big picture, the ensemble dependence

among groups of genes. Although the big picture reflects some biology insights, the

detail relationships among individual gene and protein features are missing. Another

motivation is that the ensemble dependence model in Chapter 2 requires a clustering

method, which is heuristic. Therefore, in this chapter, we will zoom in to examine

the missing detail dependence relationships among individual features, and avoid
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(a) (b)

Figure 3.1: Motivation of dependence network.

the heuristic clustering component. The dependence relationships among individ-

ual features construct the dependence network, from which we are able to identify

important genes and proteins for cancer development and effective treatment.

Figure 3.1 shows the eigenvalue vs dependence relationship among 3 features.

This is almost the same with the Figure 2.4 in the previous chapter. Small variation

levels, meaning the eigenvalue pattern close to the left side, indicate more dependent;

while large variation levels, meaning the eigenvalue pattern close to the right side,

indicate more independent. In Figure 3.1(a), we have an example of a gene triple

consisting of gene 1, 2, 3. They work together in the normal case. But their

relationships are disturbed in the cancer case. For this triple, normal implies more

dependent, while cancer implies more independent. On the other hand, in Figure

3.1(b), there is another example, a triple consisting of gene 4, 5, 6. They are not

related in the normal case. But their dependence relationships are activated in the
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cancer case. Then, for the second example, normal implies more independent, while

cancer implies more dependent.

From these examples, we can imagine that, if we use the dependence relation-

ship to define a network and draw such networks for normal and cancer cases, we will

see some or maybe a lot of difference. And such difference may help us in identifying

biomarkers, the important genes for cancer prediction and effective treatments. In

this chapter, we will present how to define and construct a dependence network, and

apply the dependence network for biomarker identification.

3.2 Dependence Network

A dependence network is a set of nodes (such as gene or protein features) and

linear dependence interactions among them. All the nodes and connections collec-

tively carry out specific functions. Each connection represents an inter-component

dependence relationship with an associated weight aij indicating to what extent

component i depends on component j. In the following, we describe how a depen-

dence network is constructed.

In Chapter 2, it is shown that the eigenvalue pattern is closely related to the

dependence relationship of a group of features, especially the smallest eigenvalue.

Take a three-feature case for example. From the noise-free ideal case, as the three

features become more and more independent, the eigenvalues of their dependence

matrix will change and follow the trends shown in Figure 3.1. In the three-feature

example, when the three features are perfectly linearly dependent, the smallest
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eigenvalue is −2. When the dependence relationship become weaker and weaker,

the smallest eigenvalue increases, and eventually saturate to around −0.7. Thus, for

any feature triple, by examining the eigenvalue pattern of their dependence matrix,

we are able to tell how dependent they are, how closely related they are.

Since, the eigenvalue pattern can serve as an indicator of strength of depen-

dency, if we examine three individual features at one time, we can find all closely

related feature triples through an exhaustive search. The elements in each triple

share strong dependence relationships, which indicates that they have a strong in-

fluence on each other in the dependence network. Take the ovarian cancer protein

MS dataset as an example. For the normal case, we exhaustively examine the

eigenvalue pattern for all possible feature triples. A threshold −1.5 is applied. If

the smallest eigenvalue of a feature triple is lower than the threshold, there exists a

strong dependence relationship within the triple, which is called the “binding triple”.

Similar analysis is applied to the cancer samples. The results are shown in Figure

3.2. In the normal case, 520 triples pass the threshold; while in the cancer case, 269

triples pass the threshold. Moreover, there are only 80 triples in the overlap between

normal and cancer cases. The results suggest that, from healthy to cancerous, some

dependence relationships are disabled; while some other dependence relationships

are activated. The small overlap indicates that, from healthy to cancerous, the

overall dependence relationships go through a major change.

The dependence network is constructed from binding triples. As in graph

theory, the topology of an n-node network can be represented by an n × n adja-

cency matrix D. If feature i and feature j both appear in a binding triple, it is

41



Figure 3.2: The analysis of binding triples based on the ovarian MS dataset. A+C is the
520 binding triples in normal samples. B+C is the 269 binding triples in cancer samples.
C is the overlap, containing 80 triples.

suggested by the dependence model that feature i and feature j are closely related.

And we will count once for Dij, the connection between feature i and feature j.

Basically, we count the appearance of all feature pairs in binding triples, and form

an adjacency matrix D. Then, the adjacency matrix D is normalized by the total

number of binding triples. Each element Dij is a confidence value, which indicates

the importance and strength of the connection between feature i and feature j. We

call network D the dependence network. The dependence networks can be visual-

ized as shown in Figure 3.3, where strong dependence relationship is reflected in

small distance between connected nodes. The length of each connection is defined

to be inverse proportional to the confidence value. Because the confidence values

are normalized, through 1/Dij, features with strong dependence relationship will

locate close to each other, while features with weak dependence relationship will be

far apart. From Figure 3.3, we are able to see the importance of each node and

identify potential biomarkers.
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(a) Normal case (b) Cancer case

Figure 3.3: Dependence networks for normal and cancer cases in ovarian cancer dataset.
(Isolated nodes are omitted.) For the purpose of illustration, the circles are used to indicate
the core features.

3.3 Biomarker Identification

In a certain disease, biomarkers are defined as the alternations of patterns

at the cellular, molecular or genetic level. These biomarkers normally serve as

the indicators of diseases. Biomarker identification is a topic of great importance,

because it provides new insights into the early detection, diagnosis and treatments of

cancer. In this section, we study and compare two biomarker identification criteria

derived from the dependence model and network: the classification-performance-

based criterion and the dependence-network-based criterion. The two criteria are

applied to both gene and protein data to identify biomarkers.

3.3.1 Dependence-Network-Based Biomarkers

As described earlier, given a dataset containing cancer and normal samples,

dependence networks can be constructed for both normal and cancer cases. For each

case, we examine three features at one time. Through an exhaustive search, the de-
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pendence relationship of all feature triples are examined to find binding triples. From

normal samples, the binding triples of normal case are found, and we build a depen-

dence network for the normal case Dnormal. From cancer samples, the binding triples

of cancer case are found, and we build a dependence network for the cancer case

Dcancer. By examining the norm of all the columns of the matrix Dnormal −Dcancer,

we are able to see which features go through a large topology change from normal

to cancer, and identify them as dependence-network-based biomarkers. Therefore,

the basic idea behind the dependence-network-based criterion is that: from normal

to cancer, the features with large topology change are identified as biomarkers.

3.3.2 Classification-Performance-Based Biomarkers

In the literature, one popular biomarker identification criterion is the classification-

performance-based criterion. For the classification-performance-based criterion, fea-

tures are examined three at one time. A dependence-model-based classifier is build

upon the three features to examine their classification power. Through an exhaus-

tive search, the classification performances of all possible feature triples are exam-

ined. Triples with classification accuracy higher than 95% are considered to be

informative triples. And, features frequently appear in the informative triples are

regarded as important cancer biomarkers. These biomarkers are called the clas-

sification classification-performance-based biomarkers. The basic idea behind the

classification-performance-based criterion is that: the features that have high dis-

crimination power are identified as biomarkers.
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3.4 Biomarker Identification Results

In the previous section, we propose the dependence-network-based biomarker

identification criterion, and introduce the classification-performance-based criterion

in the existing literature. In this section, we compare the two criteria, and show the

superiority of the dependence-network-based criterion.

To assess the reproducibility of the identified biomarkers, we apply the strat-

egy similar with 10-fold cross-validation, where the entire dataset is divided into 10

parts; 9 parts are used for model learning (training) and the one left is used for

validation (testing). In each of the 10 iterations, we search for biomarkers based on

different choices of training and testing samples. The desired reproducibility means

that the same biomarkers are consistently identified in the 10 iterations. Without

reproducibility, the results from a particular method and particular dataset can not

be generalized to other datasets, and the validity of both the results and the method

are questionable. Therefore, a consistent and reproducible result is a necessary con-

dition of a successful method. In the following, we show the superior reproducibility

of the dependence-network-based criterion in several gene and protein datasets.

There are three protein mass spectrum datasets and two microarray gene

datasets under investigation. The protein datasets are: an ovarian cancer dataset,

with 25 normal samples and 24 cancer samples [65], a prostate cancer dataset, with

81 normal samples, 84 early stage cancer samples and 84 late stage cancer samples

[66], and a liver cancer dataset, with 176 cancer samples and 181 normal samples

[14]. The gene datasets are, a gastric cancer microarray dataset [46] and a liver
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cancer microarray dataset [47]. For the protein MS datasets, proper pre-processing

is needed to convert the spectra data into m/z peak features. The pre-processing

is the same as that in Chapter 2, with details presented in Appendix B. Because

of the computational complexity of the exhaustive search, we first apply T-test to

perform feature selection, and we limit our attention to the top 50 ranking features

in T-test. Biomarkers are identified from these 50 candidate features.

Ovarian cancer protein MS dataset

First, we examine the ovarian cancer MS dataset. For the classification-

performance-based criterion, the dataset is divided into 10 parts; 9 parts are used

for model learning (training) and the one left is used for validation (testing). In each

of the 10 iterations, based on different choices of training and testing samples, we

search for classification-performance-based biomarkers. In each iteration, through

an exhaustive search, the classification performance of all possible feature triples

are examined to find informative triples, and the top 10 most frequently appeared

features are considered as biomarkers. Therefore, in each of the 10 iterations, based

on different training and testing set, 10 biomarkers are identified. We examine the

biomarkers identified by different subsets of the whole dataset to assess the consis-

tency of the identification criterion. The result is that, only 3 features are commonly

identified as biomarkers by 7 or more out of the 10 iterations. They are features

37, 43, 46. Figure 3.4(a) shows the histogram of the identified biomarkers, where the

horizontal axis is the feature index, and the vertical axis shows how many times one

feature is identified during the 10-fold iterations. From the widely spread histogram,

we can conclude that the result is not quite consistent.
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Figure 3.4: Fig (a) is the histogram of classification-performance-based biomarkers in
the ovarian cancer MS dataset. Fig (b) is the histogram of dependence-network-based
biomarkers of the ovarian cancer MS dataset. In both figures, the horizontal axis is the
feature index, and the vertical axis shows how many times one feature is identified during
the 10-fold iterations.

For the dependence-network-based criterion, we also apply 10-fold cross valida-

tion. In each iteration, based on different subset of the whole datasets, Dnormal and

Dcancer are constructed and compared. By examining the norm of all the columns

of the matrix Dnormal−Dcancer, we are able to see which features go through a large

topology change from normal to cancer, and identify them as biomarkers. In each

iteration, we identify 10 features with large topology changes as biomarkers. The

result shows that, 10 features are commonly identified as biomarkers by 7 or more

out of the 10 iterations. They are features 2, 11, 17, 20, 21, 28, 29, 33, 42, 49. Figure

3.4(b) shows histogram of the identified biomarkers. From this figure, we can see

that the dependence-network-based criterion yields much more consistent results,

compared with the classification-performance-based criterion. Another observation

is that, if we apply a simple differential method for biomarker identification, such

as T-test, the identified biomarkers will be features with indexes 40∼50 (since the
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pre-selection 50 features are based on T-test). From Figure 3.4, we can see that

the classification-performance-based biomarkers have high correlation with the sim-

ple differential method. However, the dependence-network-based criterion identifies

many biomarkers that are not simply the most differentially expressed features.

The results indicate that, the dependence-network-based biomarker identification

criterion yields much more information than the simple differential method and the

classification-performance-based criterion.

In Figure 3.3, the dependence networks for normal and cancer cases are drawn,

where we can see the important features in the normal and cancer dependence

networks through visual inspection. In the normal case, features 11, 17, 20, 29, 30

and 33 are important core features. They have rich dependence relationships with

lots of other features. However, in the cancer case, there are more core features 2,

9, 11, 17, 20, 21, 28, and 42. From normal case to cancer case, some unimportant

features in normal case become core features in cancer case, especially features 2,

21, 28 and 42; while some core features in normal case become deactivated in cancer

case, such as features 29, 30 and 33. These core features are strongly suggested to

be biomarkers in ovarian cancer. It is our intention to investigate the origin and

identity of these features.

Prostate cancer protein MS dataset

We further examine the prostate MS dataset for two cases: normal samples vs

early stage cancer samples, and normal samples vs late stage cancer samples. Our

main purpose in analyzing this dataset is to examine the possible difference between

dominant biomarkers in early cancer stage and late cancer stage.
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The two biomarker identification criteria are examined under 10-fold cross

validation for two tasks, normal vs early stage cancer, and normal vs late stage

cancer. The classification-performance-criterion is applied to identify biomarkers for

early stage cancer and late stage cancer, respectively. Regarding the dependence-

network-based criterion, since there are three stages of data in this dataset, we

can build three dependence networks, one for each stage, Dnormal, Dearly and Dlate.

Based on Dnormal and Dearly, we identify biomarkers for early stage cancer samples;

based on Dnormal and Dlate, we identify biomarkers for late stage cancer samples.

The histograms of the identified biomarkers from two criteria for two tasks

are shown in Figure 3.5. Figure 3.5(a) shows the histogram of the classification-

performance-based biomarkers for the task of normal vs early stage cancer. Figure

3.5(b) shows the histogram of the dependence-network-based biomarkers for the

task of normal vs early stage cancer. For the other task, normal vs late stage

cancer, Figure 3.5(c) and Figure 3.5(d) show the histograms of the classification-

performance-based biomarkers and dependence-network-based biomarkers respec-

tively. Consistent with the results in the ovarian cancer dataset, the dependence-

network-based criterion gives more consistent results for both early stage cancer

and late stage cancer than the classification-performance-based criterion. Again, it

is observed that, the dependence-network-based criterion yields more information

than the classification-performance-based criterion and a simple differential method,

such as T-test.

The dependence networks for normal, early cancer stage and late cancer stage

are drawn in Figure 3.6. From this figure, we can see some interesting behaviors of
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the identified dependence-network-based biomarkers through visual inspection. For

example, feature 34 is not important in normal stage. However, in cancer stages,

it plays a more important role in the dependence network. Features 20 and 24 are

more interesting. They are important network nodes in both normal stage and late

cancer stage. However, they are deactivated in early cancer stage. Features 12,

13 and 16 behave oppositely: they are activated in early cancer stage only. These

features might be the key to early stage of cancer development, and deserve to be

further investigated.

Liver cancer protein MS dataset

We also examined a liver cancer protein MS dataset. Similar with the above

analysis, 10-fold cross-validation is applied to compare the classification-performance-

based criterion and the dependence-network-based criterion. The histograms are

shown in Figure 3.7. From the results, we again observe the superiority of the

dependence-network-based criterion over the classification-performance-based crite-

rion.

In Figure 3.8, dependence networks of normal and cancer cases are shown. We

see that the difference between normal and cancer is not as obvious as the previ-

ous examples. The connection among several core features are almost unchanged

for both cases. However, when going into the details by examining the adjacency

matrixes Dnormal and Dcancer, we are still able to identify biomarkers and yield

consistent results.

Gastric cancer gene microarray dataset

For the gastric cancer microarray dataset, in order to identify the classification-
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performance-based biomarkers, we exhaustively examine all possible feature triples,

and apply the dependence model for classification. Triples with classification ac-

curacy higher than 95% are considered to be informative triples. Gene features

that frequently appear in the informative triples are regarded as cancer biomark-

ers. 10-fold cross-validation is applied to examine the consistency of the identified

biomarkers. In each of the 10 iterations, 10 biomarkers are identified based on differ-

ent training and testing sets. The histogram of the identified biomarkers are shown

in Figure 3.9(a). Only 1 feature is commonly identified as biomarkers by 7 or more

out of the 10 iterations. The widely spread histogram shows the lack of consistency

of classification-performance-based criterion in the gastric gene microarray data.

The dependence-network-based criterion is also examined under 10-fold cross-

validation. For each of the 10 iterations, from a subset of normal samples, we build

a dependence network for normal case Dnormal; from a subset of cancer samples, we

build a dependence network for cancer case Dcancer; then, biomarkers are identified

based on the difference between Dnormal and Dcancer. As shown in Fig.3.9(b), 7

features are commonly identified as biomarkers by 7 out of the 10 iterations. They

are features 10, 26, 31, 37, 41, 42, 50. From this figure, we again observe that the

dependence-network-based criterion yields much more consistent results than the

classification-performance-based criterion. Also, the dependence-network-based cri-

terion yields more information than the classification-performance-based criterion,

with respect to the simple differential method T-test. Compared with the results

from protein MS data, the results from gene microarray data exhibit less consis-

tency. This may be because gene microarray experiments have larger noise than the
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protein MS experiments.

From Figure 3.10, we can see the important features in the normal and cancer

dependence networks through visual inspection. In the normal case, features 8 and

50 are important core features. However, in the cancer case, there are much more

core features 10, 26, 31, 37, 41 and 42. From normal to cancer, some unimportant

features in the normal case become core features in the cancer case, while some

core features in the normal case become deactivated in the cancer case. These gene

features are strongly suggested to be biomarkers in gastric cancer.

Liver cancer gene microarray dataset

Finally, we analyzed a liver cancer gene microarray dataset. The histograms

of the classification-performance-based criterion and the dependence-network-based

criterion are shown in Figure 3.11. The result is consistent with that of the other

datasets.

In Figure 3.12, the dependence networks for normal and cancer cases are drawn

for this liver gene dataset. We can see that the important features in the normal

and cancer dependence networks are quite different. Those important feature are

potentially important biomarkers.
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3.5 Biological Relevant of the Identified Biomark-

ers

In the previous section, we have presented the classification-performance-based

biomarkers and dependence-network-based biomarkers from several gene and protein

datasets. Since consistency and reproducibility is a necessary condition of a suc-

cessful method, and the classification-performance-based criterion does not meet the

necessary condition, so the classification-performance-based criterion is not a suc-

cessful one. One the other hand, the proposed dependence-network-based criterion

survives the necessary condition. In this section, we will further illustrate the merit

of the dependence-network-based criterion, by analyzing its biological relevance.

This section in contributed by our collaborators in Georgetown University.

The reason I include this part in the thesis is to make the argument more complete,

by including support and validation from the biology point of view.

Take the gastric cancer gene microarray dataset for examples. 7 gene biomark-

ers are identified from 50 candidates. The 50 top-score genes we analyzed repre-

sent the most significant changes of gene expression patterns across different cancer

pathological types, and correspond to four distinct gene clusters in the hierarchical

clustering result [46]. Table 3.1 summarizes the 7 identified gene biomarkers, 6 with

significantly increased expression levels and 1 with decreased expression. Interest-

ingly, the six up-regulated genes all correspond to the same ECM (extracellular

matrix) cluster, which has highly similar expression pattern across most pathologi-

cal types. The down-regulated SIDT2 gene, on the other hand, belongs to a cluster
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Gene Protein Name Feature Expression Level
Name [UniPortKB Accession]* (Node) # in Cancer Samples

SPARC Osteonectin, SPARC precursor 42 Up
[P09486]

COL3A1 Type III collagen alpha-1 chain 26 Up
precursor [P02461]

SULF1 Extracellular sulfatase Sulf-1 50 Up
precursor [Q8IWU6]

YARS Tyrosyl-tRNA synthetase, 10 Up
cytoplasmic (TyrRS) [P54577]

ABCA5 ATP-binding cassette A5 41 Up
[Q8WWZ7/Q9NY14]

THY1 Thy-1 membrane glycoprotein 31 Up
precursor [P04216]

SIDT2 SID1 transmembrane family 37 Down
member 2 precursor [Q8NBJ9]

Table 3.1: Identified biomarkers based on dependence network modeling for gastric
cancer. The marker genes are mapped to the protein accession numbers in UniProt
Knowledgebase (UniProtKB) [67]

with no assigned function.

The ECM cluster of genes, including many that encode extracellular matrix

components, tends to be more highly expressed in tumors of the diffuse histological

type than in those of the intestinal type. This is consistent with greater propensity

of this group of tumors for invasive growth, often provoking a dense fibrous reaction,

and a reflection of reciprocal interactions between tumor and stromal cells that play

important roles in tumor biology [46]. In fact, three of the six biomarker genes we

identified (SPARC, COL3A1, and THY1) encode proteins of extracellular matrix

component or of mediating cell-matrix interactions. In addition, SULF1 and YARS

are either extracellular sulfatase or secreted cytokine and both are implicated in

tumor growth and progression.

Osteonectin, also known as SPARC, is a non-structural component of extra-
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cellular matrix-associated matricellular glycoprotein. Matricellular proteins medi-

ate interactions between cells and their extracellular environment. Osteonectin is

involved in the regulation of tumor cell growth, differentiation, and metastasis. It

is produced at high levels in many types of cancers, especially by cells associated

with tumor stroma and vasculature [68]. Osteonectin was suggested as a prognos-

tic marker for several cancers, including invasive differentiated stomach adenocar-

cinoma [69], gastric cancer [70], and malignant melanoma [71], and was correlated

with metastasis in prostate cancer [72]. Furthermore, osteonectin and type III colla-

gen alpha-1, another marker gene predicted by the dependence network, were highly

expressed in gastric cancer tissue [73]. Marked increases in expression of osteonectin

and six other extracellular matrix proteins, including collagen type III, were also

observed in rat gastric cancer models [74].

SULF1 is an extracellular endosulfatase that desulfates cell surface heparan

sulfate proteoglycans (HSPG), thus regulating the cellular signaling cascades. Dy-

namic regulation of HSPGs by sulfatases within the tumor microenvironment can

have a dramatic impact on the growth and progression of malignant cells. SULF1

has been implicated in promoting cell proliferation in bladder cancer and repression

of differentiation in the muscle-invasive tumors, and was suggested as one of the top

predictors for the bladder cancer outcome [75]. SULF1 was also shown to inhibit

tumor growth in hepatocellular carcinoma [76].

The human tyrosyl-tRNA synthetase (TyrRS) is a synthase that produces two

distinct cytokines from the N- and C-terminal fragments [77]. It may be involved

in a coordinated mechanism for regulating angiogenesis with a related synthetase,
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tryptophanyl-tRNA synthetase (TrpRS), which also generates two fragments in a

similar fashion. While fragments of TyrRS stimulate angiogenesis, those of TrpRS

inhibit this process [78]. TyrRS and TrpRS are proinflammatory cytokines with

multiple activities during apoptosis, angiogenesis and inflammation. They also play

important roles in cancer progression, modulating tumor angiogenesis and its escape

from surveillance by immune system [79].

ABCA5 is a transmembrane protein in the ABC transporter family, and has

been shown to reside in lysosomes. ABCA5 gene knockout mice develop lysoso-

mal disease-like symptoms [80]. ABCA5 was also identified as a tissue and urine

diagnostic marker for prostate intraepithelial neoplasia.

Thy-1 (CD90) is a small GPI-anchored protein abundant on the surface of

mouse thymocytes and peripheral T cells. Thy-1 is involved in the maintenance

of T cell homeostasis in the absence of TCR triggering, as well as potentiating

antigen-induced T cell responses induced through TCR [81]. Thy-1 is also an im-

portant regulator of cell-cell and cell-matrix interactions, with important roles in

nerve regeneration, metastasis, inflammation, and fibrosis [82].

The only down-regulated marker gene is SIDT2, which is a cell membrane

protein that enhances cell uptake of small interfering RNA (siRNA) [83], resulting

in increased siRNA-mediated gene silencing efficacy. However, its cellular functions

and roles in cancer are unclear. As a central node in the dependence network (node

37 in Fig. 3.10), the cellular functions and roles of SIDT2 in gastric cancer are worth

further investigation.

Taken together, the 7 gastric cancer biomarker genes that are consistently
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identified by the dependence network modeling approach have been shown to be

biologically relevant in gastric and other cancers. Of special note is that both SPARC

and COL3A1 are concurrently observed in this study (as connected core nodes 42

and 26 in Fig. 3.10) as well as in several other studies as valuable biomarkers

for gastric cancers. We therefore conclude that our network modeling approach

have provided a novel and consistent mathematic model to define potential cancer

biomarkers, which imply functional associations or interactions that are important

for the underlying cancer biology.

3.6 Chapter Summary

In Chapter 2, we develop the dependence model and apply it to examine the big

picture, which is the ensemble dependence among groups of genes. In this chapter,

we zoom in to examine the dependence relationship among individual features. The

dependence network is constructed, with the individual features being the nodes

of the network. The connections of the dependence network is constructed based

on the eigenvalue pattern of the dependence model. From the results of the gene

microarray datasets and the protein MS datasets, we can see clear difference between

the dependence networks for normal and cancer cases. Biomarkers can be identified

based on the difference between dependence networks for normal and cancer cases.

And the biomarkers are proved to be consistent, reproducible and relevant from the

biology point of view. Details of this chapter is published in [84, 85].

57



0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

(a) (b)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

(c) (d)

Figure 3.5: Fig (a) shows the histogram of the performance-based biomarkers for the
task of normal vs early stage cancer. Fig (b) shows the histogram of the network-based
biomarkers for the task of normal vs early stage cancer. Fig (c) shows the histogram of
the performance-based biomarkers for the task of normal vs late stage cancer. Fig (d)
shows the histogram of the network-based biomarkers for the task of normal vs late stage
cancer.

58



(a) Normal case

(b) Early cancer case

(c) Late cancer case

Figure 3.6: Dependence networks for the prostate cancer dataset: normal, early and
late cancer cases. The circles are used to indicate the core features, which are identified
through visual inspection.
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Figure 3.7: Fig (a) is the histogram of the classification-performance-based biomarkers
in the liver cancer MS dataset. Fig (b) is the histogram of dependence-network-based
biomarkers of the liver cancer MS dataset.

(a) Normal case (b) Cancer case

Figure 3.8: Dependence networks for normal and cancer cases in liver cancer MS dataset.
The circles are used to indicate the core features, which are identified through visual
inspection.

60



0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

(a) (b)

Figure 3.9: Fig (a) is the histogram of the classification-performance-based biomarkers
in the gastric cancer microarray dataset. Fig (b) is the histogram of the dependence-
network-based biomarkers of the gastric cancer microarray datasets.

(a) Normal case (b) Cancer case

Figure 3.10: Dependence networks for normal and cancer cases in the gastric cancer
microarray dataset. The circles are used to indicate the core features, which are obtained
through visual inspection.
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Figure 3.11: Fig (a) is the histogram of the classification-performance-based biomarkers
in the liver cancer microarray dataset. Fig (b) is the histogram of dependence-network-
based biomarkers of the liver cancer microarray datasets.

(a) Normal case (b) Cancer case

Figure 3.12: Dependence networks for normal and cancer cases in the liver cancer mi-
croarray dataset. The circles are used to indicate the core features, which are identified
through visual inspection.
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Chapter 4

Resynchronization of Microarray

Time-Series

4.1 Motivation

Besides the direct comparison between normal and cancer cases, the under-

standing of the fundamental cell-cycle system could also contribute a lot to cancer

research. Starting from this chapter, we shift our attention to the analysis of time-

series data of the cell-cycle system. The time-series data is obtained by measuring

one sample at multiple time points during a certain biology process, such as cell-

cycle. Therefore, from time-series data, we are able to see how the sample evolves

along time. The first critical task in understanding the cell-cycle system is to identify

the genes which are periodically expressed during the cell-cycle. In the current tech-

nologies, most expression data are measured based on a population of cells which

are synchronized to exhibit similar behaviors [16]. However, even with the most
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advanced synchronization method, maintaining a tightly synchronized population

even over a couple of cycles is a challenging research issue, since continuous syn-

chronization loss is gradually observed due to the diversity of individual cell growth

rates [17]. Because of the synchronization loss, the gene expression data observed

from a population of cells is different from the gene expression data of a single cell.

Therefore, in addition to the noise effect on the measurements, a significant diffi-

culty in identifying cell-cycle regulated genes from time-series microarray data arises

from synchronization loss. Direct periodicity test on the expression measurements

could be misleading or fail due to the fact that the expression measurements are

contributed by a mixture of cell populations growing at different rates.

Several approaches for identifying cell-cycle regulated genes, when taking into

consideration the issue of synchronization loss, have been proposed in the literature.

They can be divided into two major categories, differentiated by the absence or

presence of other complementary information besides gene expression data. Most

studies in the literature belong to the former category, which relies solely on the

expression data. Fourier analysis is employed for periodicity test in [17, 18, 19]. The

authors present an exact statistical test to identify periodically expressed genes by

distinguishing periodicity from random processes in [20]. In [21], a periodic-normal

mixture (PNM) model is proposed to fit the transcription profiles of periodically

expressed genes. In the second category, an algorithm combining budding index

and gene expression data is recently proposed to deconvolve expression data in [22].

Regardless these developments, efforts are still needed to accurately identify cyclic

genes and recover a more accurate single cell time-series expression compared with
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the current expression measurements.

The goal of this chapter is to develop an efficient scheme to identify periodically

expressed genes and reconstruct the underlying single cell gene expression profiles,

by estimating the effect of synchronization loss. The main contributions of this

chapter are two fold.

• We propose a synchronization loss model by representing the gene expression

measurements as a superposition of different cell populations growing at dif-

ferent rates, because the model can mimic the synchronization loss observed

in microarray experiments, and is easy to implement. Also, we develop a

model-based estimation algorithm to reconstruct the underlying single cell

gene expression profiles. In previous studies, the single cell expression profiles

are often assumed to be sinusoids. However, the proposed algorithm does not

require such assumption. It is able to handle a much larger variety of single

cell expression profiles.

• Using the fitting residue error as criteria, we explore a supervised learning

scheme to identify the cell-cycle regulated genes. The performance of the

proposed scheme are examined via both simulations and real microarray time-

series data of Saccharomyces Cerevisiae.

In the following, we start by introducing a synchronization loss model. After

that, a cyclic gene identification scheme is proposed and applied on both simulated

data and real microarray time-series data. The resulting identified cyclic genes are

compared with two previous studies. From the results, we show that the proposed

65



scheme is promising in improving the quality of gene microarray time-series data.

4.2 System Model for Synchronization Loss

Even with the best currently available synchronization method, cells begin to

lose their synchronization shortly, due to the diversity of individual cell growth rates.

Therefore, we propose to model the observed gene expression data as a superposition

from a mixed population of cells growing at slightly different rates, as

yi(t) =
N∑

m=0

βmxi(ρmt), (4.1)

where yi(t) is the observed expression of gene i at the time t; xi(t) is the underlying

single cell expression profile; ρm represents the relative growth rates of cells with re-

spect to standard cell-cycle; βm represents the percentage of cells with a growth rate

ρm, and it is assumed to be constant in one time-series of measurements. Although

ρm can take continuous values in experiment, due to the limited size of microarray

data, ρm is approximated by N + 1 components. Because of the different growth

rates in experiment cell population, for a cell-cycle regulated gene, the measured

expression may not exhibit clear periodicity. Therefore, it is difficult to accurately

detect periodically expressed genes and distinguish them from non-periodically ex-

pressed genes based on the time-series microarray data.

Note that in equation (4.1), for gene i, from the underlying expression profile

xi(t) to the observation yi(t), the distortion is dictated by βm and ρm, which describe

the synchronization loss status of the whole cell populations. Note that the distor-

tion is the same for all the genes. We propose to utilize this common information of
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all the genes to estimate the distortion and extract the underlying single cell gene

expression profiles from the observations.

4.3 Polynomial-Model-Based Resynchronization

4.3.1 Inverse Formulation of Synchronization Loss Model

Since the underlying expression profile xi(t) is unknown, the right hand side

of equation (4.1) is totally unknown. It is difficult to estimated xi(t) and the other

parameters. Therefore, we propose to re-write equation (4.1) into the following

form,

xi(t) =
M∑

m=0

amyi(cmt) = [a0, a1, · · · , aM ]




yi(c0t)

yi(c1t)

...

yi(cM t)




, (4.2)

where the underlying single cell expression xi(t) is represented by the superposition

of M + 1 multiple scaled versions of the observation yi(t). Parameters am’s and

cm’s describe the coefficient and scaling factor of each component. An intuitive

explanation for equation (4.2) is motivated by the inverse relationship between Finite

Impulse Response (FIR) filters and Infinite Impulse Response (IIR) filters, since the

structure of (4.1) is quite similar to that of FIR filters. Equation (4.1) describes an

FIR-like operation which transforms xi(t) to yi(t). In order to perform the inverse

transformation, an IIR-like operation is required. If the range of cm is properly
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chosen, equation (4.2) can be regarded as a truncated IIR-like operation, which

is an approximate inverse of the FIR-like operation in equation (4.1). Therefore,

equation (4.1) and equation (4.2) relates xi(t) and yi(t) in approximately the same

way.

It is worth mentioning that the parameters am’s and cm’s depend solely on

βm’s and ρm’s. They are common constants for all the genes. Thus, we propose

to utilize this common property of all the genes to extract underlying single cell

expression profiles.

Equations (4.1) and (4.2) are not mathematically equivalent in general. How-

ever, if xi(t) is polynomial, equations (4.1) and (4.2) can be equivalent. In this

study, we are particularly interested in the case of polynomials, since polynomial is

a common tool for data fitting [86]. Shown in the literature, polynomials are often

successfully used to fit the time-series gene expression data [22].

Suppose xi(t) is a polynomial of order K such that

xi(t) =
K∑

k=0

bkt
k = [1, 1, · · · , 1]




b0t
0

b1t
1

...

bKtK




, (4.3)

with bk’s being the polynomial coefficients. Then, according to equation (4.1), yi(t)
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can be expressed as,

yi(t) =
N∑

m=0

βmxi(tρm) = [βT ρ0, βT ρ1, · · · , βT ρK ]




b0t
0

b1t
1

...

bKtK




, (4.4)

where β = [β0, β1, · · · , βN ]T , and ρk = [ρk
0, ρ

k
1, · · · , ρk

N ]T . Similarly, since

yi(ct) = [βT ρ0c0, βT ρ1c1, · · · , βT ρKcK ]




b0t
0

b1t
1

...

bKtK




, (4.5)

if we pick up multiple scaled version yi(cmt) of the observation yi(t), we can write

them together into the following matrix form,



yi(c0t)

yi(c1t)

...

yi(cM t)




=




βT ρ0c0
0 βT ρ1c1

0 · · · βT ρKcK
0

βT ρ0c0
1 βT ρ1c1

1 · · · βT ρKcK
1

...
...

. . .
...

βT ρ0c0
M βT ρ1c1

M · · · βT ρKcK
M







b0t
0

b1t
1

...

bKtK




. (4.6)

Now, if we want to find a set of coefficients am’s to represent the underlying single

cell expression profile xi(t) as in equation (4.2), based on equations (4.3) and (4.6),

we will require coefficients am’s to satisfy the following equation,

[a0, a1, · · · , aM ]




βT ρ0c0
0 βT ρ1c1

0 · · · βT ρKcK
0

βT ρ0c0
1 βT ρ1c1

1 · · · βT ρKcK
1

...
...

. . .
...

βT ρ0c0
M βT ρ1c1

M · · · βT ρKcK
M




= [1, 1, · · · , 1]. (4.7)
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Note that in the matrix in equation (4.7), every element in one column shares a

common factor. If we pull out the common factor, the remaining part will be a

Vandermonde matrix, as shown in equation (4.8).




βT ρ0c0
0 βT ρ1c1

0 · · · βT ρKcK
0

βT ρ0c0
1 βT ρ1c1

1 · · · βT ρKcK
1

...
...

. . .
...

βT ρ0c0
M βT ρ1c1

M · · · βT ρKcK
M




=




c0
0 c1

0 · · · cK
0

c0
1 c1

1 · · · cK
1

...
...

. . .
...

c0
M c1

M · · · cK
M







βT ρ0 0 · · · 0

0 βT ρ1 · · · 0

...
...

. . .
...

0 0 · · · βT ρK




. (4.8)

The Vandermonde matrix is of full rank, min{M,K}, as long as different scaled

(cm) observations are considered. We can show that, as long as M is greater than

or equal to K, there exists at least one solution to equation (4.7). That is, there

exists at least one set of coefficients am’s that satisfies equation (4.7). In this case,

equation (4.1) and equation (4.2) are mathematically equivalent.

In the above argument, the underlying expression xi(t) does not assume pe-

riodicity. However, in this study, the most interested expression signal is cell-cycle

regulated, i.e. periodic,

xi(t) =
K∑

k=0

bk(t mod T )k (4.9)

where mod means the modulus operator that gives the reminders after division. In

microarray time-series experiment, the range of relative growth rate ρm is not large.
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With cm carefully chosen, although periodic, the above argument holds for most of

the cell-cycle data. In the following section of simulation results, we will demonstrate

that, under such a periodic condition equation (4.2) is a fine approximation of the

inverse of equation (4.1).

4.3.2 Estimation of Model Parameters

For cell-cycle regulated genes, because of the periodicity, xi(t) = xi(t+T ), from

equation (4.2), the observations and parameters am’s, cm’s are related as follows:

M∑

m=0

am[yi(cmt)− yi(cm(t + T ))] = 0. (4.10)

Denote yi(t) = [yi(c0t) − yi(c0(t + T )), · · · , yi(cM t) − yi(cM(t + T ))]T , and a =

[a0, · · · , aM ]T . Equation (4.10) can be re-written as,

yi(t)
T a = 0. (4.11)

Note that, we can evaluate equation (4.11) at different time points (as long as the

time-series data allows). Also, all cell-cycle regulated genes satisfy equation (4.11).

So, the estimation of am parameters can be formulated as a constrained least square

problem,

[yi(t1), · · · , yi(tn), yj(t1), · · · , yj(tn), · · ·]T a = 0, (4.12)

subject to
M∑

m=0

am = 1 (4.13)

where genes i, j, · · · are cell-cycle regulated genes; t1, · · · , tn are the measurement

time points that satisfies (tn+T )cm < 2T , for all m = 0, · · · , M . Since in the current
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Saccharomyces Cerevisiae time-series gene expression data, only two cell-cycles are

available, the value of n in equation (4.12) is quite small, e.g. 4 or 5, depending on

parameters cm and the experiment sampling rate. Therefore it is important to use

many cell-cycle regulated genes together to estimate the coefficients am’s reliably.

In this formulation, cm are assumed known. Since in real experiment, the growth

rate of different cells differ slightly, the range of the relative growth rate ρm is not

large. In later simulations, we will show that, it is accurate enough to choose cm to

cover the range from 0.6 to 1.4. The constraint in equation (4.13) is chosen to avoid

the trivial 0-vector solution, i.e. a = 0.

4.3.3 Fitting Residue Criterion

After estimating am’s, the model in (4.2) is used to reconstruct the underlying

periodical component xi(t) for every gene. In order to detect cell-cycle regulated

genes, a criterion is needed to answer the question whether the extracted signal is

the underlying periodical expression profile of a cell-cycle regulated gene, or it is the

periodical component from a non-cell-cycle regulated gene. We propose a criterion

based on the model in (4.1), using the extracted periodical signal to fit the observa-

tions. The fitting residue will serve as the criterion in detecting cell-cycle regulated

genes. For a particular gene, if the fitting residue is sufficiently small, compared

with a threshold, then the extracted signal could lead to the measurements due to

synchronization loss, which means the gene is highly likely to be cell-cycle regulated.

On the other hand, if the fitting residue is large, then the extracted periodical signal
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is likely to be the periodical component of a non-periodically expressed gene, which

means the gene is more likely to be non-cell-cycle regulated. In the proposed iden-

tification schmem, the threshold of fitting residue is dynamically determined during

iterations. Details are described in sections 4.3.4 and 4.5.

4.3.4 Cyclic Genes Identification Scheme

Based on the synchronization loss model and estimation approach described

above, we further proceed to identify the cyclic genes. The scheme described here is

a supervised learning scheme, since it requires an initial training set which consists

of cell-cycle regulated genes previously identified by traditional biology experiments.

Specifically, we propose an iterative framework to purify the training set and detect

cyclic genes simultaneously. The main steps in the proposed iterative framework is

described as follows:

1. Define initial training set as cell-cycle regulated genes previously identified by

traditional methods.

2. Apply the proposed model on training set to estimate the parameters am’s,

and extract the underlying periodical signal for every gene in the training set.

3. Based on the extracted signal xi(t), fit it to the observation model in (4.1).

According to the fitting residue criterion, remove some non-periodically ex-

pressed genes from the training set. Then, re-estimate the parameters am’s

using the training set and use the estimated am’s to extract periodical signal

for every gene in the testing set.
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4. According to the fitting residue criterion, include some periodically expression

genes into the training set. Then go back to Step 2.

Note that,under this framework, in order to purify the training set and detect

the periodically expressed genes correctly, the criteria for removing and including

genes in Step 2 and Step 4 should be carefully designed and fine tuned for each

dataset. It is a difficult optimization problem. The proposed scheme, although

heuristic in updating the training set, yields satisfactory results as will be demon-

strated in section 4.5.

4.4 Simulation Results

In this section, we simulate time-series expression data with synchronization

loss for both periodically expressed genes and non-periodically expressed genes. The

proposed method is used to resynchronize the simulated data and identify period-

ically expressed genes. To evaluate the performance of the proposed method, we

compare it with the methods studied in [16, 21]. We also perform sensitivity analysis

to examine the robustness of the proposed method.

4.4.1 Simulations based on sinusoids

In this subsection, we simulate time-series expression data for 100 periodically

expressed genes and 600 non-periodically expressed genes. The underlying single-

cell periodical expression profile for cyclic gene i is generated by a linear combination
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of 4 sinusoids with random phases,

xi(t) =
4∑

j=1

λijsin(
2πj

T
t + φij), (4.14)

where the period T is set to be 60 minutes, same as the cell-cycle duration in the

alpha experiment in [16]. The parameter λij is randomly chosen, different for each

gene. φij represents the random phase, which is uniformly distributed on [0, 2π). For

the 600 non-cyclic genes, their underlying expressions are obtained through random

permutations of expressions of cyclic genes.

For each gene, we simulate the synchronization loss by

yi(t) = β1xi(t ∗ s) + β2xi(t) + β3xi(t ∗ f) + v, (4.15)

where f = 1.3 and s = 0.7 represent the relative growth rates. βm is randomly

generated, representing the percentage of cells growing at different rates. v repre-

sents the microarray measurement noise, which is modeled as a zero-mean Gaussian

random variable. Its variance is chosen to make the signal to noise ratio (SNR) to be

5.716 dB, which is close to the SNR value estimated from the alpha dataset in [16].

Equation (4.15) is applied to all genes, representing the common synchronization

status of the cell populations. In the simulations, measurements are taken every 6

minutes from 0 to 120 minutes, yielding 21 time points in total.

In the simulation, 50 cyclic genes are assumed known, in order to form the

initial training set. The testing set contains the remaining 650 genes. For a partic-

ular choice of cm, by applying the proposed model, am parameters are estimated,

the underlying periodical signals for all genes are extracted, and the fitting residue

criterion is examined.
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range of cm avg fitting residue avg fitting residue diff
cyclic genes non-cyclic genes

[0.9, 1.1] 0.4424 0.9373 0.4949
[0.8, 1.2] 0.4164 0.9560 0.5396
[0.7, 1.3] 0.3993 0.9583 0.5590
[0.6, 1.4] 0.3917 0.9355 0.5437
[0.5, 1.5] 0.4052 0.9478 0.5426
[0.4, 1.6] 0.4354 0.9865 0.5511

Table 4.1: For the simulation based on sinusoids, comparison of the normalized average
fitting residues for cyclic and non-cyclic genes.

The parameter M is set to be M = 7. As mentioned in Section 4.3.1, we need

to choose M to be larger than or equal to K. With M = 7, the proposed method

can handle all polynomials with K ≤ 7. And we know, 7th order polynomials can

generate a large variety of curves, with up to 6 peaks and valleys. We believe the

current parameters-setting can sufficiently model gene expression profiles.

As mentioned earlier, cm should be chosen properly, in order to extract under-

lying single cell expression profiles accurately. In table 4.1, different choices of cm

are examined. To ensure a fair comparison, with M set to be 7, the values of cm are

chosen to be uniformly spaced in tested range. In the fitting residue criterion, ρm

is set to be [0.7, 0.8, · · · , 1.3]. From table 4.1, we can see that, different choice of cm

leads to different fitting residues for both cyclic genes and non-cyclic genes. As the

range of cm increases, the fitting residues for cyclic genes tend to decrease first, and

then increase. This observation can be intuitively explained by the trade-off between

errors due to the model-complexity and the data size. First, from the implication of

FIR and IIR filters, the larger range of cm considered, the smaller truncation error

there will be. However, if the range of cm is too large, due to the limited size of time

series data, the number of available time points n in equation (4.12) will be small.
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Figure 4.1: For an example of a simulated gene: the simulated sinusoid underlying
periodical expression, experiment observation and extracted expression.

Less training data will cause the fitting residues increase. Therefore, based on Table

4.1, we choose the range of cm to be [0.6, 1.4], since with this choice, the average

fitting residue for cyclic genes is small and the difference between cyclic genes and

non-cyclic genes is large.

After determining the choice of cm’s, the proposed model is applied to estimate

parameters am’s based on the training set, and extract the underlying periodical sig-

nals for genes in the training set. Figure 4.1 gives a typical example of genes in the

training set. Although there is clear difference between the underlying periodical

expression and the simulated observation, based on the proposed method, the ex-

tracted expression is quite similar to the underlying periodical expression.

Based on the am and cm parameters, the proposed model is applied to ex-

tract periodical signal components for all genes, and the fitting residue criterion is

examined. In Figure 4.2(a), the histogram of all genes’ fitting residues is shown,

where the shaded part corresponds to the 100 cyclic genes. We can see that the

cyclic genes have smaller fitting residues, while non-cyclic genes yield larger fitting
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Figure 4.2: For the simulated data based on sinusoids: Fig (a) show the histogram of
fitting residues for all genes, with the shaded area being the histogram of the 100 cyclic
genes. Fig (b) is the result of the Fourier analysis used in [16]. Fig (c) shows the upper
bound of results from method in [21].

residues. Therefore, this clear separation between these two groups of genes leads

to the accurate identifications of cyclic genes.

In order to examine the identification performance of the proposed method, we

compare it with two previous works [16, 21], by applying them to the same simulated

time series data. In [16], Fourier analysis is applied to calculate the energy of the

periodical components for each gene. The energy serves as a metric to identify cyclic

genes. From Figure 4.2(b), we can see that, this method can identify cyclic genes

with small outage. However, its performance is worse than that of the proposed

method. In [21], a periodic-normal mixture (PNM) model is proposed, where a

probabilistic (Gaussian) distribution and Fourier analysis are combined to model

the synchronization loss. In [21], before identifying cyclic genes, the parameters of

the Gaussian distribution have to be estimated. In our implementation, we skip the

parameter estimation step by feeding the actual parameter values into the PNM

model. Therefore, Figure 4.2(c) shows the performance upper method in [21], which

is close to that of the proposed proposed method. However, it is worth mentioning
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Probability of False positive of False positive of False positive of
detection proposed method [16] [21]

0.75 0 0.0741 0.0132
0.80 0 0.0805 0.0123
0.85 0 0.1053 0.0116
0.90 0 0.1262 0.0217
0.95 0 0.1518 0.1121
1.00 0.01 0.2857 0.1597

Table 4.2: For the simulation based on sinusoids, we compare the proposed method and
two previous studies. When the probability of correctly detecting cyclic genes is fixed, we
compare the probability of false positive.

that the PNM-based method is admittedly sensitive to the parameter estimation of

the Gaussian distribution.

In Table 4.2, we present the results in Figure 4.2 in a more quantitative fash-

ion. We employ the Neyman-Pearson framework in detection theory [87]. During

comparison, we fix the probability of correctly detecting cyclic genes, and examine

the probability of false positive of different methods. That is, under the condition

that certain amount of cyclic genes are correctly detected, how many non-cyclic

genes will be falsely detected as cyclic genes. From Table 4.2, we can see that,

when fixing the probability of detection, the proposed method has much less false

positives, compared with the two previous studies.

In this subsection, the time series are simulated with the underlying single

cell expression xi(t) being sinusoids. Together with the fact that Fourier analy-

sis is employed, both previous studies have nice performance in identifying cyclic

genes. However, if the underlying signal is based on polynomials, the result could

be different.
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4.4.2 Simulation based on polynomials

In this subsection, we simulate time-series expression data based on polyno-

mial models. Again, 100 cyclic genes and 600 non-cyclic genes are simulated. The

underlying single cell periodical expression profile for cyclic gene i is generated by

a polynomial of order K = 6,

xi(t) =
K=6∑

k=0

ak(t mod T )k, (4.16)

where the period T is set to be 60 minutes, same as the cell-cycle duration in the

alpha experiments. The parameter ak is randomly chosen in [−1, 1], different for

each gene. For the 600 non-cyclic genes, the underlying expressions are obtained

through random permutations of the expressions of the cyclic genes.

For each gene, we simulate the synchronization loss by equation (4.15). All

parameters are set to be the same as the previous subsection. 50 cyclic genes are

assumed known, forming the training set. For a particular choice of cm, by applying

the proposed model, am parameters are estimated based on the training set, the

underlying periodical signals for all genes are extracted, and the fitting residue

criterion is examined. Again, M is set to be 7, and different choices of cm are

examined. From Table 4.3, similar result with the previous subsection is observed.

We choose the range of cm to be [0.6, 1.4]. Because the average fitting residue for

cyclic genes is small, and the difference between cyclic genes and non-cyclic genes

is large.

Figure 4.3 is a typical example of genes in the training set. We can see that the
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range of cm avg fitting residue avg fitting residue diff
cyclic genes non-cyclic genes

[0.9, 1.1] 0.2240 0.9439 0.7199
[0.8, 1.2] 0.2164 1.0267 0.8104
[0.7, 1.3] 0.2157 1.0256 0.8099
[0.6, 1.4] 0.2284 1.0567 0.8283
[0.5, 1.5] 0.2455 1.1299 0.8845
[0.4, 1.6] 0.3411 1.0531 0.7120

Table 4.3: For polynomial based simulation, we compare the normalized average fitting
residues for cyclic and non-cyclic genes.
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Figure 4.3: For an example of a simulated gene: the simulated polynomial underlying
periodical expression, experiment observation and extracted expression.

simulated observations is quite different from the underlying periodical expression

profile. Due to synchronization loss, the observed time-series does not exhibit a clear

periodicity, especially in the second cycle. From poorly synchronized observations,

the proposed method can successfully recover the underlying single cell periodical

expression profile.

Based on the estimates of am’s and cm’s, the proposed model is applied to

extract periodical components for all genes, and the fitting residue criterion is ex-

amined. In Figure 4.4 (a), the histogram of residues shows that, the cyclic genes

and non-cyclic genes are well separated, meaning that the proposed method can suc-
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Figure 4.4: For the simulated data based on polynomials: Fig (a) show the histogram
of fitting residues for all genes, with the shaded area being the histogram of the 100 cyclic
genes. Fig (b) is the result of the Fourier analysis used in [16]. Fig (c) shows the upper
bound of results from method in [21].

Probability of False positive of False positive of False positive of
detection proposed method [16] [21]
0.75 0 0.6622 0.7768
0.80 0 0.6887 0.7838
0.85 0 0.7028 0.7870
0.90 0 0.7443 0.7897
0.95 0 0.7765 0.7894
1.00 0.7375 0.8415 0.8353

Table 4.4: For the polynomial based simulation, we compare the proposed method and
two previous studies. When the probability of correctly detecting cyclic genes is fixed, we
compare the probability of false positive.

cessfully identify the cyclic genes. The methods in [16] and [21] are also examined,

with results shown in Figure 4.4 (b) and (c). From these figures, we note that both

previous methods failed to separate cyclic and non-cyclic genes in the case when

the underlying single cell expression profiles are polynomials. Similar with previous

subsection, the result is shown in a more quantitative way, in Table 4.4. Easy to

see, the proposed method out performs previous studies in the simulation based on

polynomials. It is encouraging to see that the proposed method works well for a

much larger variety of the underlying single cell expressions.
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4.4.3 Sensitivity analysis

In our discussions so far, the standard cell-cycle duration T is assumed to

be known as a prior knowledge. However, the cell-cycle duration may vary due to

various environmental and experimental factors. In this subsection, we examine the

performance of the proposed method when inexact prior knowledge of the cell-cycle

duration T is considered.

The sensitivity analysis is conducted based on the simulated data by sinu-

soids. In the simulated data, the true cell-cycle length is T = 60. However, when

applying the proposed method, we do not know the correct cell-cycle length. In

Figure 4.5, we can see that, when the prior knowledge is inexact, the separation of

fitting residues between cyclic and non-cyclic genes is not affected much. In Table

4.5, we quantitatively examine the sensitivity of the proposed method in terms of

probability of detection and false positive. In Table 4.5, each row corresponds a

certain requirement of probability of detection; each column corresponds to a case

where certain value of T is taken as prior knowledge; and each element is the prob-

ability of false positive. From this table, as long as we do not require probability

of detection to be extremely high (i.e., 100%), only when the prior knowledge is

significantly different from the truth (i.e. the prior T ≤ 40 or T ≥ 70), will the

performance degrade severely. This simulation result demonstrates the robustness

of the proposed method with respect to the prior knowledge of cell-cycle duration.
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Figure 4.5: The horizontal axis is the prior knowledge of cell-cycle length, though it
may not be the true cell-cycle length T = 60. The vertical axis is the difference of fitting
residues between cyclic and non-cyclic genes.

PD \ T 35 40 45 50 55 60 65 70 75 80
0.75 0.10 0 0.01 0 0 0 0 0.05 0.12 0.16
0.80 0.10 0 0.01 0 0 0 0 0.05 0.17 0.15
0.85 0.12 0 0.01 0 0 0 0 0.08 0.18 0.18
0.90 0.18 0 0.01 0 0 0 0 0.11 0.24 0.24
0.95 0.38 0.01 0.01 0.02 0.01 0 0.01 0.14 0.29 0.25
1.00 0.60 0.09 0.12 0.05 0.01 0.01 0.01 0.22 0.39 0.52

Table 4.5: The performance sensitivity to inexact prior knowledge of cell-cycle length.
When the probability of correctly detecting cyclic genes (PD) is fixed, we compare the
probability of false positive, under different prior knowledge of cell-cycle T .
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Figure 4.6: Histogram of fitting residues for the cdc28 dataset. Shaded part represents
the histogram of fitting residues for the identified cyclic genes.

4.5 Results on Real Microarry Datasets

In this study, three microarray time-series datasets are investigated, alpha,

cdc15 in [16] and cdc28 in [88]. From [16], 93 cell-cycle regulated genes previously

identified by traditional methods are selected as initial training set. Since there is no

guarantee that all those 93 genes will behave periodically in a particular experiment,

we employ the iterative framework to purify the training set and identify cyclic genes

simultaneously. During each iteration, we adopt simple removing and including

criterion in step 2 and step 4. In step 2, the size of training set is reduced to half in

order to purify the training set. In step 4, 200 genes with smallest fitting residues

are included into the training set. In this way, we hope to purify the training

set. Although the including and removing criteria are heuristic, the algorithm can

converge within several iterations (5 ∼ 10). The resulting histograms of fitting

residues for the alfa, cdc15 and cdc28 datasets are shown in Figure 4.6, where the

identified cyclic genes in the training set has small fitting residues.

Since both [16] and [21] identify about 800 cyclic genes, to make a fair compar-

ison, we choose 800 genes with smallest fitting residues as identified cyclic genes. In
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Figure 4.7: The experiment observed expression and the extracted periodical expression
of genes identified in both the proposed scheme, the previous studies, and traditional
methods. The title of each figure represents the gene’s ORF name.

the identified cyclic genes, the intersection between the proposed method and [16]

is 403; the intersection between proposed method and [21] is 433; the intersection

between [16] and [21] is 541; the intersection among all three studies is 355. It is

encouraging to see the large overlaps, an indication of consistency of the proposed

method with the previous studies. In Figure 4.7, we show some examples of genes

identified by both the proposed method, [16], and traditional experimental methods.

Both the observed expression and extracted expression are shown. We can see that,

for the cyclic genes that already exhibit periodical expression, the extracted expres-

sion is closed to experiment observed expression. And for the cyclic genes that do

not exhibit periodical expression, the proposed method can recover the periodicity.

Although the genes identified by the proposed method have large overlap with

those of the previous studies, it is interesting to examine the non-overlapping genes

identified by the proposed method, but not identified in the previous studies, neither
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[16] nor [21]. Some examples are shown in Figure 4.8. Since both previous stud-

ies rely on Fourier analysis, genes without clear periodicity may not be identified.

However, the proposed method may be able to identify them, because synchroniza-

tion loss is estimated and recovered. Besides technical improvement, we need to

further investigate the biological relevance of the genes identified by the proposed

method. One possible validation method is to validate the biological relevance of

the identified cell-cycle genes by semantic analysis based on the gene ontology (GO)

terms. To achieve this purpose, an online tool is applied, the SGD Gene Ontology

Term Finder (http://db.yeastgenome.org/cgi-bin/GO/goTermFinder). We analyze

the set of non-overlapping genes which are identified by one method, but not by the

other two methods. The top GO terms associated with each method’s results can be

found in the Appendix D. For the proposed method, in the top 25 GO terms, there

are several cell-cycle related terms, such as “M phase”, “cell-cycle”, “mitotic cell

cycle”, and “M phase of mitotic cell cycle”. It suggests that some genes identified

by the proposed method but not by the other two methods are cell-cycle related.

For the sets of non-overlapping genes identified by the two reference methods, it is

noted that none of the above four cell-cycle related GO terms appears in the top

25 GO terms. Details of top GO terms associated with results of each method can

be found in the Appendix D. These encouraging observations demonstrate that the

proposed method is promising for identifying cyclic genes.

87



0 20 40 60 80 100 120
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
YOL020W

observed expression
extracted expression

0 20 40 60 80 100 120
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
YHR188C

observed expression
extracted expression

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

1.5
YEL011W

observed expression
extracted expression

(a) (b) (c)

0 20 40 60 80 100 120
−0.5

0

0.5

1

1.5

2

2.5
YKL203C

observed expression
extracted expression

0 20 40 60 80 100 120
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
YLR345W

observed expression
extracted expression

0 20 40 60 80 100 120
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
YJL164C

observed expression
extracted expression

(d) (e) (f)

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

1.5
YHR097C

observed expression
extracted expression

0 20 40 60 80 100 120
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
YBL054W

observed expression
extracted expression

0 20 40 60 80 100 120
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
YPL004C

observed expression
extracted expression

(g) (h) (i)

Figure 4.8: The experiment observed expression and the extracted periodical expression
of genes identified in the proposed scheme, but not identified by previous studies. The
title of each figure represents the gene’s ORF name.
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4.6 Chapter Summary

Synchronization loss is a major concern in identifying cyclic genes to under-

stand the fundamental cell-cycle systems. To address the issue of synchronization

loss, we consider a synchronization loss model where the gene time-series measure-

ments are regarded as superpositions of mixed cell populations with different growth

rates. We develop a polynomial-model-based framework to identify cell-cycle regu-

lated genes and reconstruct the underlying gene expression profiles, which represent

the single cell behavior more accurately. The proposed scheme is shown feasible and

robust via simulations. Results from real microarray time-series data show that the

proposed scheme is effective in reconstructing single cell time-series expression and

identifying cell-cycle regulated genes. Moreover, the propose scheme removes the

effect of synchronization loss, thus is a good pre-processing method that improves

the quality of microarray time-series data. Details of this chapter is published in

[89, 90]
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Chapter 5

Discovering Regulator Network

from Microarray Time-Series

5.1 Motivation

In Chapter 3, we discuss the dependence network, which is a co-regulation net-

work. The connected genes in the dependence network are likely to be co-regulated

(affected by the same factor). In this chapter, we will discuss a more useful net-

work, the gene regulatory network (GRN). The gene regulatory network describes

the complex relationship about which gene affects which gene, thus describes how a

gene system evolve along time. Discovering and identifying such regulatory network

will greatly improve our understanding of biological systems at the gene level. The

knowledge of regulatory network will lead to the discovery of the signaling pathway

of different biological processes and different diseases, which will greatly facilitate

the development of effective drugs.
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In the literature, there are many existing studies to infer a gene regulatory

network based on microarray expression data. In [23], the boolean network is intro-

duced to model the gene regulatory network as boolean relationship in combinatorial

logic circuits. A boolean network is defined as G(V, F ) in [24]. It contains a set

V = {x1, x2, ..., xn} of nodes representing genes, and a set F = {f1, f2, ..., fn} of

boolean functions. In a boolean network, the gene expression data is quantized into

two levels, binary values {0, 1}. Each boolean function fi takes genes xi1, xi2, ..., xik

as input and generates the output as the expression level of xi. Therefore, each

function fi describes how gene i is related with other genes in terms of combina-

torial logic. Here, gene i is called the regulated gene, or the target gene; genes

xi1, xi2, ..., xik are called the regulators, or the predictors, or the parent genes. In

boolean network, all genes are assumed to be updated synchronously. The dy-

namics of such a boolean network can be characterized as follows xi(t + 1) =

fi(xi1(t), xi2(t), ..., xik(t)). Such system will eventually transitions into one of a num-

ber of attractor states, or transitions into periodical cycles among several attractors.

In [25], the boolean network is extended to a probabilistic boolean network (PBN).

In PBN, for each node, there are a number of associated logic functions that can pre-

dict the expression of this node. There is a probability distribution which describes

how the logic functions compete to predict the node. Basically, PBN is a proba-

bilistic mixture of several boolean networks. For the purpose of learning a PBN

from expression data, an influence measure is proposed to determine the strength

of regulatory relationship between a set of regulators and a regulated gene. In [26],

the influence measure is applied to grow a regulatory network from a predetermined
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seed.

The Bayesian network models the relationships among genes in terms of condi-

tional probability distributions and joint probability distributions. Recently, Bayesian

network has been used to analyze gene microarray data [27]. The Bayesian network

models a gene regulatory network as a directed acyclic graph, where each vertex cor-

responds to a random variable (the expression of a gene). For each vertex, there is

a conditional distribution, describing the probability of this random variable given

its parent vertices. The Bayesian network approach has several limitations. For

example, the Bayesian network has difficulty in determining directions, which is

the regulator and which is the regulated gene; different time points are treated as

different samples without utilizing the time information; and the Bayesian network

assumes acyclic structure. To address these limitations, Dynamic Bayesian Net-

work (DBN) is proposed to study the gene regulatory network in [28], followed by a

number of studies [29, 30, 31, 32]. Different from Bayesian network, the conditional

probabilities in DBN are the conditional probability of a regulated gene’s expression

at current time point given the expression of its regulators at a previous time point.

In this way, the time information is incorporated and cyclic structures are allowed.

Differential equations are also used to model gene regulatory networks in the

literature. In [33], the relationships among genes, mRNAs and proteins are modeled

as differential equations. In [34, 35], differential equations are used to model the

regulatory relationships among genes, and the parameters are computed through

evolutionary programming. In [36, 37], maximum likelihood criterion is applied to

determine the parameters of the differential equations. [38] proposed to model gene
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regulatory network using stochastic differential equations. Similar with boolean net-

work and Bayesian network, the differential equations also examine the relationship

between a set of regulators and one regulated gene.

There are several other methods for inferring gene regulatory networks. [39]

examines the relationship between several regulators and one regulated gene with dif-

ferent time lags, using a data-driven approach. [40] examines pairwise mutual infor-

mation between gene pair’s time-lagged expressions, and compare with a threshold

determined by minimum description length (MDL) to infer existence of a connection.

In [41], fuzzy logic is applied to model gene expression data.

There is a common property among existing methods, boolean network, Bayesian

network, differential equations, etc. The relationship under investigation is always

the relationship between one or several regulators and one regulated gene. To our

knowledge, there is no method that directly examines the regulatory relationship

between one or several regulators and several regulated genes. In our study, we will

address this issue and provide a tool to examine several regulated genes together.

In Chapter 2 and Chapter 3, we propose the dependence model. We have

shown that the dependence model and its eigenvalue pattern are consistent indica-

tors that describe the group dependence behavior of several genes. In this chapter,

we propose to use the eigenvalue pattern to infer regulatory relationships. We will

infer the relationship between one regulator and a group of regulated genes from the

relationship between the regulator and the regulated genes’ group behavior (eigen-

value pattern). Therefore, we are able to examine regulatory relationships in a novel

way, compared with the existing literature.
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In the rest of this chapter, we will first take a detour to build a mathematical

foundation for the dependence model, proving several properties of the eigenvalue

pattern. After that , we show how a regulator can affect the regulated genes’ eigen-

value pattern in several cases. Then, the proposed idea will be tested on cell-cycle

microarray time-series data and compared with an existing method. Finally, some

conclusion and summary will be presented.

5.2 Analytical Form of Eigenvalue Pattern of the

Dependence Model

In previous chapters, the dependence model is applied for cancer classification,

cancer prediction, and biomarker identification, where the results are closely related

to the eigenvalue pattern of the dependence model. An interesting observation is

that, the eigenvalues of the dependence model are always real-valued, from both

simulated data and microarray experiment data. In this section, we will build a

mathematical foundation for the dependence model and its eigenvalue pattern. We

will mathematically prove that the eigenvalues of dependence model are always real,

and given the analytical form of the eigenvalue pattern.

5.2.1 2-Dimensional Case

We start with a trivial 2-dimensional dependence model, where the dependence

relationship between two genes are studied. Assume that we have two genes, whose
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expression levels are random variables, denoted as x1, x2. We further assume the

second order statistics of the two random variables are as follows, in equation (5.1).




E[x2
1] = σ2

1

E[x2
2] = σ2

2

E[x1x2] = σ12

(5.1)

where σ2
1σ

2
2 ≥ σ2

12, because of the Cauchy−Schwarz inequality. Note that the terms

σ2
1, σ

2
2, σ12 are not necessary to be the variances and covariance of random variables

x1, x2, since x1, x2 are not assumed to be of zero mean.

Equation (5.2) shows the dependence model that examines the relationship

between these two genes,



x1

x2


 =




0 a12

a21 0







x1

x2


 +




n1

n2


 , (5.2)

where, the elements of the dependence matrix (the values of a12, a21) are chosen

such that the noise terms n1, n2 are minimized separately. For example,

E[n2
1] = E[(x1 − a12x2)

2]

= E[x2
1]− 2a12E[x1x2] + a2

12E[x2
2]

= σ2
1 − 2a12σ12 + a2

12σ
2
2 (5.3)

Equation (5.3) is a quadratic function of a12, and the second order term has position

coefficient. Therefore, E[n2
1], as a function of a12, has a unique minimum. In order

to choose a proper value of a12 to minimize E[n2
1], we take derivative of equation

(5.3), and set it to be 0.

∂E[n2
1]

∂a12

=
∂(σ2

1 − 2a12σ12 + a2
12σ

2
2)

∂a12
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= 2a12σ
2
2 − 2σ12

= 0

Thus, choosing a12 = σ12/σ
2
2 minimizes E[n2

1]. Similarly, following the same argu-

ment, in order to minimize E[n2
2], we choose a21 = σ12/σ

2
1.

Therefore, for this 2-dimensional case, the dependence matrix is of the follow-

ing form,

A2 =




0 a12

a21 0


 =




0 σ12

σ2
2

σ12

σ2
1

0


 , (5.4)

with eigenvalues being ±
√

σ2
12

σ2
1σ2

2
. It is clear that in the 2-dimensional case, the two

eigenvalues of the dependence model are both real-valued in the range of [−1, 1].

5.2.2 3-Dimensional Case

In this subsection, we discuss a much more challenging case, a 3-dimensional

dependence model. We first derive the analytical form of the 3 × 3 dependence

matrix. Then, we prove the eigenvalues are real-valued. And finally, we derive the

analytical form of the eigenvalues.

In the 3-dimensional case, we study the dependence relationship among three

genes. The expression level of the three gene are considered to be random variables,

denoted as x1, x2, x3. The second order statistics of the three random variables are
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as follows, in equation (5.5).





E[x2
1] = σ2

1

E[x2
2] = σ2

2

E[x2
3] = σ2

3

E[x1x2] = σ12

E[x1x3] = σ13

E[x2x3] = σ23

(5.5)

where σ2
1σ

2
2 ≥ σ2

12, σ2
1σ

2
3 ≥ σ2

13, and σ2
2σ

2
3 ≥ σ2

23, because of the Cauchy−Schwarz

inequality. Again, x1, x2, x3 are not assumed to be zero mean. Therefore, the terms

σ2
1, σ

2
2, σ

2
3, σ12, σ13, σ23 are not necessary to be variances and covariances.

The dependence model for this 3-dimensional case can be written as follows,




x1

x2

x3




=




0 a12 a13

a21 0 a23

a31 a32 0







x1

x2

x3




+




n1

n2

n3




, (5.6)

We first determine the values of a12, a13 in the dependence matrix through minimiz-

ing E[n2
1]. It is easy to see that,

E[n2
1] = E[(x1 − a12x2 − a13x3)

2]

= E[x2
1] + a2

12E[x2
2] + a2

13E[x2
3]− 2a12E[x1x2]− 2a13E[x1x3] + 2a12a13E[x2x3]

= σ2
1 + a2

12σ
2
2 + a2

13σ
2
3 − 2a12σ12 − 2a13σ13 + 2a12a13σ23 (5.7)

Equation (5.7) is a quadratic function of a12 and a13, with position coefficients for

the second order terms. Therefore, E[n2
1] has a unique minimum with respect to a12
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and a13. In order to minimize E[n2
1], we take the partial derivatives of (5.7) with

respect to a12 and a13, and set the derivatives to be 0.

∂E[n2
1]

∂a12

=
∂(σ2

1 + a2
12σ

2
2 + a2

13σ
2
3 − 2a12σ12 − 2a13σ13 + 2a12a13σ23)

∂a12

= 2a12σ
2
2 − 2σ12 + 2a13σ23

= 0 (5.8)

∂E[n2
1]

∂a13

=
∂(σ2

1 + a2
12σ

2
2 + a2

13σ
2
3 − 2a12σ12 − 2a13σ13 + 2a12a13σ23)

∂a13

= 2a13σ
2
3 − 2σ13 + 2a12σ23

= 0 (5.9)

From the above two equations, the values of a12 and a13 can be solved,





a12 =
σ12σ2

3−σ13σ23

σ2
2σ2

3−σ2
23

a13 =
σ13σ2

2−σ12σ23

σ2
2σ2

3−σ2
23

(5.10)

Following the same argument, we can compute the values of a21, a23, a31 and a32

through minimizing E[n2
2] and E[n2

3]. The analytical form of the dependence matrix

is as follows,

A3 =




0 a12 a13

a21 0 a23

a31 a32 0




=




0
σ12σ2

3−σ13σ23

σ2
2σ2

3−σ2
23

σ13σ2
2−σ12σ23

σ2
2σ2

3−σ2
23

σ12σ2
3−σ13σ23

σ2
1σ2

3−σ2
13

0
σ23σ2

1−σ12σ13

σ2
1σ2

3−σ2
13

σ13σ2
2−σ12σ23

σ2
1σ2

2−σ2
12

σ23σ2
1−σ12σ13

σ2
1σ2

2−σ2
12

0




(5.11)

where, it is easy to see that a13a21a32 = a12a23a31.
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Compared with the dependence matrix for the previous 2-dimensional case,

the dependence matrix for the 3-dimensional case is much more complex. In or-

der to prove the eigenvalues are real-valued and obtain the analytical form of the

eigenvalues, we examine the characteristic polynomial of A3.

det(A3 − λI) =




−λ a12 a13

a21 −λ a23

a31 a32 −λ




= −λ3 + (a12a21 + a13a31 + a23a32)λ + 2a13a21a32 (5.12)

Let f(λ) = det(A3 − λI), which is a 3rd order polynomial of the shape shown in

Figure 5.1. The eigenvalues of A3 are the roots of equation f(λ) = 0. If we can prove

that the two extremals of f(λ) (local maximal and local minimal) are of different

signs, then we can argue that equation f(λ) = 0 has 3 real roots, and thus, all

eigenvalues of A3 are real.

The two extremal points can be obtained by setting df(λ)
dλ

= 0. It is easy to see

that the λ = ±
√

1
3
(a12a21 + a13a31 + a23a32) achieve the extremals of f(λ). And the

extremals of f(λ) are:





fLocal max = 2
√

1
3
(a12a21 + a13a31 + a23a32)

3
+ 2a13a21a32

fLocal min = −2
√

1
3
(a12a21 + a13a31 + a23a32)

3
+ 2a13a21a32

(5.13)

Taking into consideration the fact that a13a21a32 = a12a23a31, the product of fLocal max

and fLocal min can be expressed as follows,

fLocal maxfLocal min = −4
(

1

3
(a12a21 + a13a31 + a23a32)

)3

+ 4 (a13a21a32)
2

= −4
(

1

3
(a12a21 + a13a31 + a23a32)

)3

+ 4(a13a21a32)(a12a23a31)
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Figure 5.1: Shape of the characteristic polynomial of a dependence model with
dimension being 3.

= −4
(
(
1

3
(a12a21 + a13a31 + a23a32)

)3

+ 4(a12a21)(a13a31)(a23a32)

Denote a = a12a21, b = a13a31, and c = a23a32. Because of the structures shown in

equation (5.11), a, b and c are all positive quantities. For positive quantities, the

arithmetic mean is no less than the geometric mean,

1

3
(a + b + c) ≥ 3

√
abc (5.14)

and thus,

(
1

3
(a + b + c))3 ≥ abc (5.15)

Therefore, it is easy to see that

(
(
1

3
(a12a21 + a13a31 + a23a32)

)3

≥ (a12a21)(a13a31)(a23a32) (5.16)

which implies fLocal maxfLocal min ≤ 0. When fLocal maxfLocal min is strictly less than
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0, equation f(λ) = 0 has 3 different real roots. When fLocal maxfLocal min equals to

0, the roots are still real, but some of the roots may have more than 1 multiplicity.

Therefore, all the three eigenvalues of the dependence matrix are real-valued.

Now, we have proved that in the 3-dimensional case, the eigenvalues of the

dependence models are all real-valued. In the following, we will proceed to derive

the analytical forms of the eigenvalues. Recall the characteristic equation of the

dependence matrix A3,

det(A3 − λI) = −λ3 + (a12a21 + a13a31 + a23a32)λ + 2a13a21a32 = 0 (5.17)

Denote p = −(a12a21 + a13a31 + a23a32), q = 2a13a21a32, and make the Vieta’s

substitution λ = w − p
3w

, equation (5.17) becomes,

(w3)2 − q(w3)− (
p

3
)3 = 0 (5.18)

which is a quadratic equation of w3, with roots w3 = q
2
±

√
( q

2
)2 + (p

3
)3. From

inequality (5.16), it follows that ( q
2
)2 + (p

3
)3 ≤ 0. Thus, the magnitudes of the two

roots are equal, |w3| =
√

(−p
3
)3, and w3 can be written in the following form,

w3 =





√
(−p

3
)3eiθ1

√
(−p

3
)3eiθ2

(5.19)

where, 



cos(θ1) = cos(θ2) = q
2

sin(θ1) =
√
−( q

2
)2 − (p

3
)3

sin(θ2) = −
√
−( q

2
)2 − (p

3
)3

(5.20)
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Therefore,

w =





√
−p

3
ei

θ1
3

√
−p

3
ei(

θ1
3

+ 2π
3

)

√
−p

3
ei(

θ1
3

+ 4π
3

)

√
−p

3
ei

θ2
3

√
−p

3
ei(

θ2
3

+ 2π
3

)

√
−p

3
ei(

θ2
3

+ 4π
3

)

(5.21)

Recall the Vieta’s substitution λ = w − p
3w

, we can calculate the eigenvalues,

λ =





2
√
−p

3
cos( θ1

3
)

2
√
−p

3
cos( θ1

3
+ 2π

3
)

2
√
−p

3
cos( θ1

3
+ 4π

3
)

2
√
−p

3
cos( θ2

3
)

2
√
−p

3
cos( θ2

3
+ 2π

3
)

2
√
−p

3
cos( θ2

3
+ 4π

3
)

(5.22)

Because θ1 and θ2 satisfy equation (5.20), the first 3 solutions of λ are the same as

the last 3 solutions. Since θ1 ∈ [0, π), it is easy to order the first 3 solutions of λ,





λmax = 2
√
−p

3
cos( θ1

3
)

λmid = 2
√
−p

3
cos( θ1

3
+ 4π

3
)

λmin = 2
√
−p

3
cos( θ1

3
+ 2π

3
)

(5.23)

where p = −(a12a21 + a13a31 + a23a32), and θ1 is defined in equation (5.20).

As a summary, in this subsection, we examine the dependence model for the

3-dimensional case in detail. We prove that the eigenvalues for the 3-dimensional

case are real, and we derive the analytical forms of the eigenvalues, as shown in
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equation (5.23). It is difficult to tell the numerical range of the eigenvalues from

equation (5.23). In the next subsection, we will discuss higher dimensional cases,

where general results for higher dimensional cases will be presented. For now, we

just present the result that the eigenvalues for the 3-dimensional cases belong to the

range of [−2, 1]. The proof will be presented in the next subsection.

5.2.3 High Dimensional Case

In the previous subsections, we prove the the eigenvalues are real-valued in

the 2-dimensional case and the 3-dimensional case. The proof is complicated, and

the 3-dimensional case can not be generalized from the 2-dimensional case. In this

subsection, we will take a slightly different approach that can be generalized to high

dimensional cases. We will prove for a high dimensional case (M -dimensional case)

that, all the eigenvalues of the dependence model are real-valued, belonging to the

range [−(M − 1), 1].

Before we discuss high dimensional cases, let’s first re-visit the 3-dimensional

case. The first row of the dependence matrix is determined through minimizing

E[n2
1], that is, by solving equations (5.8) and (5.9), which can be written in a matrix

form as follows, 


σ2
2 σ23

σ23 σ2
3







a12

a13


 =




σ12

σ13


 (5.24)

Similarly, through minimizing E[n2
2] and E[n2

3], the second and third row of the
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dependence matrix can be determined from the following two matrix equations,




σ2
1 σ13

σ13 σ2
3







a21

a23


 =




σ12

σ23


 (5.25)




σ2
1 σ12

σ12 σ2
2







a31

a32


 =




σ13

σ23


 (5.26)

Matrix equations (5.24), (5.25) and (5.26) share a common structure, which might

be more obvious in the following extended versions,




σ2
1 0 0

0 σ2
2 σ23

0 σ23 σ2
3







0

a12

a13




=




0

σ12

σ13




(5.27)




σ2
1 0 σ13

0 σ2
2 0

σ13 0 σ2
3







a21

0

a23




=




σ12

0

σ23




(5.28)




σ2
1 σ12 0

σ12 σ2
2 0

0 0 σ2
3







a31

a32

0




=




σ13

σ23

0




(5.29)

The similar structures of matrix equations (5.27), (5.28) and (5.29) motivate us to

examine the following,




0 a12 a13

a21 0 a23

a31 a32 0







σ2
1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3
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=




a12σ12 + a13σ13 σ12 σ13

σ12 a21σ21 + a23σ23 σ23

σ13 σ23 a31σ13 + a32σ23




(5.30)

which can be denoted as,

A3R3 = B3 (5.31)

where, R3 is a symmetric positive semi−definite matrix, and B3 is a symmetric

matrix.

The characteristic polynomial of dependence matrix A3 can be related with

R3 and B3 as follows,

det(A3 − λI)

= det((A3 − λI)R3)/det(R3)

= det(A3R3 − λR3)det(R−1
3 )

= det(B3 − λR3)det(R
− 1

2
3 )det(R

− 1
2

3 )

= det(R
− 1

2
3 (B3 − λR3)R

− 1
2

3 )

= det(R
− 1

2
3 B3R

− 1
2

3 − λR
− 1

2
3 R3R

− 1
2

3 )

= det(R
− 1

2
3 B3R

− 1
2

3 − λI) (5.32)

where, R
− 1

2
3 = V D− 1

2 V ′. V and D are obtained from the eigen-decomposition

of R3 = V DV ′. From equation (5.32), we can see that matrix A3 and matrix

R
− 1

2
3 B3R

− 1
2

3 share the same set of eigenvalues. Since R3 is symmetric positive

semi−definite and B3 is symmetric, R
− 1

2
3 B3R

− 1
2

3 is a symmetric matrix, whose eigen-

values are all real-valued. Therefore, the eigenvalues of A3 are all real-valued.
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In order to determine the range of the eigenvalues of A3, we examine the

following quantity, where z is an arbitrary vector,

z′(R
− 1

2
3 B3R

− 1
2

3 − I)z

= z′(R
− 1

2
3 B3R

− 1
2

3 −R
− 1

2
3 R3R

− 1
2

3 )z

= z′R
− 1

2
3 (B3 −R3)R

− 1
2

3 z

= (R
− 1

2
3 z)′(B3 −R3)(R

− 1
2

3 z)

= (R
− 1

2
3 z)′




a12σ12 + a13σ13 − σ2
1 0 0

0 a21σ21 + a23σ23 − σ2
2 0

0 0 a31σ13 + a32σ23 − σ2
3




(R
− 1

2
3 z)

(5.33)

Since R3 is positive semi−definite, y′R3y ≥ 0 holds for any vector y. Let y =

[−1, a12, a13]
′,

[−1, a12, a13]R3




−1

a12

a13




≥ 0

−(a12σ12 + a13σ13 − σ2
1) ≥ 0

a12σ12 + a13σ13 − σ2
1 ≤ 0

With similar method, we can show that all diagonal elements in equation (5.33) are

smaller than or equal to 0. So, for any vector z, z′(R
− 1

2
3 B3R

− 1
2

3 − I)z is less than

or equal to 0, meaning that (R
− 1

2
3 B3R

− 1
2

3 − I) is negative semi−definite, with all

eigenvalues less than or equal to 0. Thus, all the eigenvalues of R
− 1

2
3 B3R

− 1
2

3 are less

than or equal to 1. Therefore, all the eigenvalues of A3 are less than or equal to 1.
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On the other hand, the sum of A3’s eigenvalues equals to tr(A3), which is 0. From

these two facts, we can conclude that the eigenvalues of A3 belong to the range

[−2, 1]. Examples where eigenvalues take the boundary values (−2 and 1) can be

found in Appendix C.

In the high M -dimensional case, i.e. M > 3, there is an equality similar with

equation (5.30).




0 a12 · · · a1M

a21 0 · · · a2M

...
...

. . .
...

aM1 aM2 · · · 0







σ2
1 σ12 · · · σ1M

σ12 σ2
2 · · · σ2M

...
...

. . .
...

σ1M σ2M · · · σ2
M




=




∑
i6=1 a1iσ1i σ12 · · · σ1M

σ12
∑

i6=2 a2iσ2i · · · σ2M

...
...

. . .
...

σ1M σ2M · · · ∑
i6=M aMiσiM




(5.34)

which can be denoted as,

AMRM = BM (5.35)

where, RM is a symmetric positive semi−definite matrix, and BM is a symmetric

matrix. Through the same argument in equation (5.32), we can show that,

det(AM − λI) = det(R
− 1

2
M BMR

− 1
2

M − λI) (5.36)

Thus, AM and R
− 1

2
M BMR

− 1
2

M share the same set of eigenvalues. Since R
− 1

2
M BMR

− 1
2

M is

symmetric with real eigenvalues, the eigenvalues of AM are all real-valued. Similar
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with equation (5.33), for an arbitrary vector z,

z′(R
− 1

2
M BMR

− 1
2

M − I)z

= (R
− 1

2
M z)′




−σ2
1 +

∑
i 6=1 a1iσ1i 0 · · · 0

0 −σ2
2 +

∑
i6=2 a2iσ2i · · · 0

...
...

. . .
...

0 0 · · · −σ2
M +

∑
i6=M aMiσiM




(R
− 1

2
M z)

(5.37)

where each diagonal element of the above is less than or equal to 0. For any vector

z, z′(R
− 1

2
M BMR

− 1
2

M − I)z is less than or equal to 0, meaning that (R
− 1

2
3 B3R

− 1
2

3 − I)

is negative semi−definite. Thus, all the eigenvalues of R
− 1

2
M BMR

− 1
2

M are less than or

equal to 1, and all the eigenvalues of AM are less than or equal to 1. Together with

the fact that, the sum of AM ’s eigenvalues equals to tr(AM), which is 0, we can

conclude that the eigenvalues of AM belong to the range [−(M − 1), 1]. Examples

where eigenvalues take the boundary values can be found in Appendix C.

As a summary, in this subsection, we present a solid mathematically foun-

dation of the dependence model, proving that for an M -dimensional dependence

model, the eigenvalues are all real-valued and belong to the range of [−(M − 1), 1].
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5.3 Regulatory Relationships vs. Eigenvalue Pat-

tern

In this section, we discuss how regulatory relationships can affect the eigen-

value pattern in several cases. We propose to use the eigenvalue pattern as a feature

to study regulatory relationships. In the literature, all existing methods examine

the regulatory relationship between one or more regulators and one regulated gene.

However, using the proposed dependence model and the eigenvalue pattern, we are

able to examine the regulatory relationship between one or more regulators and a

set of regulated genes. In the following, we discuss several cases, and show why the

eigenvalue pattern can be used to identify regulatory relationships.

Case 1:

Suppose we are interested in the regulatory relationships among 4 genes, gene

1, 2, 3, and 4, where the ground truth is gene 4 regulates gene 1. Assume that

without the presence of gene 4, the expression of gene 1, 2, 3 during some certain

biological process (i.e. cell-cycle) are x1(t), x2(t), x3(t) respectively, which are sta-

tionary random processes. Their second order statistics are assumed to be stationary

(5.5), and their dependence relationships can be described by the dependence ma-

trix (5.11). Assume that gene 4’s expression, x4(t), is orthogonal to gene 1, 2, 3.

With the presence of gene 4, the expression of gene 1 becomes x′1(t) = x1(t) + s1(t),

where s1(t) = αx4(t− 1); while the presence of gene 4 does not affect gene 2 and 3,

i.e. x′2(t) = x2(t), x′3(t) = x3(t). Then, with the presence of gene 4, the dependence
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model among gene 1, 2, and 3 becomes,




x′1(t)

x′2(t)

x′3(t)




=




0 a′12 a′13

a′21 0 a′23

a′31 a′32 0







x′1(t)

x′2(t)

x′3(t)




+




n′1(t)

n′2(t)

n′3(t)




that is,




x1(t) + s1(t)

x2(t)

x3(t)




=




0 a′12 a′13

a′21 0 a′23

a′31 a′32 0







x1(t) + s1(t)

x2(t)

x3(t)




+




n′1(t)

n′2(t)

n′3(t)




where the dependence matrix is,

A′
3(t) =




0
σ12σ2

3−σ13σ23

σ2
2σ2

3−σ2
23

σ13σ2
2−σ12σ23

σ2
2σ2

3−σ2
23

σ12σ2
3−σ13σ23

(σ2
1+σ2

s1
(t))σ2

3−σ2
13

0
σ23(σ2

1+σ2
s1

(t))−σ12σ13

(σ2
1+σ2

s1
(t))σ2

3−σ2
13

σ13σ2
2−σ12σ23

(σ2
1+σ2

s1
(t))σ2

2−σ2
12

σ23(σ2
1+σ2

s1
(t))−σ12σ13

(σ2
1+σ2

s1
(t))σ2

2−σ2
12

0




(5.38)

and σ2
s1

(t) = α2σ2
4(t − 1) = α2E[x2

4(t − 1)]. From (5.38), we can see that with the

presence of gene 4, the regulatory relationship between gene 4 and gene 1 directly

affects the dependence matrix for gene 1, 2, 3. The eigenvalue pattern, λ(A′
3(t)), is

a nonlinear function of σ2
s1

(t), or a nonlinear function of the statistics of x4(t− 1).

In the case where gene 4 regulates two or three genes among genes 1, 2, 3, the

dependence matrix will have a more complicated form, and the eigenvalues are still

a nonlinear function of the statistics of the regulator x4(t − 1). Although λ(A′
3(t))

does not change linearly with the change of x4(t − 1), the nonlinear relationship

between λ(A′
3(t)) and x4(t− 1) can be approximately quantified by linear measures

such as correlation coefficient or nonlinear measures such as mutual information.
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Therefore, in this case, the regulator and the eigenvalue pattern of the regulated

genes are nonlinearly correlated.

Case 2:

Suppose we are examining the same set of genes as in case 1, where gene 4 is

orthogonal to gene 1, 2, 3. Again, without the presence of gene 4, the expression of

gene 1, 2, 3 are assumed to be stationary processes, whose statistics are stationary

(5.5). Different from previous case, in this case, gene 4 does not directly regulate

gene 1, 2, 3. Instead, gene 4 works as a switch, which regulates the strength of

how gene 1 is correlated with gene 2. In particular, with the presence of gene 4,

the expression of gene 1 becomes, x′′1(t) = x1(t) − E[x1(t)x2(t)]
E[x2

2(t)]
x2(t)s

′′(t) = x1(t) −
σ12

σ2
2
x2(t)s

′′(t), where s′′(t) = βx4(t− 1); while the expression of gene 2 and 3 are not

affected, i.e. x′′2(t) = x2(t), x′′3(t) = x3(t). Then, with the presence of gene 4, the

dependence model for gene 1, 2, and 3 becomes,




x′′1(t)

x′′2(t)

x′′3(t)




=




0 a′′12 a′′13

a′′21 0 a′′23

a′′31 a′′32 0







x′′1(t)

x′′2(t)

x′′3(t)




+




n′′1(t)

n′′2(t)

n′′3(t)




that is,




x1(t)− σ12

σ2
2
x2(t)s

′′(t)

x2(t)

x3(t)




=




0 a′′12 a′′13

a′′21 0 a′′23

a′′31 a′′32 0







x1(t)− σ12

σ2
2
x2(t)s

′′(t)

x2(t)

x3(t)




+




n′′1(t)

n′′2(t)

n′′3(t)
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where the dependence matrix A′′
3 has a structure similar with (5.11),

A′′
3 =




0
σ′′12σ′′23 −σ′′13σ′′23

σ′′22 σ′′23 −σ′′223

σ′′13σ′′22 −σ′′12σ′′23
σ′′22 σ′′23 −σ′′223

σ′′12σ′′23 −σ′′13σ′′23
σ′′21 σ′′23 −σ′′213

0
σ′′23σ′′21 −σ′′12σ′′13

σ′′21 σ′′23 −σ′′213

σ′′13σ′′22 −σ′′12σ′′23
σ′′21 σ′′22 −σ′′212

σ′′23σ′′21 −σ′′12σ′′13
σ′′21 σ′′22 −σ′′212

0




(5.39)

and,

σ′′21 = σ2
1 +

σ2
12

σ2
2

σ2
s′′

σ′′22 = σ2
2

σ′′23 = σ2
3

σ′′12 = (1−ms′′)σ12

σ′′13 = σ13 − σ12

σ2
2

σ23ms′′

σ′′23 = σ23

where and σ2
s′′(t) = β2σ2

4(t − 1) = β2E[x2
4(t − 1)], and ms′′ = βmx4 = βE[x4(t)].

Again, the regulatory relationship between the regulator (gene 4) and the regulated

genes (gene 1, 2) will affect the second order statistics of genes 1, 2, 3, and thus

affect the dependence matrix and the eigenvalue pattern. Therefore, there exists a

nonlinear relationship between λ(A′′
3(t)) and x4(t− 1).

As a summary of this section, for a pair of regulator and regulated genes,

there exists time-lagged correlation between the expression of the regulator and

the eigenvalues associated to the regulated genes. In the case where the time-

lagged correlation between the expression of the a regulator and the expression of a

regulated gene is week, the using the eigenvalues can serve as an alternative way to

discover the regulatory relationship.
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5.4 Discovery of Regulatory Relationships

In the previous section, we show that the eigenvalues of a small group of genes

is a nonlinear function of the external factors that regulates one or more genes in

the group. Thus, the expression of the regulator and the eigenvalues associated

to the regulated genes are nonlinearly correlated. In this section, we examine a

yeast cell-cycle microarray time-series dataset, and show how to discover regulatory

relationships from the eigenvalue pattern.

5.4.1 Yeast Regulatory Network (Dataset and Prior Knowl-

edge)

In this study, we examine the alpha time-series dataset in [16], which is also

studied in Chapter 4. The dataset contains 18 time points for 6178 genes. The 18

time points cover two cell-cycles, about 120 minutes, with sampling time interval

being 7 minutes. The time-serious for each gene is normalized to zero-mean. Our

goal is to identify regulatory relationships from the time-series dataset.

In order to set up a performance evaluation criterion, we employ the partial

model of the yeast transcriptional regulatory network [32, 91]. The partial model

is derived by [91], based on the findings of [15]. As shown in Figure 5.2, the par-

tial model describes 58 regulatory relationships among 30 genes. In this partial

model, the topology is fixed, but there is no associated rules, i.e., the regulatory

relationships may not be boolean, Bayesian, etc. The topology of the partial model

is considered as the ground truth in our study. Identification method that discovers
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Figure 5.2: Partial model of the gene regulatory network of yeast cell-cycle.

large portion of the interactions in the partial model is considered to have good

performance.

Similar with the construction of the dependence networks in Chapter 3, the

eigenvalue-based discovery of regulatory relationships involves exhaustive search.

To limit the computational complexity, it is desirable to limit the number of genes

under investigation and focus on a small gene system. (Details will be presented in

the following subsections). Since a partial model of 30 genes is employed as per-
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formance evaluation criterion, in this study, we will focus on discovering regulatory

relationships among the 30 genes.

5.4.2 Correlation Between Gene Expressions

To infer and identify a regulatory relationship between a pair of genes, the

simplest way is to test the correlation between the time-lagged expression time-series

of the two genes, either the original continuous expression data [92] or the quantized

discrete expression data [93]. If the time-lagged correlation is larger than certain

threshold, there exists a regulatory relationship. The threshold can be determined

by permutation analysis or graph-theoretic transitivity measure such as clustering

coefficient [94]. The statistical significance of the time-lagged correlation can be

assessed by p-value, which is obtained through random permutation. In this section,

we pair-wisely examine the correlation coefficient and p-value of the 30 genes in the

partial model in Figure 5.2.

Define x(i)
b
a

as a column vector containing gene i’s time-series expression data

from time point a to time point b, i.e., x(i)
b
a

= [xi,a, xi,a+1, ..., xi,b]
T , where xi,a

represents gene i’s expression at time a. i takes value from 1 to 30, because we

are examining 30 genes. Since the dataset under investigation [16] contains 18 time

points, a and b take values from 1 to 18, and a ≤ b. In order to infer whether gene

i regulates gene j, we calculate the time-lagged correlation between genes i and j,

ci,j =
< x(i)

17
1

,x(j)
18
2

>

|x(i)
17
1
| · |x(j)

18
2
| (5.40)

where < ·, · > is the vector inner product, and | · | represents the L2 vector norm.
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ci,j belongs to the range of [−1, 1]. A positive ci,j means gene i up-regulates gene j;

while a negative ci,j means gene i down-regulates gene j. The absolute value of ci,j

represents the strength of the regulatory relationship. The histogram of all ci,j’s are

shown in Figure 5.3(a).
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Figure 5.3: Fig (a) shows the histogram of time-lagged correlation between gene
pairs ci,j for all i, j = 1, 2, ..., 30. Fig (b) shows the histogram of time-lagged
correlation between gene expression and eigenvalue of gene triple, ci;(j,k,l) for all
i, j, k, l = 1, 2, ..., 30 and j 6= k, j 6= l, k 6= l.

The statistical significance of ci,j is assessed by permutation analysis. We

randomly permute the elements of vector x(i)
17
1

10000 times, and compute the corre-

lation between x(j)
18
2

and the permuted versions of x(i)
17
1

. The p-value pi,j is defined

as the probability that the absolute value of correlation of random data is greater

than that of the original un-permuted data. The smaller the p-value is, the more

confident we are about the correlation ci,j. Intuitively, larger absolute value of ci,j

will lead to smaller pi,j. In Figure 5.4(a), we plot the ci,j and pi,j of all gene pairs,

where we can see that larger absolute value of ci,j in general corresponds to smaller

pi,j.
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Figure 5.4: Fig (a) shows the p-value vs absolute value of time-lagged correlation
of all gene pairs i, j. Fig (b) shows the p-value vs absolute value of time-lagged
correlation of all pairs of regulator and regulated triple i; (j, k, l).

For the purpose of identifying and discovering regulatory relationships, we

examine the time-lagged correlation and the p-value. For a pair of genes i and

j, if the absolute value of ci,j is large and pi,j is small, we will infer that gene i

regulates gene j. Since the absolute value of the correlation and the p-value changes

monotonically with each other in Figure 5.4(a), we only need to apply a correlation

threshold c∗ and ignore the p-value. For a pair of genes i and j, if |ci,j| ≥ c∗ is

satisfied, we will identify the regulatory relationship that gene i regulates gene j.

Given the ground truth of the regulatory relationships among the 30 genes

under investigation, we can evaluate the detection performance of particular choices

of the correlation threshold c∗, in terms of the probability of mis-detection and the

probability of false-positive. By varying the correlation threshold c∗, we are able

to examine the ROC (receiver operating characteristic) of identifying regulatory

relationships by thresholding ci,j. As mentioned in the previous subsection, the
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partial model of yeast describes 58 regulatory relationships among 30 genes. If

we consider the 58 regulatory relationships as ground truth, we can obtain one

realization of the ROC curve for thresholding ci,j as the dashed line in Figure 5.5(a),

where the horizontal axis is the probability of false-positive, and the vertical asix is

the probability of correct detection which is 1 minus the probability of mis-detection.

Note that an ROC curve is a statistical characterization of a detection scheme. Given

a particular dataset, we are only able to obtain one realization of the ROC curve.

Note that multi-hop regulatory relationships could also be picked up by the

time-lagged correlation ci,j, and the 58 regulatory relationships may not be exactly

the ground truth to be discovered by thresholding ci,j. Thus, the realization of ROC

curve in Figure 5.5(a) may not be able to characterize the detection performance.

Therefore, we may need to consider multi-hop regulatory relationships as the ground

truth. From the partial model in Figure 5.2, we can easy derive all the multi-

hop regulatory relationships. If we consider both one-hop and two-hop regulatory

relationships as the ground truth, which contains 100 regulatory relationships, we

will obtain the realization of the ROC curve as the dashed curve in Figure 5.5(b).

If we consider all the one-hop, two-hop and three-hop regulatory relationships as

the ground truth, which contains 156 regulatory relationships, we will obtain the

dashed curve in Figure 5.5(c). If we consider the 214 relationships less or equal to

four-hop, we can observe the dashed curve in Figure 5.5(d). It is observed that the

4 cases do not exhibit much difference.
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5.4.3 Correlation Between Expression and Eigenvalues

In this subsection, we study the time-lagged correlation between regulator’s

expression and the eigenvalues of the regulated genes. As discussed in section 5.3,

if there exists gene i that regulates one or more components of the gene triple j, k,

l, there is likely to exist strong time-lagged correlation between gene i’s expression

and the eigenvalues of the triple. We will use this correlation to infer the existence

of regulatory relationships. Based on the observation from Chapter 2 and Chapter

3, the smallest eigenvalue of the dependence model is most sensitive to the change

of dependence relationship. Therefore, we choose the smallest eigenvalue to be the

representative of all eigenvalues, and focus on the correlation between the regulator’s

expression and the smallest eigenvalue of the regulated genes.

Define λ(j,k,l);t be the smallest eigenvalue of the dependence model for genes j,

k, l at time t. In our analysis, we choose a time window of 5 points to estimate the

dependence model and the smallest eigenvalue. For example, in order to estimate

λ(j,k,l);t, we use the expression data x(j)
t+2
t−2

, x(k)
t+2
t−2

, x(l)
t+2
t−2

to estimate the dependence

model of genes j, k, l for the time window [t−2, t+2], and compute the smallest eigen-

value. For a particular choice of gene triple j, k, l, we are able to estimate λ(j,k,l);t for

different time points, and see how the eigenvalue pattern changes along time. Sim-

ilar with the previous subsection, define λ(j,k,l)
b
a

= [λ(j,k,l);a, λ(j,k,l);a+1, ..., λ(j,k,l);b]
T .

In order to determine whether gene i regulates one or more components of gene

triple j, k, l, we examine the following correlation,

ci;(j,k,l) =
< x(i)

15
2

, λ(j,k,l)
16
3
− λ(j,k,l)

16

3
>

|x(i)
15
2
| · |λ(j,k,l)

16
3
− λ(j,k,l)

16

3
|

(5.41)
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where λ(j,k,l)
16

3
is the mean of the elements in vector λ(j,k,l)

16
3

. In Figure 5.3(b), the

histogram of ci;(j,k,l) is shown, for all i, j, k, l = 1, 2, ..., 30 where j 6= k, j 6= l, k 6= l.

Similar with the previous subsection, the statistical significance of ci;(j,k,l) can

be assessed by permutation analysis. We randomly permute the elements of x(i)
15
2

10000 times, and compute the correlation between λ(j,k,l)
16
3

and the permuted ver-

sions of x(i)
15
2

, as in equation (5.41). The p-value, pi;(j,k,l), is defined as the probability

that the absolute value of correlation of random data is greater than that of the orig-

inal un-permuted data. Again, as shown in Figure 5.4(b), we observed that higher

absolute value of the correlation will lead to smaller p-value. The reason for showing

Figure 5.3(b) and Figure 5.4(b) is to demonstrate that among all possible pairs of

regulator and regulated triple, the correlation derived from eigenvalues is centered

around zero without bias.

As mentioned earlier, if gene i regulated gene j, the regulatory relationship

will contribute to the correlation between gene i and the eigenvalue pattern of a

regulated triple, genes j, k, l. Therefore we argue that, if we remove the effect of

gene i from the expression of gene j, the correlation from the eigenvalue pattern

will be reduced. Mathematically, define x(j(−i))
b
a

as a column vector containing the

expression of gene j from time point a to time point b, after the effect of gene i is

removed from gene j:

x(j(−i))
b

a
= x(j)

b
a
− < x(j)

b
a
,x(i)

b−1
a−1

>

|x(i)
b−1
a−1
|2 x(i)

b−1
a−1

(5.42)

Based on the data x(j(−i))
18
1

, x(k)
18
1

and x(l)
18
1

, we are able to obtain the eigenvalue
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pattern λ(j(−i),k,l)
16

3
. Define

ci;(j(−i),k,l) =
< x(i)

15
2

, λ(j(−i),k,l)
16

3
− λ(j(−i),k,l)

16

3
>

|x(i)
15
2
| · |λ(j(−i),k,l)

16

3
− λ(j(−i),k,l)

16

3
|

(5.43)

Then, if ci;(j,k,l) is greater than ci;(j(−i),k,l), we argue that gene i is likely to regulate

gene j.

In order to characterize the regulatory relationship of i → j, we examine the

reduction of eigenvalue pattern correlation ci;(j,k,l)−ci;(j(−i),k,l). Since we exhaustively

examine all possible regulated triples, for a particular regulatory relationship (i →

j), the correlation reduction can be evaluated 406 times, because of different choices

of k and l (406 = 29×28
2

). We propose to use the mean of the 406 values of correlation

reduction as a metric to characterize the possible regulatory relationship of i → j.

We evaluate the proposed correlation reduction metric for all pairs of genes,

and obtain a 30 × 30 matrix denoted as Cr, with the Crij element characterizing

the strength of the regulatory relationship of i → j. Similar with the previous

subsection, we apply a correlation threshold cr∗. If Crij ≥ cr∗ is satisfied, we will

identify the regulatory relationship that gene i regulates gene j.

Given the ground truth of the regulatory relationships, we can evaluate the

detection performance of particular choices of the threshold cr∗. By varying the

value of cr∗, we are able to examine the ROC curve of identifying regulatory rela-

tionships from eigenvalue pattern. Similar with the previous subsection, if the 58

regulatory relationships in the partial model of yeast are considered as the ground

truth, we can obtain a realization of the ROC curve as the solid line in Figure 5.5(a).

If we consider both the one-hop and two-hop regulatory relationships as the ground
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truth, which contains 100 regulatory relationships, we will obtain the solid curve

in Figure 5.5(b). If we consider all the one-hop, two-hop and three-hop regulatory

relationships as the ground truth, which contains 156 regulatory relationships, we

will obtain the solid curve in Figure 5.5(c). If we consider the 214 relationships less

or equal to four-hop, we can observe the solid curve in Figure 5.5(d).

From Figure 5.5, we can observe that, when we consider one-hop and two-hop

regulatory relationships, identification from eigenvalue pattern and direct correla-

tion test have comparable performance. However, in the case where we consider

regulatory relationships up to three-hop or four-hop, identification from eigenvalue

pattern yields higher probability of correct detection, when the probability of false

positive is required to be low.

The performance of both methods in Figure 5.5 is not satisfactory. One reason

is, we only have one dataset in our current study. From this dataset, we are only

able to obtain one realization of the ROC curve, which cannot fully characterize the

statistics of the detection methods. In the future study, more datasets should be

examined to statistically evaluate the effectiveness of the proposed method. Another

reason is as follows. For both methods, we are considering only one regulator at

one time. If there are two regulators affecting the same regulated gene (or the same

set of regulated genes), the correlation between either one of the regulators and

the regulated gene (or the eigenvalue pattern) could be weak. In the future study,

we will enlarge the search space of regulatory relationships by considering several

regulators simultaneously.
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5.5 Chapter Summary

In this chapter, we briefly review the literature of modeling and discovering

regulatory relationships, where the existing models only study the relationship be-

tween a set of regulators and one regulated gene. Motivated by the dependence

model, we propose to use the eigenvalue pattern to characterize the relationship be-

tween one or more regulator and a set of regulated genes. We take a detour to build

a mathematical foundation for the dependence model, proving several properties of

the eigenvalue pattern and showing how a regulator can affect the regulated genes’

eigenvalue pattern. Then, the proposed method is applied on cell-cycle microarray

time-series data to identify regulatory relationships. The results are compared with

identification using correlation test based on expression data only. The comparison

shows that identifying regulatory relationships from eigenvalue pattern is able to

better pick up evidence of multi-hop regulatory relationships.

This chapter is a preliminary effort of the identification of regulatory relation-

ships. The main contribution is that we provide a new way to examine regulatory

relationships, which considers several regulated genes simultaneously. Much future

effort is required for improvement and verification of the proposed method.
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Figure 5.5: Comparison of ROC curves for two schemes: detecting regulatory rela-
tionships from time-lagged correlation between genes’ expressions, detecting regula-
tory relationship from eigenvalue pattern. Fig (a) shows the case where 58 one-hop
regulatory relationships from the partial model are considered as the ground truth.
Fig (b) shows the cases where 100 regulatory relationships are regarded as the ground
truth, containing both one-hop and two-hop regulatory relationships. Fig (c) con-
siders 156 regulatory relationships as the ground truth, containing all relationships
less or equal to three-hop. Fig (d) considers 214 regulatory relationships as the
ground truth, containing all relationships less or equal to four-hop in the partial
model.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

Throughout this thesis, we are focusing on model-driven approaches for ge-

nomic and proteomic signal processing. In Chapter 2, we develop the dependence

model, which is able to describe gene and protein’s group behavior. With this model,

we build a supervised classifier to study the big picture, the ensemble dependence

relationship among gene clusters. The dependence model based classifier is used to

classify normal and cancer samples based on gene clusters. Although we only exam-

ine the global dependence among clusters and throw away detailed information of

individual genes, we are still able to obtain excellent classification performance. For

the purpose of comparison, we examine the widely applied support vector machine

algorithm. Although these two algorithms exhibit comparable performance, our

algorithm presents a fundamental departure from the existing SVM approach. Be-

cause the dependence model develops a more plausible model by taking genes group
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behaviors and interactions into account, and thus may have potential to classify

intransigent data on which other classifiers balk.

An interesting observation is noted in the eigenvalue domain of the depen-

dence model. Two distinguishing eigenvalue patterns of the dependence models are

noted for the normal and cancer cases. By examining one prostate cancer dataset,

we illustrate that the eigenvalue pattern goes through a continuous change from the

perfect healthy case, to the normal case, to the early stage cancer case, and further

to the late stage cancer case. The continuous change of eigenvalue pattern indicates

that from normal case to cancer case, the ensemble dependence among gene clusters

becomes weaker and weaker. Therefore, we conclude that the dependence model

carries certain biology meaning that, the gene clusters are working more cooper-

atively in the normal case, while the gene clusters are working less cooperatively

in the cancer case. This is the uniqueness of our approach, while the data-driven

approaches cannot offer such biology meaning. Furthermore, since the eigenvalue

pattern goes through a continuous change from normal to cancer, the eigenvalue

pattern is promising for the early prediction of cancer development, and thus for

potential cancer diagnosis usage.

After studying the big picture in Chapter 2, we zoom in to examine the de-

tail relationship among individual gene and protein features in Chapter 3, where

the dependence network is proposed. In building the dependence network, the de-

pendence relationship among features can be indicated by the eigenvalue pattern.

From binding triples found via the desired eigenvalue pattern, the dependence net-

works for both normal and cancer cases are built. These dependence networks
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are essentially co-regulation networks, where connected features are co-regulated

by some common factor. From the difference between dependence networks for

normal and cancer cases, biomarkers are identified, which is called the dependence-

network-based biomarkers. For the purpose of comparison, we examine a popular

biomarker identification criterion in the literature, the classification-performance-

based criterion. Based on results from both gene and protein expression data, we

observe that the dependence-network-based approach provides much more consis-

tent and reproducible results then the classification-performance-based approach.

Another observation is that, the classification-performance-based biomarkers have

high correlation with the simple differential method, such as T-test. However, the

dependence-network-based criterion identifies many biomarkers that are not simply

the most differentially expressed features. The results indicate that, the dependence-

network-based biomarker identification criterion yields much more information than

the simple differential method and the classification-performance-based criterion.

Further, with the help of our collaborators in Georgetown University, we analyze

the biological relevance of the identified gene biomarkers from a gastric cancer mi-

croarray dataset. Results show that the identified biomarkers are indeed biologically

relevant. Several identified biomarkers have been shown to be valuable gastric cancer

biomarkers in the literature. The encouraging results demonstrate that the proposed

dependence model and network framework is able to facilitate discovery of better

biomarkers for cancer research.

Chapter 2 and Chapter 3 both study the static gene and protein expression

data, where different normal and cancer samples are taken from different individual
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subjects while the time information of the normal and cancer samples is unknown.

In Chapter 4 and Chapter 5, we address some challenges in microarray time-series

data, where the data is obtained by measuring one sample at multiple time points.

From time-series data, we are able to see how a gene system behave along time, and

thus discovery the gene regulatory network, which represents causal relationships

among genes.

In time-series experiment, the measurement is based on a population of syn-

chronized cells, so that the observed expression is proportional to the single cell

expression. However, even with the most advanced biochemical synchronization

method, continuous synchronization loss is observed due to the diversity of individ-

ual cell growth rates. Therefore, there is an inherent problem of synchronization

loss, which degrades the quality of the time-series data. In Chapter 4, we develop

a model-based resynchronization framework to remove the effect of synchronization

loss and reconstruct the underlying gene expression profiles, which represent single

cell behavior more accurately. We consider a synchronization loss model where the

gene expression measurements are regarded as superposition of mixed cell popula-

tions with different growth rates. The proposed scheme is shown feasible, promising

and robust via simulations. Results from real microarray time-series data reveal that

the proposed scheme is able to resynchronize the data. Comparisons with existing

literature show that we are able to better discover cell-cycle regulated genes based

on the resynchronized data. The significance of Chapter 4 is that, it presents an

effective pre-processing method that greatly improves the quality of the time-series

data.
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In Chapter 5, we analyze time-series data to discover gene regulatory network.

In the literature, there is a common property among existing methods, boolean net-

work, Bayesian network, differential equations, etc. The relationship under investi-

gation is always the relationship between one or several regulators and one regulated

gene. To our knowledge, there is no method that considers several regulated genes

together. In our study, we address this issue and provide a tool to examine the rela-

tionship between one or several regulators and several regulated genes. We propose

to infer regulatory relationships based on the correlation between regulators and

the regulated genes’ group behavior (eigenvalue pattern). The proposed method is

applied on cell-cycle microarray time-series data. The results are compared with

identification using pair-wise correlation test based on expression data. The com-

parison shows that identifying regulatory relationships from eigenvalue pattern is

able to better pick up evidence of multi-hop regulatory relationships. Chapter 5 is

a preliminary effort of the identification of regulatory relationships. The main con-

tribution is that we provide a new way to examine regulatory relationships, which

considers several regulated genes simultaneously. Much future effort is required for

improvement and verification of the proposed method.

As a summary, in this thesis, we propose novel model-driven approaches to

address several topics in bioinformatics and cancer research, which are cancer classi-

fication and prediction, biomarker identification, time-series resynchronization, and

regulatory network discovery. Excellent performance is obtained from the proposed

dependence model, polynomial model, and their variations. Different from exist-

ing data-driven methods, the proposed dependence model carries certain biology
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meaning and it has the potential for early prediction of cancer. The dependence-

network-based biomarker identification criterion generates much more consistent

and reproducible results than the popular classification-performance-based criterion

in the literature. The polynomial approach is able to greatly improve the quality

of microarray time-series data. Using the dependence model and its eigenvalues, we

are able to examine regulatory relationships in a novel way that involve multiple

regulated genes together.

6.2 Future Research

The research area of bioinformatics is developing fast. Every year, huge

amount of new data is generated from high throughput technologies such as gene

microarray and protein mass spectrum. These data are of various forms for different

research purposes, and they require different computational tools. There are many

interesting research directions that need to be further investigated.

First, for the purpose of cancer classification, cancer prediction and biomarker

identification, we have developed the dependence model and the dependence net-

work, and we have verified the proposed model in several gene and protein datasets.

In the dependence model, we observed the continuous change of the eigenvalue pat-

tern from normal cases to cancer cases. Such continuous change implies that the

eigenvalue pattern has the potential for the early prediction of cancer. For our future

work, we will obtain more datasets to further verify the proposed model, especially

the eigenvalue pattern for early prediction of cancer. Our goal is to find a set of
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meaningful biomarkers, based on which the dependence model can predict cancer

development in the early stage.

Second, our current work for time-series resynchronization only utilize the

microarray gene expression data. There is actually some side information available,

such as the budding index data. Incorporating the side information may help to

better resynchronize the time-series data and further improve the data quality.

Third, for the purpose of discovering a gene regulatory network, the depen-

dence model and its eigenvalues are applied to study regulatory relationships that

cannot be examined by the existing literature. Our main contribution is that we

proposed a noval method to examine regulatory relationships that involves several

regulated genes simultaneously. This is a preliminary effort of the identification

of regulatory relationships. Much future effort is required for further improvement

and verification. After the successful identification of regulatory relationships, the

next question is how to integrate and assemble the identified regulatory relation-

ships into one regulatory network in a biologically meaningful way. The knowledge

of gene regulatory network will lead to the discovery of the signaling pathways of

different biological processes and different diseases. Through pathway analysis, the

discovered gene regulatory network and functional annotations could be integrated,

so that our understanding of the mechanism of biology systems will be greatly im-

proved.

Also, there are many other interesting bioinformatics problems that are closely

related to this thesis. For example, the sequence information of genes and the lo-

cations of genes in the whole genome are closely related to their functionalities
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and regulatory relationships. How to infer genes’ functions and regulations from

sequence information represents another horizon of the genomics research. In pro-

teomic research, the sequence information and the secondary structures of proteins

also provide valuable information of protein functionalities and interactions. How

to infer protein secondary structures from sequence information, and how to infer

functional interactions from protein secondary structures are both important prob-

lems.

Overall, bioinformatics is an exciting interdisciplinary research area. A lot of

research work is being conducted by biologist, computational scientists and statisti-

cians, at different levels of abstractions. At each level of abstraction, signal process-

ing and computational tools are needed to analyze and archive data effectively and

systematically. Moreover, there is need for an effective way to integrate information

from different data. With the background of electrical and computer engineering,

we believe that signal processing will greatly facilitate and expedite bioinformatics

research.
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Appendix A

Gaussian Assumption in the

Dependence Model

In the dependence model, the statistics of the noise-like term is assumed to

be Gaussian. In order to evaluate this assumption, we examine the histograms and

kurtosis of the noise-like term based on real gene and protein expression data. We

use a protein mass spectrum dataset as an example, the ovarian cancer dataset.

Here, we choose the number of clusters to be 3. Therefore, the protein features are

clustered into 3 groups. In the two hypotheses in equation (2.7), the two noise-like

terms are assumed to be two gaussian random vectors, both of dimension 3. If we

look at these two gaussian random vectors element by element, draw the histogram

and calculate the kurtosis (using matlab), we can get the following result in Figure

A.1. As we know, the kurtosis of a gaussian random variable should be 3. From the

histograms and kurtosis values, we can see that the noise term is roughly gaussian.

Therefore, the gaussian assumption is used in our approach for its simplicity and
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attractive properties. Note that the Gaussian assumption only affects the form of

the maximum likelihood (ML) criterion of classification. It does not affect the theory

of the dependence model.
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Figure A.1: Fig (a) (b) (c) show the histograms for the noise term in normal case.

Fig (d) (e) (f) show the histograms for the noise term in cancer case.
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Appendix B

Pre-processing of Protein Mass

Spectrum Data

Because of the noisy nature of mass spectrum (MS) datasets, proper pre-

processing of MS data such as spectrum smoothing, baseline identification and cor-

rection, and peak selection, is needed before applying the proposed model. Among

the pre-processing steps, peak selection is essentially important, because peak se-

lection aims at choosing a subset of peaks that are mostly associated with the

phenotypes of interest. This step is similar to the common step of feature selection

in classification applications. In this section, we briefly describe our preprocessing

procedures.

Fig.B.1(a) is the raw MS data of one particular sample from the ovarian cancer

dataset. The horizontal axis is mass-to-charge ratio (m/z), and the vertical axis

corresponds to intensity. Similar to [59], we carried out the spectrum smoothing and

baseline correction. We smooth the spectrum through the wavelet technique (using
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matlab wavelet toolbox). Baseline correction removes baseline drift and background

spectrum. In this step, the baseline is generated by a sliding window, which finds

the lowest intensity within the sliding window. With window length being 10, the

corrected spectrum is shown in Fig.B.1(b). After baseline correction, the spectra

data are normalized by the mean intensity in each spectrum. Because of the spectra-

shifting problem along the mass axis, we cannot use the intensities of particular mass

values as features. Instead, peaks in the spectra are selected as features. Moreover,

each peak does not correspond to a particular mass value. It corresponds to a certain

range of mass values. In order to compare spectra from different experiments, peaks

of spectra from different experiments must be aligned to the same mass ranges.

In this study, since the spectra-shifting problem is not severe in the investigated

datasets, peak detection and peak alignment are performed by detecting peaks from

the average of normal spectra and the average of cancer spectra, respectively. In

the ovarian dataset, there are 15,154 mass features. After peak detection and peak

alignment, around 500 peaks are detected.
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Figure B.1: Pre-processing of MS data.
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Appendix C

Proof – Enginvalue of Ideal-case

Dependence Model

In section 2.6, the eigenvalue pattern is discussed. It is claimed that for a

more general noise free case where we have M clusters, the eigenvalues of the M -

by-M matrix Aideal are {1, 1, ..., 1,−(M − 1)}, no matter what are the values of

αi, i = 1, 2, ...,M . The proof is as following.

For the noise free case, the general form of dependence matrix for M clusters

is as follows,

Aideal =




0 α1 α2 · · · αM−1

1
α1

0 −α2

α1
· · · −αM−1

α1

1
α2

−α1

α2
0 · · · −αM−1

α2

...
...

...
. . .

...

1
αM−1

− α1

αM−1
− α2

αM−1
· · · 0




(C.1)
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In order to solve for eigenvalues, we need to solve the determinant of bfAideal − λI,

and set it to be zero, which is

det




−λ α1 α2 · · · αM−1

1
α1

−λ −α2

α1
· · · −αM−1

α1

1
α2

−α1

α2
−λ · · · −αM−1

α2

...
...

...
. . .

...

1
αM−1

− α1

αM−1
− α2

αM−1
· · · −λ




= 0 (C.2)

As we know, common factor from a column or a row can be pulled out of the deter-

minant operator. So, we can pull the common factor α1 from the second column,

pull the common factor 1
α1

from the second row, and thus get rid of parameter α1.

Then, we can pull the common factor α2 from the third column, pull the common

factor 1
α2

from the third row, to get rid of parameter α2. In the same way, all α

parameters can be eliminated, and the left side can be simplified into

det




−λ α1 α2 · · · αM−1

1
α1

−λ −α2

α1
· · · −αM−1

α1

1
α2

−α1

α2
−λ · · · −αM−1

α2

...
...

...
. . .

...

1
αM−1

− α1

αM−1
− α2

αM−1
· · · −λ
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= det




−λ 1 1 · · · 1

1 −λ −1 · · · −1

1 −1 −λ · · · −1

...
...

...
. . .

...

1 −1 −1 · · · −1




(C.3)

After that, through some determinant invariant operation, such as adding column

one to all other columns and subtracting rows 2 to M − 1 from row one, the above

matrix can be simplified.

det




−λ 1 1 · · · 1

1 −λ −1 · · · −1

1 −1 −λ · · · −1

...
...

...
. . .

...

1 −1 −1 · · · −λ




= det




−λ 1− λ 1− λ · · · 1− λ

1 1− λ 0 · · · 0

1 0 1− λ · · · 0

...
...

...
. . .

...

1 0 0 · · · 1− λ
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= det




−(M − 1)− λ 0 0 · · · 0

1 1− λ 0 · · · 0

1 0 1− λ · · · 0

...
...

...
. . .

...

1 0 0 · · · 1− λ




= −(M − 1 + 1− λ)(1− λ)M−1 (C.4)

Easy to see, the eigenvalues of the dependence matrix Aideal are {1, 1, ..., 1,−(M −

1)}. Proof complete.
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Appendix D

GO Terms of Identified Cell-Cycle

Regulated Genes

Though genes identified by the proposed method have large overlap with pre-

vious studies, it is interesting to examine non-overlapping genes identified by the

proposed method, but not identified in previous studies, neither [16] nor [21]. We ex-

amine the non-overlapping genes identified by the each scheme, through the semantic

analysis based on the gene ontology (GO) terms. To achieve this purpose, we apply

an online tool, the SGD Gene Ontology Term Finder (http://db.yeastgenome.org/cgi-

bin/GO/goTermFinder). Given a list of genes, the GO Term Finder can output a

list of associated GO terms, ranked by a p-value for each GO term.

We first analyze the set of genes identified by the proposed scheme only. From

the results, we note that in the top 25 associated GO terms, there are several terms

related to cell-cycle, such as “M phase”, “cell-cycle”, “mitotic cell cycle”, and “M

phase of mitotic cell cycle”, associated with 84 genes. Moreover, the cell-cycle
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related GO terms appears in top positions of the GO terms list. It suggests that

some genes identified by the proposed scheme but not by other two schemes are

cell-cycle related. For the other two schemes [16] and [21], it is noticed that none of

the above cell cycle related GO terms appears in the top 25 GO terms list.
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GO terms of cyclic genes identified by the proposed scheme only. 
Gene 

Ontology 
term 

Genes annotated to the term 

chromosome 
segregation | 
AmiGO 

BRN1, CSM1, SCC2, MCM21, LRS4, SMC2, CDH1, DOC1, ESP1, OKP1, 
CTF8, RSC2, CTF3, SGS1, RFC3 

M phase | 
AmiGO 

BRN1, CSM1, MSH5, SCC2, LRS4, SMC2, CDH1, SAE2, IME4, DOC1, 
ESP1, RIM4, KEL1, CTF8, MAD3, TOR1, MSC3, SGS1, DMA2, CLA4, MEI5, 
UME1, CCL1 

cell cycle | 
AmiGO 

FUS3, BRN1, PPS1, CSM1, MSH5, CLB3, SCC2, SAC7, LRS4, SMC2, 
CDH1, CKB1, SAE2, IME4, DOC1, ESP1, RIM4, KEL1, CTF8, MAD3, CBF1, 
TOR1, MSC3, SGS1, DMA2, CLA4, VHS3, MEI5, UME1, CCL1 

myo-inositol 
metabolism | 
AmiGO 

IPK1, SCS2, IRE1 

mitotic sister 
chromatid 
segregation | 
AmiGO 

BRN1, SCC2, SMC2, CDH1, DOC1, ESP1, CTF8, SGS1 

sister chromatid 
segregation | 
AmiGO 

BRN1, SCC2, SMC2, CDH1, DOC1, ESP1, CTF8, SGS1 

biopolymer 
metabolism | 
AmiGO 

CYC3, CNE1, FUS3, LSM2, AAR2, MNN2, MUM2, UBS1, TDP1, PRP5, 
PPS1, DPB3, STP22, SGF29, BUD31, TUP1, CSM1, SOL2/YCRX13W, 
PTC1, BPL1, MSH5, STE7, DHH1, FAP7, UFD2, SCC2, GPI8, LRS4, SPF1, 
MAK10, UTP7, SCS2, ATG18, CDH1, CKB1, STT3, PAN2, CEG1, SAE2, 
IME4, TAN1, DOC1, RAI1, GCN5, RIM4, VMA22, RPP1, PPE1, IRE1, LRP1, 
YHR087W, UBA4, ORC6, MPH1, MRS1, CBF1, FIP1, DBR1, MRS4, ORC3, 
KNS1, ARP6, MSC3, VPS34, RSC2, VPS36, NTR1, USA1, ARP9, UBX4, 
SGS1, RCE1, SIW14, ALG11, INP52, MGS1, KEX2, RFC3, CLA4, RCL1, 
DCP1, PET127, BUD21, NOP4, MEI5, SPT14, LEA1, PUF2, PRP4 

cell 
organization 
and biogenesis 
| AmiGO 

VPS8, ECM13, PET112, BRN1, ECM21, MRS5, SHE3, UBS1, DPB3, 
STP22, SGF29, BUD31, TUP1, SOL2/YCRX13W, PTC1, BUD30, FAP7, 
GLE1, CIS1, RAV2, MSS4, SAC7, LRS4, UTP7, SCS2, GLO3, COG3, 
ATG18, SMC2, RET2, CDH1, CKB1, PEX14, CSE1, DOC1, RAI1, YIP1, 
GCN5, VMA22, RPP1, LRP1, CDC12, ORC6, PEX28, KEL1, PEX18, FIS1, 
RHO3, MLP2, GEA1, CBF1, CCT5, TOR1, CDC11, MRS4, ORC3, SPA2, 
ENT4, ARP6, VPS34, RSC2, SFP1, VPS36, ARP9, STV1, SGS1, INP1, 
TRS130, FUS2, DYN3, HRB1, SIW14, INP52, DMA2, ATG2, CLA4, RCL1, 
WHI2, BUD21, SEY1, MYO2, NOP4, GYP5 

mRNA 
metabolism | 
AmiGO 

LSM2, AAR2, PRP5, DHH1, PAN2, CEG1, IME4, IRE1, LRP1, FIP1, NTR1, 
USA1, DCP1, LEA1, PUF2, PRP4 

trehalose 
catabolism | 
AmiGO 

NTH2, ATH1 

double-strand 
break repair via 
homologous 

SCC2, SAE2, LRP1, MEI5 
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recombination | 
AmiGO 
RNA 
processing | 
AmiGO 

LSM2, AAR2, PRP5, BUD31, SOL2/YCRX13W, PTC1, FAP7, UTP7, PAN2, 
CEG1, RAI1, RPP1, IRE1, LRP1, MRS1, FIP1, MRS4, NTR1, USA1, RCL1, 
PET127, BUD21, NOP4, LEA1, PRP4 

organelle 
organization 
and biogenesis 
| AmiGO 

PET112, BRN1, MRS5, SHE3, DPB3, SGF29, BUD31, TUP1, PTC1, BUD30, 
FAP7, CIS1, MSS4, SAC7, LRS4, UTP7, SCS2, ATG18, SMC2, CDH1, 
CKB1, PEX14, DOC1, RAI1, GCN5, RPP1, LRP1, CDC12, ORC6, PEX28, 
PEX18, FIS1, RHO3, GEA1, CBF1, CCT5, TOR1, CDC11, ORC3, SPA2, 
ENT4, ARP6, VPS34, RSC2, SFP1, ARP9, SGS1, INP1, DYN3, SIW14, 
DMA2, ATG2, CLA4, RCL1, WHI2, BUD21, MYO2, NOP4 

recombinational 
repair | AmiGO SCC2, SAE2, LRP1, MEI5 

cellular 
morphogenesis 
| AmiGO 

BUD31, BUD30, CDH1, CKB1, CDC12, KEL1, RHO3, TOR1, CDC11, SPA2, 
SFP1, FUS2, CLA4, MYO2 

morphogenesis 
| AmiGO 

BUD31, BUD30, CDH1, CKB1, CDC12, KEL1, RHO3, TOR1, CDC11, SPA2, 
SFP1, FUS2, CLA4, MYO2 

mitosis | 
AmiGO 

BRN1, SCC2, SMC2, CDH1, DOC1, ESP1, KEL1, CTF8, MAD3, SGS1, 
DMA2, CLA4, CCL1 

regulation of 
biological 
process | 
AmiGO 

FUS3, PPS1, DPB3, TUP1, PTC1, CLB3, DHH1, RAV2, LRS4, SCS2, BUR6, 
CDH1, PDR1, CKB1, CEG1, DOC1, ESP1, ORC6, KEL1, MLP2, MAD3, 
TOR1, ORC3, SPA2, VPS36, LEU3, FUS2, DMA2, MGS1, CAF120, CLA4, 
DCP1, CIN5, WHI2, YRM1, ELP4, CCL1, PUF2 

nucleobase, 
nucleoside, 
nucleotide and 
nucleic acid 
metabolism | 
AmiGO 

LSM2, AAR2, MUM2, TFC1, TDP1, PRP5, DPB3, SGF29, BUD31, TUP1, 
CSM1, SOL2/YCRX13W, MED2, PTC1, MSH5, DHH1, FAP7, PDC2, SCC2, 
LRS4, UTP7, SCS2, BUR6, GNA1, PDR1, CKB1, PAN2, CEG1, SAE2, IME4, 
TAN1, RAI1, TFC4, GCN5, RIM4, MED6, RPP1, IRE1, LRP1, YHR087W, 
ORC6, DCD1, MLP2, MPH1, MRS1, CBF1, FIP1, DBR1, MRS4, ORC3, 
ARP6, MSC3, RSC2, SFP1, VPS36, NTR1, LEU3, USA1, ARP9, MOT3, 
SGS1, IDP3, MGS1, ADE12, CAF120, RFC3, RCL1, DCP1, PET127, CIN5, 
BUD21, YRM1, SYC1, RET1, NOP4, ELP4, MEI5, LEA1, CCL1, PUF2, PRP4

mitotic cell 
cycle | AmiGO 

BRN1, PPS1, CLB3, SCC2, SMC2, CDH1, CKB1, DOC1, ESP1, KEL1, 
CTF8, MAD3, TOR1, SGS1, DMA2, CLA4, VHS3, CCL1 

M phase of 
mitotic cell 
cycle | AmiGO 

BRN1, SCC2, SMC2, CDH1, DOC1, ESP1, KEL1, CTF8, MAD3, SGS1, 
DMA2, CLA4, CCL1 

monovalent 
inorganic cation 
homeostasis | 
AmiGO 

RAV2, VMA22, TOK1, STV1, VHS3 

meiosis I | 
AmiGO CSM1, MSH5, LRS4, SAE2, RIM4, MSC3, MEI5 

premeiotic DNA 
synthesis | 
AmiGO 

MUM2, RIM4 

cell ion 
homeostasis | 
AmiGO 

CSG2, RAV2, SPF1, CKB1, VMA22, TOK1, STV1, MMT1, ATM1, VHS3 
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GO terms of cyclic genes identified by the scheme in (Spellman et al, 1998) only 

Gene 
Ontology 

term 
Genes annotated to the term 

response to 
pheromone 
during 
conjugation 
with cellular 
fusion | 
AmiGO 

FUS1, MFA1, STE2, MF(ALPHA)2, SAG1, STE3, MDG1, AGA1, RGA1, 
MF(ALPHA)1 

response to 
pheromone | 
AmiGO 

FUS1, MFA1, STE2, MF(ALPHA)2, SAG1, STE3, SST2, MDG1, AGA1, RGA1, 
MF(ALPHA)1 

transport | 
AmiGO 

SEO1, PET9, PHO89, ATG22, VCX1, PMP3, NPL3, SIT1, FTR1, NIC96, 
VAM7, ZRT1, TNA1, ARN1, HXT4, HXT1, SEC28, POR2, QDR2, TPM2, 
AVT1, CYC1, STE6, GAP1, MMP1, ERG3, FRE1, FKS1, SUR4, ATR1, NDI1, 
PHO84, SSO2, FAA4, PET8, PDR16, MCH4, UFE1, TRS33, VPH1, TPO4, 
FAA1, VMA4, FIT3, PDR12, SSO1, DIP5, KAR9, SAM3, MEP3 

establishment 
of localization 
| AmiGO 

SEO1, PET9, PHO89, ATG22, VCX1, PMP3, NPL3, SIT1, FTR1, NIC96, 
VAM7, ZRT1, TNA1, ARN1, HXT4, HXT1, SEC28, POR2, QDR2, TPM2, 
AVT1, CYC1, STE6, GAP1, MMP1, ERG3, FRE1, FKS1, SUR4, ATR1, NDI1, 
PHO84, SSO2, FAA4, PET8, PDR16, MCH4, UFE1, TRS33, VPH1, TPO4, 
FAA1, VMA4, FIT3, PDR12, SSO1, DIP5, KAR9, SAM3, MEP3 

localization | 
AmiGO 

SEO1, PET9, PHO89, ATG22, VCX1, PMP3, NPL3, SIT1, FTR1, NIC96, 
OLE1, VAM7, ZRT1, TNA1, ARN1, HXT4, HXT1, SEC28, POR2, QDR2, 
TPM2, AVT1, CYC1, STE6, GAP1, MMP1, ERG3, FRE1, FKS1, SUR4, ATR1, 
NDI1, PHO84, SSO2, FAA4, PET8, PDR16, MCH4, UFE1, TRS33, VPH1, 
TPO4, FAA1, VMA4, FIT3, PDR12, SSO1, DIP5, KAR9, SAM3, MEP3 

sexual 
reproduction | 
AmiGO 

FUS1, MFA1, STE2, MF(ALPHA)2, SCW4, SAG1, STE3, SST2, MDG1, 
AGA1, RGA1, MF(ALPHA)1 

conjugation 
with cellular 
fusion | 
AmiGO 

FUS1, MFA1, STE2, MF(ALPHA)2, SCW4, SAG1, STE3, SST2, MDG1, 
AGA1, RGA1, MF(ALPHA)1 

conjugation | 
AmiGO 

FUS1, MFA1, STE2, MF(ALPHA)2, SCW4, SAG1, STE3, SST2, MDG1, 
AGA1, RGA1, MF(ALPHA)1 

interaction 
between 
organisms | 
AmiGO 

FUS1, MFA1, STE2, MF(ALPHA)2, SCW4, SAG1, STE3, SST2, MDG1, 
AGA1, RGA1, MF(ALPHA)1 

amino acid 
catabolism | 
AmiGO 

ARO10, BAT1, PUT1, CAR2, GCV2, CAR1 

amine 
catabolism | 
AmiGO 

ARO10, BAT1, PUT1, CAR2, GCV2, CAR1 

nitrogen ARO10, BAT1, PUT1, CAR2, GCV2, CAR1 
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compound 
catabolism | 
AmiGO 
ion transport | 
AmiGO 

PHO89, VCX1, PMP3, SIT1, FTR1, ZRT1, ARN1, POR2, FRE1, PHO84, 
MEP3 

fatty acid 
biosynthesis | 
AmiGO 

HTD2, ELO1, FAS1, SUR4 

sulfur amino 
acid transport 
| AmiGO 

MMP1, PET8, SAM3 

organic acid 
metabolism | 
AmiGO 

ARO10, OLE1, MET13, ASN2, HTD2, ARO9, BAT1, YIL168W, ELO1, FAS1, 
PUT1, SUR4, CAR2, GCV2, IDH1, LYS9, ARG1, PDR12, CAR1, MET16 

amine 
transport | 
AmiGO 

AVT1, GAP1, MMP1, PET8, TPO4, DIP5, SAM3 

carboxylic 
acid 
metabolism | 
AmiGO 

ARO10, OLE1, MET13, ASN2, HTD2, ARO9, BAT1, YIL168W, ELO1, FAS1, 
PUT1, SUR4, CAR2, GCV2, IDH1, LYS9, ARG1, PDR12, CAR1, MET16 

reproductive 
cellular 
physiological 
process | 
AmiGO 

FUS1, MFA1, STE2, MF(ALPHA)2, SCW4, SAG1, STE3, SST2, MDG1, 
AGA1, RGA1, SSP2, MUM3, SPS4, MF(ALPHA)1 

reproductive 
physiological 
process | 
AmiGO 

FUS1, MFA1, STE2, MF(ALPHA)2, SCW4, SAG1, STE3, SST2, MDG1, 
AGA1, RGA1, SSP2, MUM3, SPS4, MF(ALPHA)1 

organic acid 
transport | 
AmiGO 

AVT1, GAP1, MMP1, PET8, PDR12, DIP5, SAM3 

di-, tri-valent 
inorganic 
cation 
transport | 
AmiGO 

VCX1, SIT1, FTR1, ZRT1, ARN1, FRE1, PHO84 

amino acid 
transport | 
AmiGO 

AVT1, GAP1, MMP1, PET8, DIP5, SAM3 

sterol 
metabolism | 
AmiGO 

YEH1, ERG3, ERG27, ERG2, CYB5, PDR16 

lipid 
metabolism | 
AmiGO 

OLE1, HTD2, ELO1, FAS1, YEH1, ERG3, ERG27, SUR4, ERG2, FAA4, 
CYB5, PSD1, PDR16, IZH4, MUM3, FAA1 
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GO terms of cyclic genes identified by the scheme in (Lu et al, 2004) only. 
Gene Ontology 

term Genes annotated to the term 

glycoprotein 
biosynthesis | AmiGO MNT2, MNN5, MNN4, KTR2, YEH2, SEC59, MNT4, ALG5 

glycoprotein 
metabolism | AmiGO MNT2, MNN5, MNN4, KTR2, YEH2, SEC59, MNT4, ALG5 

double-strand break 
repair via homologous 
recombination | 
AmiGO 

RAD57, SCC4, YKU80, RAD50 

response to 
endogenous stimulus 
| AmiGO 

PIN4, RAD57, NSE3, SCC4, MLH2, PSY3, NSE5, YKU80, RAD50, 
AZF1, RFC1, REV1, SKS1 

recombinational repair 
| AmiGO RAD57, SCC4, YKU80, RAD50 

biopolymer 
glycosylation | AmiGO MNT2, MNN5, MNN4, KTR2, SEC59, MNT4, ALG5 

protein amino acid 
glycosylation | AmiGO MNT2, MNN5, MNN4, KTR2, SEC59, MNT4, ALG5 

mitochondrial fission | 
AmiGO MDV1, DNM1 

organelle fission | 
AmiGO MDV1, DNM1 

protein targeting to 
peroxisome | AmiGO PEX5, PEX12, PEX25 

mitochondrial genome 
maintenance | AmiGO RIM2, MMF1, MDV1, ABF2 

DNA repair | AmiGO RAD57, NSE3, SCC4, MLH2, PSY3, NSE5, YKU80, RAD50, RFC1, 
REV1 

protein amino acid O-
linked glycosylation | 
AmiGO 

MNT2, MNN4, MNT4 

response to DNA 
damage stimulus | 
AmiGO 

PIN4, RAD57, NSE3, SCC4, MLH2, PSY3, NSE5, YKU80, RAD50, 
RFC1, REV1 

protein import into 
peroxisome matrix | 
AmiGO 

PEX12, PEX25 

response to 
carbohydrate stimulus 
| AmiGO 

AZF1, SKS1 

response to organic 
substance | AmiGO AZF1, SKS1 

reproductive cellular 
physiological process 
| AmiGO 

SWF1, EMI2, SPO73, SPO74, KAR2, CSN12, SPO75, FAR10, TUB1, 
FAR8, PRM4 
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reproductive 
physiological process 
| AmiGO 

SWF1, EMI2, SPO73, SPO74, KAR2, CSN12, SPO75, FAR10, TUB1, 
FAR8, PRM4 

response to stimulus | 
AmiGO 

PIN4, KIN82, RAD57, PLP1, NSE3, SCC4, QDR1, KAR2, CSN12, 
MSN4, MNN4, MLH2, FAR10, PSY3, NSE5, FAR8, YKU80, NST1, 
ZWF1, RAD50, AZF1, RFC1, REV1, SKS1 

peroxisome 
organization and 
biogenesis | AmiGO 

PEX5, VPS1, PEX12, PEX25 

cell cycle arrest in 
response to 
pheromone | AmiGO 

FAR10, FAR8 

protein amino acid 
palmitoylation | 
AmiGO 

SWF1, ERF2 

protein palmitoylation 
| AmiGO SWF1, ERF2 

organelle organization 
and biogenesis | 
AmiGO 

UTP20, SMY2, RIM2, TAF5, LSB5, RAD57, SWF1, PEX5, UTP4, 
ESC2, HPA3, MMF1, ICE2, KAR2, NET1, MDV1, SWI3, NUP120, 
VPS1, SET3, LAS1, RPF2, DNM1, YPT7, TUB1, UTP14, QRI8, 
PEX12, ABF2, YKU80, VAC7, RAD50, RIO1, RRS1, PEX25, RRP9, 
RHO1 
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