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Cooperative communications is a new communication paradigm in which dif-

ferent terminals in the wireless network share their antennas and resources for dis-

tributed transmission and processing. Recent studies have shown that cooperative

communications can yield significant performance improvement due to spatial di-

versity gains. The theory of cooperative communications is however still immature

to fully understand its broader impacts on the design of future wireless networks.

This thesis contributes to the advancement of cooperative communications by de-

veloping and analyzing cooperation protocols at different network levels, with the

goal to provide significant improvements in signal reliability, coverage area, net-

work throughput, and energy efficiency with respect to other existing alternatives.

We first propose a family of cooperative protocols for multi-node cooperative

communications. We demonstrate that full diversity gains is achieved, which yields



a significant improvement in the error performance. Based on the derived symbol-

error-rate expressions, we characterize the optimal power allocation strategy among

the relays and the source to further improve the performance of the system.

We develop distributed relay assignment protocols, and analyze their outage

performance. We derive lower bounds on any relay-assignment scheme to bench-

mark the performance of our proposed schemes. We study the impact of our

proposed protocols on increasing the coverage area of cellular networks without

increasing the transmit power or adding extra base-stations.

We demonstrate that the gains promised by cooperation can be leveraged to

the multiple-access layer. We propose the deployment of cognitive relays to utilize

the periods of silence of the terminals to enable cooperation. This alleviates the

spectral inefficiency problems inherent in conventional cooperation protocols. Our

results reveal significant improvements in the maximum stable throughput region

and delay performance of the network.

Finally, an analytical framework for studying the energy efficiency of cooper-

ation in wireless networks is presented. This framework considers the overhead

in the processing and receiving powers introduced by cooperation. The results

characterize the regions where cooperation is more energy efficient than direct

transmission. The results also provide guidelines for the design of power allocation

strategies, relay-assignment algorithms and the selection of the optimal number of

relays to help the source.
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Chapter 1

Introduction

1.1 The Wireless Channel

Although the study of wireless communications and networking has started many

decades ago and resulted in a large body of work, there is still an increasing thrill

from the research community in further exploring this field. This is attributed

to the proliferation of wireless applications with high demands in terms of signal

quality, data rates, and coverage. Various wireless devices are becoming an in-

tegral part of our everyday life. Many emerging applications require a collection

of freely and probably dynamic wireless nodes to communicate with each other

without the existence of an infrastructure. The main challenge facing designers in

achieving the demands of these future wireless applications is the unpredictability

associated with the wireless channel. Wireless channels feature fading, shadowing,

interference, and other impairments that affect the performance of communica-

tions. Another major challenge is the scarcity of the two fundamental resources

for communications, namely, energy and bandwidth.

Among the most severe impairments to wireless communications is signal fad-
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ing. Fading results in random fluctuations in the amplitude of the received signals

that can result in the received signal amplitude being very low to the extent that

the receiver may not be able to distinguish the signal from thermal noise [1], [2].

Fading is the result of the random scattering from reflectors with different at-

tenuation coefficients that results in multiple copies of the signal arriving at the

receiver with different gains, phase shifts and delays. These multiple signal repli-

cas can add together in constructive or destructive ways resulting in the fading

phenomenon [1], [2].

If we denote the transmitted signal by x(t) and the received signal by y(t), we

can model the multipath channel model as follows

y(t) =
L∑

i=1

hi(t)x(t − τi(t)) + n(t), (1.1)

where hi(t) is the channel coefficient for the i-th path at time t, τi(t) is the cor-

responding path delay, L is the number of paths, and n(t) is the additive noise.

This model implicitly assumes the channel to be linear. The channel delay spread

is defined as the time difference between the first received path and the last re-

ceived path, i.e., max
i,j∈{1,...,L}

τi − τj [1], [2]. If the channel delay spread is very small

compared to the symbol duration, then we can consider that all of the paths are

received simultaneously and the corresponding channel gain is the sum of the path

gains in (1.1), i.e.,

y(t) = x(t − τ)

L∑

i=1

hi(t) + n(t). (1.2)

In the frequency domain, this is equivalent to looking at the channel in the

time domain as a single impulse, which will have a flat spectrum in the frequency

domain. The channel is said to be a flat fading channel under such scenario because

all of the signal components in the frequency domain are affected by the same fade

value. Furthermore, if the number of paths L are large enough, we can use the
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central limit theorem to approximate the distribution of the channel gain by a

Gaussian distribution. If the channel gains are zero-mean, e.g. there is no line of

sight, then this fading scenario is known as Rayleigh flat fading [1], [2].

1.1.1 Performance Characterization of Fading Channels

To better understand the severe effects of fading on the performance of wireless

communication systems, we are going to consider the performance of a simple chan-

nel under two scenarios: additive-white-Gaussian noise (AWGN), and Rayleigh flat

fading. We will illustrate the probability of error performance of transmitting bi-

nary phase-shift-keying (BPSK) under these two scenarios.

Consider an AWGN channel modeled as follows

y = hx + n, (1.3)

where h is a deterministic known channel gain at the receiver, x is the transmit-

ted binary signal that takes values +
√

P or −
√

P , and the noise n is a circular

symmetric zero-mean complex Gaussian random variable with variance No. The

probability of error for such a communication system is given by [1], [2]

Pe = Q
(√

2|h|2SNR
)

(1.4)

where SNR = P
No

, and Q(x) is the complementary distribution function (cdf) of a

zero-mean unit variance Gaussian random variable. It is known that Q(x) decays

exponentially with x as [2]

Q(x) ≤ exp(−x2

2
). (1.5)

For the Rayleigh flat fading case, h is a random variable that follows a circular

symmetric zero mean complex Gaussian process. Assuming the channel fading

3
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Figure 1.1: Probability of error performance for a BPSK system for AWGN and

fading channels.

to have variance one, and that the receiver has perfect channel state information

(coherent detection), the probability of error for such scenario can be shown to be

equal to [1], [2]

Pe =
1

2

(
1 −

√
SNR

1 + SNR

)
≃ 1

4SNR
, (1.6)

where the approximation is tight at high SNR. From the above, we can see that

while the error performance decays exponentially fast with the signal-to-noise ratio

for AWGN channels, it decays only with the inverse of the SNR for the Rayleigh

fading channel. This shows that the performance of wireless channels under fad-

ing is very poor. Figure 1.1 depicts the probability of error for BPSK signalling

discussed above under AWGN and Rayleigh flat fading. It is clear from the figure

the severe losses in the performance due to fading. This emphasizes the fact that

fading is one of the major challenges facing wireless communications systems.
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1.2 Combating Channel Fading: Diversity

An effective and well established technique to combat fading is diversity. Diversity

can be defined as any technique by which multiple copies of the signal are deliv-

ered to the receiver via independently fading channels [2]. The diversity order of a

system can be loosely defined as the number of independent channels over which

information is being sent. There are three physical domains in which we can gener-

ate independent channels: time, frequency and space. The use of spatial diversity

has gained a lot of interest in the recent years as time diversity, e.g. channel coding

and interleaving, can result in excessive system delays, and frequency diversity can

result in high bandwidth losses. Diversity order was rigorously defined in [2] as the

rate of decay of the probability of error with the SNR when using log− log scale,

i.e.,

Diversity gain = − lim
SNR→∞

log Pe

log SNR
. (1.7)

For example, for the flat fading channel in (1.6) the diversity order is one.

To achieve spatial diversity, multiple-input-multiple-output (MIMO) systems

have been introduced in the last decade, and a large body of work has been estab-

lished to study the performance of these systems [3,4]. A MIMO system is simply

one where both the transmitter and the receiver have multiple antennas. This im-

plies that the transmitter has the capability of transmitting a different signal from

each antenna and the receiver has as input different signals from each antenna.

The signal present at each receive antenna is the combination of signals from the

transmit antennas after each having traveled through their different fading chan-

nels. The MIMO configuration can be exploited through different designs that

differ, among other factors, in the particular form of performance improvement

that it is intended to obtain. One of these possible design approaches may aim at
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obtaining array gain, which is an increase in average received SNR by processing

the signals at each transmit and receive antenna in such a way that the received

signals are coherently combined. A similar technique can be applied to achieve

interference reduction by shaping the energy emitted to each receiver in such a

way that most of the energy is useful and not interference.

MIMO systems can provide performance improvement through diversity gain.

For example, if the number of antennas at the transmitter and receiver are M and

N , respectively, and assuming independent fading between all antenna element

pairs, the probability of error at the receiver side can be shown to decay with the

SNR as SNR−MN . Code design to achieve diversity in flat fading MIMO systems,

also known as space-time codes, has been the focus of many researchers in the

last decade [5–7]. The analysis and design of codes for MIMO systems was not

limited to the flat fading scenario, but further extended to frequency selective

fading channel models. Orthogonal-frequency-division-multiplexing (OFDM) is

usually utilized with such frequency selective fading channels to overcome the

intersymbol interference in the channel and reduce the complexity of equalizer

design at the receiver side [8]. Space-frequency and space-time-frequency codes

were designed to achieve diversity in space, time, and frequency in MIMO-OFDM

systems [9–12].

The gains of MIMO systems in terms of increasing the channel capacity, higher

throughput, improved error performance, and better energy efficiency are well

established by now. In practice, however, installing multiple antennas on a device

might not be feasible because of space or cost limitations. Besides, to achieve full

diversity gains in MIMO, there must be sufficient separation between the antenna

elements at the transmitter and receiver sides, which is difficult to achieve in

6



practice. This will result in the fades of the channels between different antenna

pairs to be correlated which can reduce the diversity gains of the system [13–16].

To avoid such problems in MIMO, cooperative diversity has been recently in-

troduced [17–23]. In cooperation, different nodes in the network can share their

antennas and resources for distributed transmission and processing. In other words,

cooperative communications benefit from the broadcast nature of the wireless chan-

nel to form a distributed MIMO system via relaying. In the following, we further

discuss the relay channel and the new term cooperative diversity.

1.3 Cooperative Diversity

The classical relay channel introduced by Van der Meulen [24] models a three

terminal communication channel. A relay channel contains a terminal, called a

relay, that listens to the signal transmitted by the source, processes it, and then

transmits it to the destination to improve the system performance. Later, Cover

and El Gamal [25] developed lower and upper bounds on the channel capacity

for specific non-faded relay channel models. The lower and upper bounds do not

coincide in general except for some special cases as in the degraded relay channel

[26]. Later, several works have studied the capacity of the relay channels and

developed coding strategies that can achieve the ergodic capacity of the channel

under certain scenarios, see [27] and the references there in. Capacity of multiple-

access relay channels was studied in [28], and capacity theorems for transmitter

receiver cooperation was developed in [29].

User-cooperation has been first introduced and studied in [18,19]. In these two-

part paper, a specific cooperation model was developed for code-division-multiple-

access (CDMA) systems in which each two users in the system are coupled to
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help each other. The two users use orthogonal codes to avoid multiple-access in-

terference. Assuming the knowledge of channel phases at the transmitter sides,

increased data rates for the cooperating users have been demonstrated. In an-

other work [30], error-control-coding was incorporated into cooperation and this

technique was termed as coded-cooperation.

In [22], the term cooperative diversity was introduced. Several cooperation

protocols were presented and their outage capacity was analyzed. Outage capacity

can be defined as the probability that the mutual information of a channel falls

below a certain required rate [31]. Half-duplex constraints were assumed, meaning

that the relay can not transmit and receive at the same time. Two main categories

of cooperative diversity protocols were proposed: fixed relaying and adaptive re-

laying.

In fixed relaying, the channel resources are divided between the source and

the relay in a fixed (deterministic) manner. Cooperation is generally done in two

phases. In the first phase the transmitter sends a message and both the relay and

the destination try to receive. In the second phase, the relay transmits a processed

version of its received message to the destination. The destination then combines

both copies from the source and the relay to form a detection statistic. The

processing at the relay differs according to the employed protocol. In amplify-and-

forward, the relay simply scales the received version and transmits an amplified

version of it to the destination. Note that the amplified version is noisy because of

the noise added at the relay. Despite of the noise propagation, it was shown in [22]

that amplify-and-forward can achieve full diversity gain equal to two, the number of

cooperating nodes in this case. Another possibility of processing at the relay node

is for the relay to decode the received signal, re-encodes it and then retransmits
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it to the receiver. This kind of relaying is termed as decode-and-forward. In [22],

decode-and-forward requires the correct decoding at the relay node, otherwise the

signal is considered decoded in error at the destination. It is clear that for such a

scheme the diversity achieved is one only, because the performance of the system

is limited by the worst link from the source-relay and source-destination.

Fixed relaying has the advantage of easy implementation, but the disadvantage

of low bandwidth efficiency. This is because half of the channel resources are al-

located to the relay for transmission, which reduces the overall rate. This is true

especially when the source-destination channel is not very bad, because under such

scenario a high percentage from the packets transmitted by the source to the des-

tination can be received correctly by the destination and the relays transmissions

are wasted. To overcome this problem, [22] proposed adaptive relaying protocols.

The proposed adaptive relaying protocols comprise two strategies, selective and

incremental relaying.

In selective relaying, the relay and the source are assumed to know the fade of

the channel between them, and if the signal-to-noise ratio of the signal received at

the relay exceeds a certain threshold, the relay performs decode-and-forward on

the message. On the other hand, if the channel between the source and the relay

falls below the threshold, the relay idles. Furthermore, assuming reciprocity in

the channel, the source also knows that the relay idles, and the source transmits

a copy of its signal to the destination instead. Selection relaying improves upon

the performance of decode-and-forward, as the signal-to-noise ratio threshold at

the relay can be designed to overcome the inherent problem in decode-and-forward

that the relay is required to decode correctly. Selection relaying was shown in [22]

to achieve diversity gain two.
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For the second adaptive relaying protocol proposed in [22], namely, incremental

relaying, it is assumed that there is a feedback channel from the destination to the

relay. The destination feedbacks an acknowledgement to the relay if it was able

to receive the source’s message correctly in the first transmission phase, and the

relay does not need to transmit then. It was shown in [22], that this protocol has

the best spectral efficiency among the proposed protocols because the relay does

not need to transmit always, and hence, the second transmission phase becomes

opportunistic depending on the channel fade of the direct channel between the

source and the destination. Nevertheless, incremental relaying achieves diversity

order two [22]. In [23], distributed space-time coding was proposed in which multi-

ple relays receive the source’s message and performs decode-and-forward with each

relay assigned a unique codeword which is a column from a space-time code. The

relays need to be synchronized, and the destination combines the signals received

from the relays simultaneously in the second phase. Such a scheme was shown to

provide full diversity gain equal to the number of cooperating terminals, and it

still requires only two phases for transmission. Several works followed to study the

implementation and performance of practical distributed space-time codes [32–36].

The symbol-error-rate performance for Rayleigh flat fading single-relay chan-

nel was analyzed in [37,38] for both decode-and-forward and amplify-and-forward

protocols, and in [39] for amplify-and-forward relaying. For both relaying strate-

gies, exact symbol-error-rate expressions and outer bounds for the performance

were derived. Furthermore, optimal power allocation between the source and the

relay was studied in [37, 38], and it was shown that equal power allocation is not

optimal in general. However, if the source-relay channel condition is good, then

equal power allocation is close to optimal.
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1.4 Dissertation Outline

From the discussion above, cooperative communications is a new communication

paradigm that allows different users or nodes in a wireless network to share their

resources and antennas for distributed transmission and/or processing. This the-

sis develops and analyzes a cross-layer framework for utilizing the cooperative

communication paradigm in wireless networks with the goal to provide significant

improvements in signal reliability, coverage area, network throughput, and energy

efficiency with respect to other existing alternatives. We envision that cooperative

communications will result in a paradigm shift in existing wireless network, a shift

that will impact the design of future ad-hoc networks, sensor networks, as well as

next generation cellular networks. The rest of the thesis is organized as follows.

1.4.1 Multi-node Cooperative Communications (Chapter

2)

Previous work on multiple relays cooperative networks [40] has only considered

protocols in which each relay node needs to combine signals from all of the pre-

vious transmissions to achieve full diversity. In this thesis, we consider a more

general setup and study a family of cooperative protocols in which each relay can

combine an arbitrary subset from the previous transmission. We characterize the

exact symbol-error-rate expressions for this family of protocols, besides deriving

approximations for the performance at high SNR. We demonstrate that it is suf-

ficient to combine signals only from the previous relay and the source in order

to asymptotically achieve the same performance as combining all of the previous

transmissions. Moreover, we characterize the optimal power allocation strategy
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among the relays and the source to further improve the performance of the coop-

eration protocol [41–43].

1.4.2 Relay-Assignment Protocols for Coverage Extension

(Chapter 3)

One important application of cooperative communications is to extend the cover-

age area in wireless networks without increasing infrastructure. However, a crucial

challenge in implementing cooperation protocols is how to select relay-source pairs.

In this thesis, we address this problem based on the knowledge of the users spatial

distribution which determines the channel statistics. We consider two scenarios at

the destination node, when the receiver uses maximal-ratio-combiner (MRC) and

when no MRC is used. First we characterize the optimal relay location to mini-

mize the outage probability, and we derive lower bounds on any relay-assignment

scheme. Then, we develop and analyze the performance of two schemes: a dis-

tributed nearest neighbor relay-assignment protocol in which users can act as re-

lays, and fixed-relay assignment where fixed relays are deployed in the network to

help the users forward their data. The outage probability of these two schemes

are derived, and the results reveal a significant gain in coverage area over direct-

transmission under the same bandwidth efficiency and average transmitted power.

The results also show that with increasing the cell-radius, the gap between the

performance of direct and cooperative transmission diminishes [44–46].

1.4.3 Cognitive Cooperative Multiple Access (Chapter 4)

We propose a novel cognitive multiple-access strategy in the presence of a coop-

erating relay. Exploiting an important phenomenon in wireless networks, source
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burstiness, the cognitive relay utilizes the periods of silence of the terminals to

enable cooperation. Utilizing the unused channel resources in cooperation adds

new dimensions to the problem as it alleviates the spectral inefficiency problems

inherent in conventional cooperation protocols. Two protocols are developed to

implement the proposed multiple-access strategy. The maximum stable through-

put region and the delay performance of the proposed protocols are characterized.

The results reveal that the proposed protocols provide significant performance

gains over conventional relaying strategies as selection and incremental relaying,

specially at high spectral efficiency regimes. The rationale is that the lossless band-

width property of the proposed protocols results in a graceful degradation in the

maximum stable throughput with increasing the required rate of communication.

On the other hand, conventional relaying strategies suffer from catastrophic per-

formance degradation because of their inherent bandwidth inefficiency that results

from allocating specific channel resources for cooperation at the relay. Moreover,

the analysis reveals an interesting result that the throughput region of the proposed

strategy is a subset of its maximum stable throughput region, which is different

from random-access ALOHA where both regions are conjectured to be identical.

The proposed protocol provides a new view to the utilization of the unused channel

resources; besides sharing the unused spectrum with cognitive secondary users, we

show that the unused channel resources could be utilized to enhance the original

system performance via cooperation [47–49].
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1.4.4 Energy Efficiency of Cooperative Communications

(Chapter 5)

An analytical framework for studying the energy efficiency of cooperation in wire-

less networks is presented. In this framework, we consider the overhead in the

processing and receiving power introduced by cooperation. By taking into consid-

eration such overhead, we study the tradeoff in the gains provided by cooperation

in the form of a reduction in the transmit power, due to the spatial diversity gain,

and the increase in the receiving and processing power that results from the opera-

tion of the relay. This tradeoff is shown to depend on many parameters such as the

values of the receive and processing powers, the application, the power amplifier

loss, and several other factors. The results reveal an interesting threshold behavior;

below a certain threshold distance between the source and destination direct trans-

mission becomes more energy efficient than cooperation. The results also provide

guidelines for the design of power allocation strategies, relay-assignment algorithms

and the selection of the optimal number of relays to help the source [50, 51].
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Chapter 2

Multinode Cooperative

Communications

As discussed in Chapter 1, cooperative communications allows nodes in the network

to share their antennas and resources for distributed transmission and processing.

The goal is to combat channel fading by generating independent paths between the

source and the destination. The question that arises is whether such a distributed

MIMO system can achieve the same diversity gains as MIMO systems where all the

antennas are located at the same place and have access to the source information.

The non-identical statistics of the channels between different pairs of nodes in the

system renders the problem more challenging to analyze.

Furthermore, if multiple nodes are assigned to help a source node, several

scenarios to implement cooperation between the nodes arise. For instance, there are

different scenarios for how each node processes transmissions from previous nodes.

Previous work on multi-node cooperation [40] considered one possible scenario in

which each node forms a decision statistic based on all previous transmissions.

How other scenarios compare to such a complicated scheme is not clear.
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In this chapter we address the multinode cooperation problem, and we seek

answers for the above posed questions. We start by proposing a class of cooperative

decode-and-forward protocols for arbitrary N -relay wireless networks, in which

each relay can combine the signal received from the source along with one or more

of the signals transmitted by previous relays. We consider selective relaying in

which each receiving relay can judge on the quality of the receiving signal and

decide whether to forward the received signal or not, similar treatment foe the

amplify-and-forward multi-relay problem is considered in [52]. In our proposed

protocols, we refer to the scenario in which each relay combines the signals received

from the previous m relays along with that from the source as C(m), where 1 ≤

m ≤ N − 1. Note that the multihop diversity scheme introduced in [40] is similar

to the scheme C(N − 1) we are considering without selective relaying. We provide

symbol-error-rate performance analysis for the class of proposed protocols. Finally,

we analyze the optimal power allocation among the cooperating nodes assuming a

fixed average power available for transmission.

2.1 System Model and Protocol Description

We consider an arbitrary N -relay wireless network, where information is to be

transmitted from a source to a destination. Due to the broadcast nature of the

wireless channel, some relays can overhear the transmitted information and thus

can cooperate with the source to send its data. The wireless link between any

two nodes in the network is modeled as a Rayleigh fading narrowband channel

with additive white Gaussian noise (AWGN). The channel fades for different links

are assumed to be statistically independent. This is a reasonable assumption as

the relays are usually spatially well separated. The additive noise at all receiving
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terminals is modeled as zero-mean complex Gaussian random variables with vari-

ance No. For medium access, the relays are assumed to transmit over orthogonal

channels, thus no inter-relay interference is considered in the signal model.

The cooperation strategy we are considering employs a selective decode-and-

forward protocol at the relaying nodes. Each relay can measure the received SNR

and forwards the received signal if the SNR is higher than some threshold. For

mathematical tractability of symbol-error-rate calculations we assume the relays

can judge whether the received symbols are decoded correctly or not and only

forwards the signal if decoded correctly otherwise remains idle. This assumption

will be shown via simulations to be very close to the performance of the practical

scenario of comparing the received SNR to a threshold, specially when the relays

operate in a high SNR regime, as for example when the relays are selected close

to the source node. The rationale behind this is that when the relays are closer

to the source node, or more generally operate in a high SNR regime, the channel

fading (outage event defined in [53]) becomes the dominant source of error [53],

and hence measuring the received SNR gives a very good judgement on whether

the received symbol can be decoded correctly or not with high probability.

Various scenarios for the cooperation among the relays can be implemented.

A general cooperation scenario, denoted as C(m) (1 ≤ m ≤ N − 1), can be im-

plemented in which each relay combines the signals received from the m previous

relays along with that received from the source. The simplest scenario C(1) among

the class of proposed protocols is depicted in Fig. 2.1, in which each relay combines

the signal received from the previous relay and the source. The most complicated

scenario C(N − 1) is depicted in Fig. 2.2, in which each relay combines the signals

received from all of the previous relays along with that from the source, and thus
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Figure 2.1: Illustrating cooperation under C(1): The (k +1)-th relay combines the

signals received from the source and the k-th relay.

is similar to the scenario considered in [40]. This is the most sophisticated sce-

nario and should provide the best performance in the class of proposed protocols

{C(m)}N−1
m=1 as in this case each relay utilizes the information from all previous

phases of the protocol. In all of the considered cooperation scenarios, the destina-

tion coherently combines the signals received from the source and all of the relays.

In the sequel, we focus on presenting the system model for a general cooperative

scheme C(m) for any 1 ≤ m ≤ N − 1.

For a general scheme C(m), 1 ≤ m ≤ N −1, each relay decodes the information

after combining the signals received from the source and the previous m relays.

The cooperation protocol has (N + 1) Phases. In Phase 1, the source transmits

the information, and the received signal at the destination and the i-th relay can

be modeled respectively as

ys,d =
√

P0hs,dx + ns,d, ys,li =
√

P0hs,lix + ns,li, 1 ≤ i ≤ N, (2.1)

where P0 is the power transmitted at the source, x is the transmitted symbol with
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unit power, hs,d ∼ CN(0, σ2
s,d) and hs,li ∼ CN(0, σ2

s,li
) are the channel fading

coefficients between the source and the destination, and i-th relay, respectively,

and CN(α, σ2) denotes a circularly symmetric complex Gaussian random variable

with mean α and variance σ2. The terms ns,d and ns,li denote the AWGN. In Phase

2, if the first relay correctly decodes, it forwards the decoded symbol with power

P1 to the destination, otherwise it remains idle.

Generally in Phase k, 2 ≤ k ≤ N , the k-th relay combines the received signals

from the source and the previous min{m, k − 1} relays using a maximal-ratio-

combiner (MRC) as follows

ylk =
√

P0h
∗
s,lk

ys,lk +

k−1∑

i=max(1,k−m)

√
P̂ih

∗
li,lk

yli,lk , (2.2)

where hli,lk ∼ CN(0, σ2
li,lk

) is the channel fading coefficient between the i-th and

the k-th relays. In (2.2), yli,lk denotes the signal received at the k-th relay from

the i-th relay, and can be modeled as

yli,lk =

√
P̂ihli,lkx + nli,lk , (2.3)

where P̂i is the power transmitted at relay i in Phase (i + 1), and P̂i = Pi if relay

i correctly decodes the transmitted symbol, otherwise P̂i = 0. The k-th relay uses

ylk in (2.2) as the detection statistics. If relay k decodes correctly it transmits

with power P̂l = Pl in Phase (k + 1), otherwise it remains idle. Finally, in Phase

(N + 1), the destination coherently combines all of the received signals using an

MRC as follows

yd =
√

P0h
∗
s,dys,d +

N∑

i=1

√
P̂ih

∗
li,d

yli,d. (2.4)

In all the cooperation scenarios considered, the total transmitted power is fixed as

P0 +
∑N

i=1 Pi = P .
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Figure 2.2: Illustrating cooperation under C(N −1): The (k+1)-th relay combines

the signals received from the source and all of the previous relays.

2.2 Exact SER Performance Analysis

In this section, we present SER performance analysis for a general cooperative

scheme C(m) for any 1 ≤ m ≤ N − 1. Exact SER expressions of this general

scheme is provided for systems utilizing either M-PSK or M-QAM modulation.

First, we introduce some terminologies that will be used throughout the anal-

ysis. For a given transmission, each relay can be in one of two states: either it

decoded correctly or not. Let us define a 1×n, 1 ≤ n ≤ N , vector Sn to represent

the states of the first n relays for a given transmission. The k-th entry of the vector

Sn denotes the state of the k-th relay as follows

Sn[k] =





1 if relay k correctly decodes,

0 otherwise,

1 ≤ k ≤ n. (2.5)

Since the decimal value of the binary vector Sn can take on values from 0 to 2n−1,

for convenience we denote the state of the network by an integer decimal number.
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Let Bx,n = (Bx,n[1], Bx,n[2], · · · , Bx,n[n]) be the 1 × n binary representation of a

decimal number x, with Bx,n[1] being the most significant bit. So, SN = Bx,N

indicates that the k-th relay, 1 ≤ k ≤ N , is in state SN [k] = Bx,N [k].

2.2.1 Exact SER for General Cooperation Scheme

We consider a general cooperation scheme C(m), 1 ≤ m ≤ N − 1, in which the

k-th (1 ≤ k ≤ N) relay coherently combines the signals received from the source

along with the signals received from the previous min{m, k − 1} relays. The state

of each relay in this scheme depends on the states of the previous m relays, i.e.,

whether these relays decoded correctly or not. This is due to the fact that the

number of signals received at each relay depends on the number of relays that

decoded correctly from the previous m relays. Hence, the joint probability of the

states is given by

P (SN) = P (SN [1])P (SN [2] | SN [1]) · · · P (SN [N ] | SN [N − 1], · · · , SN [N − m]).

(2.6)

Conditioning on the network state, which can take 2N values, the probability of

error at the destination given the channel state information (CSI) can be calculated

using the law of total probability as follows

Pe|CSI =

2N−1∑

i=0

Pr(e |SN = Bi,N)Pr(SN = Bi,N), (2.7)

where e denotes the event that the destination decoded in error. The summation

in the above equation is over all possible states of the network.

Now, let us compute the terms in (2.7). The destination collects the copies of

the signal transmitted in the previous phases using a MRC (2.4). The resulting

21



SNR at the destination can be computed as

SNRd =
P0 | hs,d |2 +

∑N
j=1 PjBi,N [j] | hlj ,d |2
No

, (2.8)

where Bi,N [j] takes value 1 or 0 and determines whether the j-th relay has decoded

correctly or not. The k-th relay coherently combines the signals received from the

source and the previous m relays. The resulting SNR can be calculated as

SNRm
lk

=
P0 | hs,lk |2 +

∑k−1
j=max(1,k−m) PjBi,N [j] | hlj ,lk |2

No
. (2.9)

If M-PSK modulation is used in the system, with instantaneous SNR γ, the SER

given the channel state information is given by [54]

P PSK
CSI = ΨPSK(γ) ,

1

π

∫ (M−1)π/M

0

exp

(
− bPSKγ

sin2(θ)

)
dθ, (2.10)

where bPSK = sin2(π/M). If M-QAM (M = 2k with k even) modulation is used

in the system, the corresponding conditional SER can be expressed as [54]

P QAM
CSI = ΨQAM(γ) , 4CQ(

√
bQAMγ) − 4C2Q2(

√
bQAMγ), (2.11)

in which C = 1 − 1√
M

, bQAM = 3/(M − 1), and Q(x) is the complementary

distribution function (CDF) of the Gaussian distribution, and is defined as Q(x) =

1√
2π

∫∞
x

exp(− t2

2
)dt.

Let us focus on computing the SER in the case of M-PSK modulation, and the

same procedure is applicable for the case of M-QAM modulation. From (2.8), and

for a given network state SN = Bi,N , the conditional SER at the destination can

be computed as

Pr(e|SN = Bi,N) = ΨPSK (SNRd) . (2.12)

Denote the conditional probability that the k-th relay is in state Bi,N [k] given

the states of the previous m relays by P m
k,i. From (2.9), this probability can be
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computed as follows

P m
k,i ,Pr(SN [k] = Bi,N [k] |SN [k − 1] = Bi,N [k − 1], · · · , SN [k − m] = Bi,N [k − m])

=





ΨPSK(SNRm
lk

), if Bi,N [k] = 0,

1 − ΨPSK(SNRm
lk

), if Bi,N [k] = 1.

(2.13)

To compute the average SER, we need to average the probability in (2.7) over

all channel realizations, i.e., PSER(m) = ECSI

[
Pe|CSI

]
. Using (2.6), (2.12), and

(2.13), PSER(m) can be expanded as follows

PSER(m) =
2N−1∑

i=0

ECSI

[
ΨPSK (SNRd)

N∏

k=1

P m
k,i

]
. (2.14)

Since the channel fades between different pairs of nodes in the network are sta-

tistically independent by the virtue that different nodes are not co-located, the

quantities inside the expectation operator in the above equation are functions of

independent random variables, and thus can be further decomposed as

PSER(m) =

2N−1∑

i=0

{
ECSI [ΨPSK (SNRd)]

N∏

k=1

ECSI

[
P m

k,i

]
}

. (2.15)

The above analysis is applicable to the M-QAM case by changing the function

ΨPSK(·) into ΨQAM(·).

Since the channels between the nodes are modeled as Rayleigh fading channels,

the absolute norm square of any channel realization hi,j between any two nodes

i and j in the network has an exponential distribution with mean σ2
i,j . Hence,

ECSI [Ψq(γ)] can be expressed as

ECSI [Ψq(γ)] =

∫

γ

Ψq(γ)f(γ)dγ (2.16)
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where f(γ) is the probability density function of the random variable γ, and q = 1

(q = 2) correspond to M-PSK (M-QAM), respectively. If γ is an exponentially dis-

tributed random variable with mean γ, then it can be shown [54] that ECSI [Ψq(γ)]

is given by

ECSI [Ψq (γ)] = Fq

(
1 +

bqγ

sin2(θ)

)
, (2.17)

where Fq(·) and the constant bq are defined as

F1(x(θ)) =
1

π

∫ (M−1)π/M

0

1

x(θ)
dθ, b1 = bpsk

F2(x(θ)) =
4C

π

∫ π/2

0

1

x(θ)
dθ − 4C2

π

∫ π/4

0

1

x(θ)
dθ, b2 =

bQAM

2
. (2.18)

In order to get the above expressions, we use two special properties of the Q(·) func-

tion, specifically, Q(x) = 1
π

∫ π/2

0
exp(− x2

2 sin2 (θ))dθ, and Q2(x) = 1
π

∫ π/4

0
exp(− x2

2 sin2 (θ))dθ

for x ≥ 0 [54].

Averaging over all the Rayleigh fading channel realizations, the SER at the

destination for a given network state Bi,N is given by

ECSI(Ψq(SNRd)) = Fq

[(
1 +

bqP0σ
2
s,d

No sin2(θ)

) N∏

j=1

(
1 +

bqBi,N [j]Pjσ
2
lj ,d

No sin2(θ)

)]
. (2.19)

Similarly, the probability that the k-th relay is in state Bi,N [k] given the states of

the previous m relays is given by

ECSI

[
P m

k,i

]
= Gm

k (Bi,N [k]), (2.20)

where Gm
k (·) is defined as

Gm
k (x) =





Fq

[(
1 +

bqP0σ2
s,lk

No sin2(θ)

)∏k−1
j=max(1,k−m)

(
1 +

bqBi,N [j]Pjσ2
lj ,lk

No sin2(θ)

)]
, if x = 0,

1 − Fq

[(
1 +

bqP0σ2
s,lk

No sin2(θ)

)∏k−1
j=max(1,k−m)

(
1 +

bqBi,N [j]Pjσ
2
lj ,lk

No sin2(θ)

)]
, if x = 1.

(2.21)
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in which Fq(·) and the constant bq are specified in (2.18). As a summary, the

SER in (2.15) of the cooperative multi-node system employing scenario C(m) with

M-PSK or M-QAM modulation can be determined from (2.19), (2.20), and (2.21)

in the following Theorem.

Theorem 1 The SER of an N-relay decode-and-forward cooperative diversity net-

work utilizing protocol C(m), 1 ≤ m ≤ N − 1, and M-PSK or M-QAM modulation

is given by

PSER(m) =

2N−1∑

i=0

Fq

[(
1 +

bqP0σ
2
s,d

No sin2(θ)

) N∏

j=1

(
1 +

bqBi,N [j]Pjσ
2
lj ,d

No sin2(θ)

)]
N∏

k=1

Gm
k (Bi,N [k]),

(2.22)

where the functions Fq(·) and Gm
k (·) are defined in (2.18) and (2.21), respectively.

2.2.2 Verifying the Validity of our Theoretical Model for

Selective Relaying

In this subsection, we will illustrate with some simulation experiments the validity

of the theoretical results we obtained. In the simulations, we considered only

cooperative protocol C(1). The number of relays is taken to be N = 1, 2, 3, in

addition to the source and the destination nodes. We considered two simulation

setups. In the first setup we simulate the SER performance under the assumption

that the relay correctly judges whether the received signal is decoded correctly

or not, i.e., no error propagation. In the second setup, we consider the more

practical scenario in which each relay compares the instantaneous received SNR

to a threshold and hence decides whether to forward the received signal or not,

and thus error propagation is allowed (the threshold is taken equal to 3dB here

and is selected by experiment). The relays are considered closer to the source than
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the destination. The channel variance depends on the distance l and propagation

path-loss α as follows σ2 ∝ l−α, and α = 3 in our simulations. The channel gains

are as follows: σ2
s,li

= 8σ2
s,d, and σ2

li,d
= σ2

s,d . The noise variance is taken to be

No = 1. The total transmitted power in each case is considered fixed to P .

Fig. 2.3 depicts the SER vs. P/No performance of cooperation scenario C(1)

with QPSK. As shown in the figure, the performance curves of the two previously

described simulation setups are very close for different number of relays. This val-

idates that our model for selective relaying assumed for mathematical tractability

has close performance to that of practical selective relaying when comparing the

SNR to a threshold. The intuition behind this is, as we illustrated before, that

when the relays in general operate in a high SNR regime, in this case the relays

are closer to the source node, the error propagation from the relays becomes negli-

gible and this is due to the fact that the channel outage event (SNR less than the

threshold) becomes the dominating error event as proved in [53].

The performance of direct transmission without any relaying is also shown in

Fig. 2.3 as a benchmark for a no-diversity scheme. Moreover, the exact SER

expression from Theorem 1 is depicted as a ’+’ mark. It is clear from the depicted

figure that the analytical SER expression in (2.22) for scenario C(1) exactly matches

the simulation results for each case. This confirms our theoretical analysis. The

results also reveal that the cooperative diversity protocols can achieve full diversity

gain in the number of cooperating terminals, which can be seen from the slopes of

the performance curves which become more steeper with increasing the number of

relays.
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Figure 2.3: SER vs. SNR for two different scenarios. The first is the simulated

SER for the model described in this chapter in which the relays know whether each

symbol is decoded correctly or not. The second is the simulated SER for a practical

scenario in which the relay forwards the decoded symbol based on comparing the

received SNR with a threshold. Also the exact SER expression in (2.22) is plotted

as ’+’. The cooperation protocol utilized is C(1) and the modulation scheme is

QPSK.
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2.3 Approximate SER Expression

In the previous section, we provided exact expressions for the SER of a general

cooperative scheme C(m), 1 ≤ m ≤ N − 1, for arbitrary N -relay networks with

either M-PSK or M-QAM modulation. The derived SER expressions, however,

involve 2N terms and integral functions. In this section, we provide approximate

expressions for the SER performance of the proposed class of cooperative diversity

schemes. The approximation is derived at high SNR and yields simple expressions

that can provide insights to understanding the factors affecting the system perfor-

mance, which helps in designing different network functions as power allocation,

scheduling, routing, and node selection.

2.3.1 SER Approximation for General Cooperative Proto-

col

One can see that any term in the exact SER formulation (2.22) in Theorem 1

consists of the product of two quantities: i) The first is

Fq

[(
1 +

bqP0σ
2
s,d

No sin2(θ)

) N∏

j=1

(
1 +

bqBi,N [j]Pjσ
2
lj ,d

No sin2(θ)

)]
(2.23)

, which corresponds to the conditional SER at the destination for a given network

state Bi,N ; and ii) The second is the probability of the network being in that state,

and is given by
∏N

k=1 Gm
k (Bi,N [k]). At high enough SNR, the probability of error

Fq(·) is sufficiently small compared to 1, thus we can assume that 1 − Fq(·) ≃ 1.

Hence, the only terms in the second quantity
∏N

k=1 Gm
k (Bi,N [k]) that will count

are those corresponding to relays that have decoded in error. For convenience, we

make the following definition: Let Ωi(n, m) denote the subset of nodes that decode

correctly from node max(1, n−m) till node n − 1, when the network was in state
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Bi,N . More specifically

Ωi(n, m) , {relay j: s.t. Bi,N [j] = 1, max(1, n − m) ≤ j ≤ n − 1.} (2.24)

Then, the SER formulation (2.22) in Theorem 1 can be approximated as

PSER(m) ≃
2N−1∑

i=0

Fq

[(
1 +

bqP0σ
2
s,d

No sin2(θ)

) N∏

j=1

(
1 +

bqBi,N [j]Pjσ
2
lj ,d

No sin2(θ)

)]

∏

k∈Ωc(N+1,N)

Gm
k (Bi,N [k]),

(2.25)

where Ωc is the complementary set of Ω, i.e., the set of nodes that decoded erro-

neously.

First, we simplify the first term corresponding to the SER at the destination.

Using the definition of Fq in (2.18), and ignoring all the 1’s 1 in Fq(·) in (2.25),

the conditional SER at the destination for a given network state Bi,N can be

approximated as

Fq

[(
1 +

bqP0σ
2
s,d

No sin2(θ)

) N∏

j=1

(
1 +

bqBi,N [j]Pjσ
2
lj ,d

No sin2(θ)

)]

≃ N 1+|Ωi(N+1,N)|
o gq(1+ | Ωi(N + 1, N) |)

b
1+|Ωi(N+1,N)|
q P0σ2

s,d

∏
j∈Ωi(N+1,N) Pjσ2

lj ,d

,

(2.26)

where | Ωi(N + 1, N) | denotes the cardinality of the set Ωi(N + 1, N), i.e. the

number of nodes that decodes correctly, which also denotes the number of signal

copies transmitted from the N relays to the destination at network state Bi,N . The

function gq(·) in (2.26) is specified as

gq(x) =





1
π

∫ (M−1)π/M

0
sin2x(θ)dθ, for M-PSK, q = 1

4C
π

[∫ π/2

0
sin2x(θ)dθ − C

∫ π/4

0
sin2x(θ)dθ

]
, for M-QAM, q = 2.

(2.27)

1The tightness of these approximations can be proved easily by computing some limit functions

for Fq(x) and 1−Fq(x) as x, which denotes an affine function of the power, goes to ∞. For page

limitations, we only include the proof for the single relay scenario using M-PSK in appendix 1.
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Let us write the transmitter powers allocated at the source and different relays

as a ratio of the total available power P as follows, P0 = a0P , and Pi = aiP, 1 ≤

i ≤ N , in which the power ratios are normalized as a0 +
∑N

i=1 ai = 1. One can

then rewrite (2.26) in terms of the power allocation ratios as follows

Fq

[(
1 +

bqP0σ
2
s,d

No sin2(θ)

) N∏

j=1

(
1 +

bqBi,N [j]Pjσ
2
lj ,d

No sin2(θ)

)]

≃ (No/P )1+|Ωi(N+1,N)| gq(1+ | Ωi(N + 1, N) |)
b
1+|Ωi(N+1,N)|
q a0σ2

s,d

∏
j∈Ωi(N+1,N) ajσ2

lj ,d

,

(2.28)

Note that the SNR term (No/P ) in (2.28) is of order (1+ | Ωi(N + 1, N) |). This

is intuitively meaningful since the destination receives (1+ | Ωi(N +1, N) |) copies

of the signal, in which the term 1 is due to the copy from the source. Thus (2.28)

decays as SNR−(1+|Ωi(N+1,N)|) at high SNR.

At the k-th relay, 1 ≤ k ≤ N , the conditional SER for a given network state

Bi,N can be similarly approximated as

Fq



(

1 +
bqP0σ

2
s,lk

No sin2(θ)

) k−1∏

j=max(1,k−m)

(
1 +

bqBi,N [j]Pjσ
2
lj ,lk

No sin2(θ)

)


≃ (No/P )1+|Ωi(k,m)|gq(1+ | Ωi(k, m) |)
b
1+|Ωi(k,m)|
q a0σ

2
s,lk

∏
j∈Ωi(k,m) ajσ

2
lj ,lk

.

(2.29)

where | Ωi(k, m) |) is the number of relays that decodes correctly from the previous

min(k− 1, m) relays. The SNR in the above expression is of order 1+ | Ωi(k, m) |.

From (2.29), the product
∏

k∈Ωc
i (N+1,N) Gm

k (Bi,N [k]) in (2.25) is given by

∏

k∈Ωc
i (N+1,N)

Gm
k (Bi,N [k]) =

∏

k∈Ωc
i (N+1,N)

(No/P )1+|Ωi(k,m)|gq(1+ | Ωi(k, m) |)
b
1+|Ωi(k,m)|
q a0σ2

s,lk

∏
j∈Ωi(k,m) ajσ2

lj ,lk

,

(2.30)

in which the SNR is of order
∑

k∈Ωc
i (N+1,N)(1+ | Ωi(k, m) |) =| Ωc

i (N + 1, N) |
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+
∑

k∈Ωc
i (N+1,N) | Ωi(k, m) |. Substituting (2.28) and (2.30) into (2.25), we get

PSER(m) ≃
2N−1∑

i=0

(No/P )digq(1+ | Ωi(N + 1, N) |)∏k∈Ωc
i (N+1,N) gq(1+ | Ωi(k, m) |)

bdi
q a

1+|Ωc
i (N+1,N)|

0 σ2
s,d

∏
j∈Ωi(N+1,N) ajσ2

rj ,d

∏
k∈Ωc

i (N+1,N) σ2
s,lk

∏
l∈Ωi(k,m) alσ2

ll,lk

(2.31)

where di = 1+ | Ωi(N + 1, N) | + | Ωc
i(N + 1, N) | +

∑
k∈Ωc

i (N+1,N) | Ωi(k, m) |.

From (2.31), we can see that the SNR is of order di. Since | Ωi(N + 1, N) | + |

Ωc
i(N + 1, N) |= N , the order di can be lower bounded as follows

di = 1 + N +
∑

k∈Ωc
i (N+1,N)

| Ωi(k, m) |≥ N + 1, (2.32)

in which the equality holds if and only if
∑

k∈Ωc
i (N+1,N) | Ωi(k, m) |= 0. Thus the

smallest order of the SNR is N + 1.

The equality in (2.32) holds if and only if | Ωi(k, m) |= 0, for any k ∈ Ωc
i(N +

1, N), and 0 ≤ i ≤ 2N − 1. Essentially, this means that the equality in (2.32) is

satisfied if and only if for each relay k that decodes erroneously, the m preceding

relays also must have decoded erroneously. One can think of this condition as a

chain rule, and this leads to the conclusion that the equality holds if and only if for

each relay k that decodes in error all the previous relays must have decoded in error.

As a result, the only network states that will contribute in the SER expression with

terms of order N + 1 in the SNR are those of the form SN = B2n−1,N , 0 ≤ n ≤ N .

For example a network state of the form SN = [0, · · · , 0, 1, · · · , 1] will contribute

to a term in the SER with SNR raised to the order N + 1, and a network state

SN = [0, · · · , 0, 1, 1, 0, 1, · · · , 1] will contribute to a term in the SER with SNR

raised to an exponent larger than (N + 1) depending on m. Therefore, only N + 1

states of the network have SER terms that decays as 1/SNRN+1 and the rest of

the network states decay with faster rates, hence these N + 1 terms will dominant

the SER expression at high enough SNR.
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In order to write the approximate expression for the SER corresponding to

these N + 1 terms, we need to note the following points that can be deduced from

the above analysis. As described above, in order for the equality in (2.32) to hold,

the following set of conditions must be satisfied. First, since for any relay that

decodes erroneously all the previous m relays must have decoded in error, we have

Ωi(k, m) = Φ, (2.33)

for all k ∈ Ωc
i(N + 1, N), where Φ is the empty set. Second, for these N + 1 states

that satisfy the equality in (2.32) the set Ωc
i (N + 1, N) takes one of the following

forms

Ωc
i(N + 1, N) ∈ {Φ, {1}, {1, 2}, · · · , {1, 2, · · · , N}} , (2.34)

For example, Ωc
i (N +1, N) = {1, 2, · · · , k} denotes the state in which only the first

k relays decoded erroneously. Accordingly, its cardinality, denoted by | Ωc
i (N +

1, N) |, takes one of the following values

| Ωc
i (N + 1, N) |∈ {0, 1, 2, · · · , N} . (2.35)

Thus, only the N + 1 states determined from the above conditions will contribute

to the SER expression at high SNR because they decay as 1/SNRN+1, which is the

slowest decaying rate as seen from (2.32). From (2.31), (2.33), (2.34), and (2.35),

the conditional SER for any of these states, e.g., Ωc
i(N +1, N) = {1, 2, · · · , k}, can

be determined as follows

SERk(m) =
(No/P )N+1gq(N − k + 1)gk

q (1)

bN+1
q σ2

s,da
1+k
o

∏
j∈Ωi(N+1,N) ajσ2

lj ,d

∏k
t=1 σ2

s,lt

. (2.36)

Summing the above expression over the N + 1 states in (2.34), we can further

determine the approximate expression for the SER in the following Theorem.
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Theorem 2 At high enough SNR, the SER of an N relay decode-and-forward

cooperative diversity network employing cooperation scheme C(m) and utilizing M-

PSK or M-QAM modulation can be approximated by

PSER(m) ≃ (No/P )N+1

bN+1
q σ2

s,d

N+1∑

j=1

gq(N − j + 2)gj−1
q (1)

aj
0

∏N
i=j aiσ2

li,d

∏j−1
t=1 σ2

s,lt

. (2.37)

A very important point to be noticed from the above theorem is that the ap-

proximate SER expression in (2.37) does not depend on m, the class parameter.

Hence, the whole class of cooperative diversity protocols {C(m)}N−1
m=1 shares the

same asymptotic performance at high enough SNR. The results obtained in Theo-

rem 2 illustrate that utilizing the simplest scheme, namely, scenario C(1), results in

the same asymptotic SER performance as the most sophisticated scheme, namely,

C(N − 1). This motivates us to utilize scenario C(1) as a cooperative protocol for

multi-node wireless networks employing decode-and-forward relaying. The sim-

plicity behind scenario C(1) is due to the fact that it does not require each relay

to estimate the CSI for all the previous relays as in scenario C(N − 1). It only

requires each relay to know the CSI to the previous relay and the destination thus

saving a lot in the channel estimation computations.

In the following, we determine roughly the savings in the computations needed

for channel estimation when using scenario C(1) as opposed to scenario C(N − 1)

by computing the number of channels needed to be estimated in each case. The

number of channels needed to be estimated in scenario C(1) is given by

nh,1 = 3N, (2.38)

where N is the number of relays forwarding for the source. This value accounts for

the N + 1 channels estimated at the destination and 2N − 1 channels estimated

by the N relays; the first relay estimates only one channel. In scenario C(N − 1),
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the k-th relay estimates k channels, and thus the amount of computations for this

case is given by

nh,N−1 =
1

2

[
N2 + 3N + 1

]
. (2.39)

From (2.38) and (2.39), the savings in the computations needed for channel esti-

mation when using scenario C(1) as opposed to scenario C(N − 1) is given by

nh,1

nh,N−1
=

6N

N2 + 3N + 1
. (2.40)

The above ratio approaches 0 in the limit as N tends to ∞. Hence, utilizing

scenario C(1) will reduce the protocol complexity while having the same asymptotic

performance as the best possible scenario.

2.3.2 Diversity order and Cooperation Gain

The philosophy before employing cooperative diversity techniques in wireless net-

works is to form virtual MIMO systems from separated single-antenna terminals.

The aim behind this is to emulate the performance gains that can be achieved in

point-to-point communications when employing MIMO systems. Two well known

factors that describe the performance of the system are the diversity order and

coding gain of the transmit diversity scheme. To define these terms, the SER can

be written in the following form

PSER ∼ (∆ · SNR)−d . (2.41)

The constant ∆ which multiplies the SNR denotes the coding gain of the scheme,

and the exponent d denotes the diversity order of the system.

In the cooperative diversity schemes considered in this chapter, the relays sim-

ply repeat the decoded information, and thus we do not really have the notion of
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coding; although it can still be seen as a repetition coding scheme. Hence, we will

donate the constant ∆ that multiplies the SNR by the cooperation gain. From

(2.37) in Theorem 2, the following observations can be deduced from the previous

relation

• It is clear that the diversity order of the system is given by d = N + 1,

which indicates that the proposed cooperative diversity schemes achieves full

diversity order in the number of cooperating terminals; the source and the

N relays.

• The cooperation gain of the system is given by

∆ =

[
1

bN+1
q σ2

s,d

N+1∑

j=1

gq(N − j + 2)gj−1
q (1)

aj
0

∏N
i=j aiσ

2
li,d

∏j−1
t=1 σ2

s,lt

]−1/(N+1)

. (2.42)

In order to validate the accuracy of the derived approximate SER we conducted

some simulation experiments. Throughout all the simulations, and without loss

of generality, the channel gains are assumed to be unity and the noise variance

is taken to be No = 1. Figure 2.4 considers scenario C(1) and depicts the SER

performance vs. P/No for QPSK signalling. The transmitting power P is fixed

for different number of cooperating relays in the network. The results reveal that

the derived approximations for the SER are tight at high enough SNR. Regarding

scenario C(N − 1), we considered the N = 3 relays case. Figure 2.5 depicts the

SER performance for QPSK and 16QAM modulation. The results for scenario

C(1) under the same simulation setup are included for comparison. It can be seen

from the results that there is a very small gap between the SER performance of

scenarios C(1) and C(N − 1), and that they almost merge together at high enough

SNR. This confirms our observations that utilizing scenario C(1) can deliver the

required SER performance for a fairly wide range of SNR. Hence, saving a lot
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Figure 2.4: Comparison between the approx. SER in (2.37), and the simulated

SER for different number of relays. The cooperation protocol utilized is C(1) and

the modulation scheme is QPSK.

in terms of channel estimation, thus computational complexity, requirements to

implement the protocol.

2.3.3 Bandwidth efficiency versus Diversity Gain

Up to this point, we did not take into account the bandwidth (BW) efficiency as

another important factor to determine the performance besides the SER. Increas-

ing the number of relays reduces the BW efficiency of the system, as the source

uses only a fraction of the total available degrees of freedom to transmit the infor-

mation. There is a tradeoff between the diversity gain and the BW efficiency of

the system, as higher diversity gain is usually translated into utilizing the available

degrees of freedom to transmit more copies of the same message which reduces the

BW efficiency of the system. In order to have a fair comparison, we will fix the
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Figure 2.5: Comparison between the performance of schemes C(1) and C(N − 1)

for both QPSK and 16QAM modulation, N = 3.

BW efficiency throughout the simulations. In order to achieve this, larger signal

constellations are utilized with larger number of cooperating relays. For the direct

transmission case, BPSK is used as a benchmark to achieve bandwidth efficiency

of 1 bit/channel use. QPSK is used with the N = 1 relay case, 8PSK with N = 2

relays and 16QAM with N = 3 relays. In all of the aforementioned cases, the

achieved BW efficiency is 1 bit/channel use. Fig. 2.6 depicts the BER vs. SNR

per bit in dB for N = 1, 2, 3 relays along with the direct transmission case. The

results reveal that at low SNR, lower number of nodes achieves better performance

due to the BW efficiency loss incurred with utilizing larger number of cooperating

nodes.

Another important point of concern is how the performance of cooperative

diversity compare to that of time diversity without relaying under the same band-

width efficiency. For example, if the target diversity gain is N +1 then cooperation
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Figure 2.6: BER performance comparison between different numbers of cooperat-

ing relays taking into account the BW efficiency, C(1).

requires the employment of N relays, while in time diversity the source simply re-

peats the information for N + 1 successive time slots. Two factors can lead to

cooperation yielding better performance than time diversity. The first is that the

cooperation gain of cooperative diversity (2.42) can be considerably higher than

that of time diversity if the propagation path loss is taken into account. This is

because the relay nodes are usually closer to the destination node than the source

itself, which results in less propagation path loss in the relays-destination links

compared to the source-destination link. This is a natural gain offered by coop-

eration because of the distributed natural of the formed virtual array, and this

is the same reason multihop communications offer more energy efficient transmis-

sion in general. The second factor which can lead to cooperation being a more

attractive scheme than time diversity is that the spatial links between different

nodes in the network fade independently, again because of the distributed nature
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of the formed virtual array, which leads to full diversity gain. In time diversity,

however, full diversity gain is not guaranteed as there might be time correlation

between successive time slots. This correlation is well modeled by a first order

Markov chain [55]. To illustrate more the above described factors we compare

the SER performance of time and cooperative diversity in Fig. 2.7. The desired

diversity gain is 3. The time correlation factor for the first order Markov model

is taken equal to ρ = 0.9, 0.7, 0.3, 0.1. The two relays are taken in different po-

sitions as illustrated in the figure to illustrate different coding gains. It is clear

from Fig. 2.7 that cooperative diversity can offer better performance than time

diversity because of the higher possible coding gain that depends on the relay po-

sitions, and the degradation in the achieved performance of time diversity due to

the correlation factor ρ.

2.4 Optimal Power Allocation

In this section, we try to find the optimal power allocation strategy for the multi-

node cooperative scenarios considered in the previous sections. The approximate

SER formula derived in (2.37) is a function of the power allocated at the source

and the N relays. For a fixed transmission power budget P , the power should be

allocated optimally at the different nodes in order to minimize the SER.

Since the approximation in (2.37) is tight at high enough SNR, we use it to

determine the asymptotic optimum power allocation, also we drop the parameter

m as the asymptotic SER performance is independent of it. The SER can be

written in terms of the power ratios allocated at the transmitting nodes as follows

PSER ≃
(

P

No

)−(N+1)
1

bN+1
q σ2

s,d

N+1∑

j=1

gq(N − j + 2)gj−1
q (1)

aj
0

∏N
i=j aiσ

2
li,d

∏j−1
k=1 σ2

s,lk

. (2.43)
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Figure 2.7: Comparison between the SER performance of time diversity without

any relaying and cooperative diversity. Two relays are utilized for cooperation and

correspondingly three time slots for time diversity. The first order Markov model is

utilized to account for time correlation, and different relays’ positions are depicted
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The nonlinear optimization problem can be formulated as follows

aopt = arg min
a

PSER (2.44)

subject to ai ≥ 0 (0 ≤ i ≤ N),
∑N

i=0 ai = 1,

where a = [a0, a1, · · · , aN ] is the power allocating vector. The Lagrangian of this

problem can be written as

L = PSER + ν

(
N∑

i=0

ai − 1

)
−

N∑

j=0

βjaj (2.45)

where the β’s act as slack variables.

Although this nonlinear optimization problem should, in general, be solved

numerically, there are some insights which can be drawn out of it. Applying first

order optimality conditions, we can show that the optimum power allocation vector

aopt must satisfy the following necessary conditions

∂PSER

∂ai
=

∂PSER

∂aj
, i, j ∈ {0, 1, 2, · · · , N}. (2.46)

Next, we solve these equations simultaneously to get the relations between the

optimal power allocations at different nodes. To simplify the notations, let µj

denote the constant quantity inside the summation in (2.43), i.e.,

µj =

(
P

No

)−(N+1) gq(N − j + 2)gj−1
q (1)

bN+1
q σ2

s,d

∏N
i=j σ2

li,d

∏j−1
k=1 σ2

s,lk

. (2.47)

The derivative of the SER with respect to a0 is given by

∂PSER

∂a0

=
N+1∑

j=1

−jµj

aj+1
0

∏N
i=j ai

, (2.48)

while the derivative with respect to ak, 1 ≤ k ≤ N is given by

∂PSER

∂ak
=

k∑

j=1

−µj

aj
0ak

∏N
i=j ai

, (2.49)
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where the summation is to the k-th term only as ak does not appear in the terms

from k + 1 to N . Using (2.46), we equate the derivatives of the SER with respect

to any two consecutive variables ak and ak+1, 1 ≤ k ≤ N − 1, as follows

k∑

j=1

−µj

aj
0ak

∏N
i=j ai

=

k+1∑

j=1

−µj

aj
0ak+1

∏N
i=j ai

. (2.50)

Rearranging the terms in the above equation we get

ak+1 − ak

akak+1

k∑

j=1

µj

aj
0

∏N
i=j ai

=
µk+1

aj
0ak+1

∏N
i=k+1 ai

. (2.51)

Since both sides of the above equation is positive, we conclude that ak+1 ≥ ak for

any k = 1, 2, · · · , N . Similarly, we can show that ao ≥ ak for all 1 ≤ k ≤ N . Hence,

solving the optimality conditions simultaneously we get the following relationships

between the powers allocated at different nodes

P0 ≥ PN ≥ PN−1 ≥ · · · ≥ P1. (2.52)

The above set of inequalities demonstrates an important concept: Power is

allocated at different nodes according to the received signal quality at these node.

We refer to the quality of the signal copy at a node as the reliability of the node,

thus the more reliable the node the more power allocated to this node. To further

illustrate this concept, the N + 1 cooperative nodes form a virtual (N + 1) × 1

MIMO system. The difference between this virtual array and a conventional point-

to-point MIMO system is that in conventional point-to-point communications all

the antenna elements at the transmitter are allocated at the same place and hence

all the antenna elements can acquire the original signal. In a virtual array, the

antenna elements constituting the array (the cooperating nodes) are not allocated

at the same place and the channels among them are noisy. The source is the most

reliable node as it has the original copy of the signal and thus it should be allocated
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the highest share of the power. According to the described cooperation protocols,

each relay combines the signal received from the source and the previous relays.

As a result, each relay is more reliable than the previous relay, and hence the N -th

relay is the most reliable node and is allocated the largest ratio of the power after

the source, and the 1-st relay is the least reliable and is allocated the smallest ratio

of the transmitted power. Another important point to notice is that the channel

quality of the direct link between the source and the destination σ2
s,d is a common

factor in the µj’s that appear in (2.51), hence the optimal power allocation does

not depend on it.

To illustrate the effect of relay position on the values of the optimal power

allocation ratios at the source and relay nodes, we consider a 2 relays scenario in

Fig. 2.8. The two relays are taken in three different positions, close to the source,

close to the destination, and in the middle between the source and the destination.

In the first scenario, almost equal power allocation between the three nodes is

optimal. When the relays are closer to the destination, more power is allocated

to the source node, but still the second relay has a higher portion of the power

relative to the first one. Similarly, in the last scenario the last relay has more

power than the first one. These results reveal the fact that the further the relays

from the source node the less power is allocated to the relays as they become less

reliable, while as the relays become closer to the source, equal power allocation

becomes near optimal. This is similar to the results of optimal power allocation

for distributed space-time-coding in [34].

There are a few special cases of practical interest that permits a closed-form

solution for the optimization problem in (2.44), and they are discussed in the

sequel.
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Figure 2.8: Optimal power allocation for N = 2 relays under different relays

positions.

2.4.1 Single-Relay Scenario

For the N = 1 relay scenario [37], the optimization problem in (2.44) admits closed

form expression. The SER for this case is simply given as

PSER =

(
P

No

)−2
1

b2
qσ

2
s,d

(
gq(2)

a0a1σ2
r1,d

+
g2

q (1)

a2
0σ

2
s,r1

)
(2.53)

Solving the optimization problem for this case leads the following solution for the

optimal power allocation

a0 =
σs,r1

+
√

σ2
s,r1

+ 8
g2

q(1)

gq(2)
σ2

r1,d

3σs,r1
+
√

σ2
s,r1

+ 8
g2

q(1)

gq(2)
σ2

r1,d

, a1 =
2σs,r1

3σs,r1
+
√

σ2
s,r1

+ 8
g2

q (1)

gq(2)
σ2

r1,d

. (2.54)

To study the effect of relay position on the optimal power allocation, we depict in

Fig. 2.9 the SER performance of a single relay scenario versus the power allocation

at the source node a0 for different relay positions. The first observation that the

figure reveals is that the SER performance is relatively flat around equal power
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Figure 2.9: SER vs. power allocation ratio at the source node for different relay

positions.

allocation when the relay is not very close to the destination, an observation that

was also made for distributed space-time coding in [34]. Another observation to

notice here is that as the relay becomes closer to the destination, the value of the

optimal power allocation at the source node a0 approaches 1, which means that as

the relay node becomes less reliable more power should be allocated to the source

node.

2.4.2 Networks with linear topologies

The propagation path-loss will be taken into account here. The channel attenuation

between any two nodes σ2
i,j depends on the distance between these two nodes di,j

as follows: σ2
i,j ∝ d−α, where α is the propagation constant. For a linear network

topology, the most significant channel gains are for the channels between the source

and the first relay σ2
s,l1

, and that between the last relay and the destination σ2
lN ,d,
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the other channel gains are considerably smaller than these two channels. In the

SER expression in (2.37), these two terms appear as a product in all the terms

except the first and the last terms. Hence these two terms dominate the SER

expression, and we can further approximate the SER in this case as follows

PSER ≃ (No/P )N+1

bN+1
q σ2

s,d

[
gq(N + 1)

a0

∏N
i=1 aiσ2

li,d

+
gN+1

q (1)

aN+1
0

∏N
i=1 σ2

s,li

]
. (2.55)

Taking the power constraint into consideration, the Lagrangian of the above prob-

lem can be written as

L(a) =
µ1

ao

∏N
i=1 ai

+
µN+1

aN+1
o

+ λ(
N∑

i=0

ai − 1), (2.56)

where the constants µ1 and µN+1 are defined in (2.47).

Taking the partial derivatives of the Lagrangian with respect to aj , 1 ≤ j ≤ N ,

and equating with 0, we get

aj =
µ1

λao

∏N
i=1 ai

. (2.57)

Thus, we deduce that the power allocated to all of the relays are equal. Let the

constant κ be defined as follows

κ =
P0 − Pj

Pj

. (2.58)

From the above definition, along with the power constraint we get

Pj =
1

1 + κ + N
P, P0 =

1 + κ

1 + κ + N
P. (2.59)

To find the optimum value for κ, substitute (2.59) into the expression for the SER

in (2.55) to get

PSER ≃ µ1(1 + κ)N (1 + κ + N)N+1 + µN+1(1 + κ + N)N+1

(1 + κ)N+1
. (2.60)
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Differentiating (2.60) and equating to 0, we can find that the optimum κ sat-

isfies the equation κ(1 + κ)N = A, in which A is a constant given by (N +

1)
gN+1

q (1)
QN

i=1
σ2

li,d

gq(N+1)
QN

i=1
σ2

s,li

.

From the above analysis, the optimal power allocation for a linear network can

be found in the following theorem:

Theorem 3 The optimal power allocation for a linear network that minimizes the

SER expression in (2.55) is as follows

P0 =
1 + κ

1 + κ + N
P, Pi =

1

1 + κ + N
P, 1 ≤ i ≤ N, (2.61)

where κ is found through solving the equation κ(1 + κ)N = A, in which A is a

constant given by (N + 1)
gN+1(1)

QN
i=1

σ2
li,d

g(N+1)
QN

i=1
σ2

s,li

.

Theorem 3 agrees with optimality conditions we found for the general problem

in (2.52). Also, it shows an interesting property that in linear network topologies

equal power allocation at the relays is asymptotically optimal.

2.4.3 Relays located near the source or the destination

The cooperating relays can be chosen to be closer to the source than to the destina-

tion, in order for the N +1 cooperating nodes to mimic a multi-input-single-output

(MISO) transmit antenna diversity system. This case is of special interest as it

was shown in [27] that decode-and-forward relaying can be a capacity achieving

scheme when the relays are taken to be closer to the source and it has the best per-

formance compared to amplify-and-forward and compress-and-forward relaying in

this case. In order to model this scenario in our SER formulation, we will consider

the channel gains from the source to the relays to have higher gains than those

from the relays to the destination, i.e., σ2
s,ri

≫ σ2
ri,d

for 1 ≤ i ≤ N . Taking this into
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account, the approximate SER expression in (2.37) can be further approximated

as

PSER ≃ NN+1
o gq(N + 1)

bN+1
q σ2

s,dP
N+1a0

∏N
i=1 aiσ2

li,d

. (2.62)

It is clear from the above equation that the SER depends equally on the power

allocated to all nodes including the source, and thus the optimal power allocation

strategy for this case is simply given by

P0 = Pi =
P

N + 1
, 1 ≤ i ≤ N. (2.63)

This result is intuitively meaningful as all the relays are located near to the source

and thus they all have high reliability and are allocated equal power as if they form

a conventional antenna array.

Now we consider the opposite scenario in which all the relays are located near

the destination. In this case the channels between the relays and the destination

are of a higher quality, higher gain, than those between the source and the relays,

i.e., σ2
li,d

≫ σ2
s,li

for 1 ≤ i ≤ N . In this case the SER can be approximated as

PSER ≃ NN+1
o g(1)N+1

bN+1
q σ2

s,dP
N+1
0

∏N
k=1 σ2

s,lk

. (2.64)

The SER in the above equation is not a function of the power allocated at the

cooperating relays, and thus the optimal power allocation in this case is simply

P0 = P , i.e., allocating all the available power at the source. This result is very

interesting as it reveals a very important concepts: If the relays are located closer

to the destination than to the transmitter then direct transmission can lead better

performance than decode-and-forward relaying. This is also consistent with the

results in [27] in which it was shown that the performance of the decode-and-

forward strategy degrades significantly when the relays get closer to the destination

. This result can be intuitively interpreted as follows: The farther the relays from
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Exhaustive Search Analytical Results

P0 = 0.31P P0 = 0.31P

P1 = 0.23P P1 = 0.23P

P2 = 0.23P P2 = 0.23P

P3 = 0.23P P3 = 0.23P

Table 2.1: Comparison between optimal power allocation via exhaustive search

and analytical results. N = 3 relays, uniform network topology.

the source the more noisy the channels between them and the less reliable the

signals received by those relays to the extent that we can not rely on them on

forwarding copies of the signal to the destination.

2.4.4 Numerical Examples

In this subsection, we present some numerical results to verify the analytical results

for the optimal power allocation problem for the considered network topologies.

The effect of the geometry on the channel links qualities is taken into consideration.

We assume that the channel variance between any two nodes is proportional to

the distance between them, more specifically σ2
i,j ∝ d−α

i,j , where α is determined by

the propagation environment is taken equal to 4 throughout our simulations. We

provide comparisons between the optimal power allocation via exhaustive search

to minimize the SER expression in (2.37), and optimal power allocation provided

by the closed form expressions provided in this section.

First, for the linear network topology, we consider a uniform linear network,

i.e., ds,l1 = dl1,l2 = · · · = drl,d. The variance of the direct link between the source

and the destination is taken to be σ2
s,d = 1. Table 2.1 demonstrates the results
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(A) Exhaustive Search Analy. Results (B) Exhaustive Search Analy. Results

P0 = 0.25P P0 = 0.25P P0 = 0.875P P0 = P

P1 = 0.25P P1 = 0.25P P1 = 0.015P P1 = 0

P2 = 0.25P P2 = 0.25P P2 = 0.035P P2 = 0

P3 = 0.25P P3 = 0.25P P3 = 0.075P P3 = 0

Table 2.2: Comparison between optimal power allocation via exhaustive search

and analytical results. N = 3 relays: (a)all relays near the source; (b) all relays

near the destination.

for N = 3 relays. Second, for the case when all the relays are near the source,

the channel links are taken to be: σ2
s,li

= σ2
li,lj

= 10, while σ2
s,d = σ2

li,d
= 0.1 .

Finally, for the case when all of the relays are near the destination, the channel

link qualities are taken to be: σ2
s,d = σ2

s,li
= 0.1, while σ2

li,lj
= σ2

li,d
= 10. Table

2.2 illustrates the results for N = 3 relays for the two previous cases. In all of

the provided numerical examples it is clear that the optimal power allocations

obtained via exhaustive search agree with that via analytical results for all the

considered scenarios. Also, the numerical results show that the optimal power

allocation obtained via exhaustive search has the same ordering as the one we got

in (2.52).

Appendix 1

In this appendix, we provide a proof for the tightness of the approximations we use

to derive the asymptotic SER expressions at high SNR. For space limitations, we

include only the proof for a single relay scenario using M-PSK modulations. The

proof for the general scenario follows easily in the same footsteps. The purpose for
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this proof is just to illustrate what we rigorously mean by ignoring the 1’s in the

Fq(·) functions in the SER expressions at high SNR.

For the single relay case the SER is given by,

PSER =Fq

(
1 +

bqP0σ
2
s,d

No sin2(θ)

)
Fq

(
1 +

bqP0σ
2
s,l1

No sin2(θ)

)

+ Fq

[(
1 +

bqP0σ
2
s,d

No sin2(θ)

)(
1 +

bqP1σ
2
l1,d

No sin2(θ)

)][
1 − Fq

(
1 +

bqP0σ
2
s,l1

No sin2(θ)

)]
.

(2.65)

Define the functions I1(x) and I2(x, y) as follows

I1(x) = F1

(
1 +

b1xσ2
s,d

No sin2(θ)

)
F1

(
1 +

b1xσ2
s,l1

No sin2(θ)

)
,

I2(x, y) = F1

[(
1 +

b1xσ2
s,d

No sin2(θ)

)(
1 +

b1yσ2
l1,d

No sin2(θ)

)][
1 − F1

(
1 +

b1xσ2
s,l1

No sin2(θ)

)]
.

(2.66)

where the function Fq(·) is defined for M-PSK (q = 1) in (2.18).

We are now going to prove that

lim
x→∞

x2I1(x) =
g2
1(1)

b2
1σ

2
s,dσ

2
s,l1

, lim
x,y→∞

xyI2(x, y) =
g1(2)

b2
1σ

2
s,dσ

2
l1,d

. (2.67)

The proofs are as follows.

lim
x→∞

x2 I1(x) = lim
x→∞

F1

(
1

x
+

b1σ
2
s,d

sin2 θ

)
F1

(
1

x
+

b1σ
2
s,l1

sin2 θ

)

= lim
x→∞

1

π2

∫ (M−1)π/M

0

∫ (M−1)π/M

0

1

( 1
x

+
b1σ2

s,d

sin2 θ1
)( 1

x
+

b1σ2
s,l1

sin2 θ2
)
dθ1dθ2

=
1

π2

∫ (M−1)π/M

0

∫ (M−1)π/M

0

lim
x→∞

1

( 1
x

+
b1σ2

s,d

sin2 θ1
)( 1

x
+

b1σ2
s,r1

sin2 θ2
)
dθ1dθ2

=
1

π2

∫ (M−1)π/M

0

∫ (M−1)π/M

0

sin2 θ1 sin2 θ2

b2
1σ

2
s,dσ

2
s,l1

dθ1dθ2 =
g1(1)2

b2
1σ

2
s,dσ

2
s,l1

.
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Next,

lim
x, y→∞

xy I2(x, y) = lim
x, y→∞

F1

(
(
1

x
+

b1σ
2
s,d

sin2 θ
)(

1

y
+

b1σ
2
r1,d

sin2 θ
)

)[
1 − F1

(
1 +

xb1σ
2
s,l1

sin2 θ

)]

=
1

π

∫ (M−1)π/M

0

lim
x, y→∞

1

( 1
x

+
b1σ2

s,d

sin2 θ
)( 1

y
+

b1σ2
l1,d

sin2 θ
)
dθ

− 1

π2

∫ (M−1)π/M

0

∫ (M−1)π/M

0

lim
x, y→∞

1

( 1
x

+
b1σ2

s,d

sin2 θ1
)( 1

y
+

b1σ2
r1,d

sin2 θ1
)(1 +

xb1σ2
s,l1

sin2 θ2
)
dθ1dθ2

=
1

π

∫ (M−1)π/M

0

sin4 θ

b2
1σ

2
s,dσ

2
l1,d

dθ =
g1(2)

b2
1σ

2
s,dσ

2
l1,d

,

where the function g1(·) is defined in (2.27). The approximate expression for the

SER for the single relay scenario then follows as provided in(2.53).

As can be seen, the proof for tightness depends on simple evaluation of some

limit functions as the SNR tends to infinity, and the proofs for the multinode case

and M-QAM follow in the same footsteps.
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Chapter 3

Relay Assignment Protocols for

Coverage Expansion

In the previous chapter, the relay nodes were assumed to be already assigned to

the source node. For practical implementation of cooperative communications in

wireless networks, we need to develop protocols by which nodes are assigned to

cooperate with each other. In most of the previous works on cooperation [18,22,23,

43], the cooperating relays are assumed to exist and are already coupled with the

source nodes in the network. These works also assumed a deterministic network

topology, i.e., deterministic channel gain variances between different nodes in the

network. If the random users’ spatial distribution, and the associated propagation

path losses between different nodes in the network are taken into consideration,

then these assumptions, in general, are no longer valid.

Moreover, it is of great importance for service providers to improve the coverage

area in wireless networks without cost of more infrastructure and under the same

quality of service requirements. This poses challenges for deployment of wireless

networks because of the difficult and unpredictable nature of wireless channels.
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In this chapter, we address the relay-assignment problem for implementing

cooperative diversity protocols to extend coverage area in wireless networks. We

study the problem under the knowledge of the users’ spatial distribution which

determines the channel statistics, as the variance of the channel gain between any

two nodes is a function of the distance between these two nodes. We consider an

uplink scenario where a set of users are trying to communicate to a base-station

(BS) or access point (AP) and propose practical algorithms for relay assignment.

To better assess the performance of the proposed protocols, we derive a lower

bound on the outage probability of any practical relay-assignment protocol. The

lower bound is derived by assuming a Genie-aided protocol.

Related work for relay assignment assumes the availability of a list of candidate

relays and develop relay-selection algorithms from among the list [56, 57]. In [57],

two approaches for selecting a best relay are provided: Best-Select in the Neighbor

Set and Best-Select in the Decoded Set. The Best-Select in the Neighbor Set

algorithm is based on the average received SNRs, or equivalently the distance,

while the latter is based on the instantaneous channel fading realization. Our

proposed protocols do not assume a given candidate list to search for the best

relay, instead we assume a random node distribution across the network and take

this into consideration when analyzing the performance. We further develop and

analyze distributed relay assignment protocols and benchmark their performance

by the derived lower bounds.

3.1 System Model

We consider a wireless network with a circular cell of radius ρ. The BS/AP is

located at the center of the cell, and N users are uniformly distributed within the
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cell. The probability density function of the user’s distance r from the BS/AP is

thus given by

q(r) =
2r

ρ2
, 0 ≤ r ≤ ρ, (3.1)

and the user’s angle is uniformly distributed between [0, 2π). Two communications

schemes are going to be examined in the sequel. Non-cooperative transmission, or

direct transmission, where users transmit their information directly to the BS/AP,

and cooperative communications where users can employ a relay to forward their

data.

In the direct transmission scheme, which is employed in current wireless net-

works, the signal received at the destination d (BS/AP) from source user s, can

be modeled as

ysd =
√

PKr−α
sd hsdx + nsd; (3.2)

where P is the transmitted signal power, x is the transmitted data with unit

power, hsd is the channel fading gain between the two terminals. The channel

fade of any link is modeled as a zero mean circularly symmetric complex Gaussian

random variable with unit variance. In (3.2), K is a constant that depends on the

antennas design, α is the path loss exponent, and rsd is the distance between the

two terminals. K, α, and P are assumed to be the same for all users. The term

nsd in (3.2) denotes additive noise. All the noise components are modeled as white

Gaussian noise (AWGN) with variance No. From (3.2), the received signal-to-noise

ratio is

SNR(rsd) =
| hsd |2 Kr−α

sd P

No
. (3.3)

We characterize the system performance in terms of outage probability. Outage

is defined as the event that the received SNR falls below a certain threshold γnc,

where the subscript nc denotes non-cooperative transmission. The probability of
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outage Pnc for non-cooperative transmission is defined as,

Pnc = P(SNR(r) ≤ γnc). (3.4)

The SNR threshold γnc is determined according to the application and the trans-

mitter/receiver structure. If the received SNR is higher than the threshold γnc,

the receiver is assumed to be able to decode the received message with negligible

probability of error. If an outage occurs, the packet is considered lost.

For the cooperation protocol, a hybrid version of the incremental and selection

relaying proposed in [22] is employed. In this hybrid protocol, if a user’s packet

is lost, the BS/AP broadcasts negative acknowledgement (NACK) so that the

relay assigned to this user can re-transmit this packet again. This introduces spa-

tial diversity because the source message can be transmitted via two independent

channels as depicted in Fig. 3.1. The relay will only transmit the packet if it is

capable of capturing the packet, i.e., if the received SNR at the relay is above the

threshold. In practice, this can be implemented by utilizing a cyclic redundancy

check (CRC) code in the transmitted packet. The signal received from the source

to the destination d and the relay l in the first stage can be modeled as,

ysd =
√

PKr−α
sd hsdx + nsd, ysl =

√
PKr−α

sl hslx + nsl. (3.5)

If the SNR of the signal received at the destination from the source falls below the

cooperation SNR threshold γc, the destination requests a second copy from the

relay. Then if the relay was able to receive the packet from the source correctly, it

forwards it to the destination

yld =
√

PKr−α
ld hldx + nld, (3.6)

The destination will then combine the two copies of the message x as follows,

yd = asdysd + aldyld; (3.7)
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Figure 3.1: Illustrating the difference between the direct and cooperative transmis-

sion schemes, and the coverage extension prospected by cooperative transmission.

where asd = I
√

PKl−α
sd h∗

sd, and ard =
√

PKl−α
rd h∗

rd. The formulation in (3.7)

allows us to consider two scenarios at the destination: if I = 1 then the combining

at the destination is a maximal-ratio-combiner (MRC), on the other hand if I = 0,

then the destination only uses the relay message for decoding. The later scenario

might be useful in case where the destination can not store an analogue copy of

the source’s message from the previous transmission.

3.2 Relay Assignment: Protocols and Analysis

In this section, we start with driving the average outage for direct transmission.

Then we calculate the conditional outage probability for cooperative transmission

and try to use the formulas to deduce the best relay location.
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3.2.1 Direct Transmission

As discussed before, the outage is defined as the event that the received SNR is

lower than a predefined threshold which we denote by γnc. The outage probability

for the direct transmission mode POD conditioned on the user’s distance can be

calculated as

POD(rsd) = P (SNR(rsd) ≤ γnc) = 1 − exp

(
−Noγncr

α
sd

KP

)
≃ Noγncr

α
sd

KP
, (3.8)

where the above follows because | hsd |2, the magnitude square of the channel fade,

has an exponential distribution with unit mean. The approximation in (3.8) is at

high SNR.

To find the average outage probability over the cell, we need to average over

the user distribution in (3.1). The average outage probability is thus given by

POD =

∫ ρ

0

POD(rsd)q(rsd)drsd =

∫ ρ

0

2rsd

ρ2

(
1 − exp

(
−Noγncr

α
sd

KP

))
drsd

= 1 − 2

αρ2

(
KP

Noγnc

) 2

α

Γ

(
2

α
,
Noγncρ

α

KP

)
≃ 2γncρ

αNo

KP (α + 2)
,

(3.9)

where Γ(·, ·) is the incomplete Gamma function, and it is defined as [58]

Γ(a, x) =

∫ x

0

exp−t ta−1dt. (3.10)

3.2.2 Cooperative Transmission: Conditional Outage Prob-

ability

Consider a source-destination pair that are rsd units distance apart. Let us compute

the conditional outage probability for given locations of the user and the helping

relay. Using (3.5), the SNR received at the BS/AP d and the relay l from the

source s is given by

SNR(rsd) =
| hsd |2 Kr−α

sd P

No
, SNR(rsl) =

| hsl |2 Kr−α
sl P

No
. (3.11)
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While from (3.7), the SNR of the combined signal received at the BS/AP is given

by

SNRd = I
| hsd |2 Kr−α

sd P

No
+

| hld |2 Kr−α
ld P

No
. (3.12)

The terms | hsd |2, | hsl |2, and | hld |2 are mutually independent exponential ran-

dom variables with unit mean. The outage probability of the cooperative trans-

mission POC conditioned on the fixed topology of the user s and the relay l can be

calculated as follows. Using the law of total probability we have

POC = Pr(Outage|SNRsd ≤ γc)Pr(SNRsd ≤ SNRsd) (3.13)

where the probability of outage is zero if SNRsd > γc. The outage probability

conditioned on the event that the source-destination link is in outage is given by

Pr(Outage|SNRsd ≤ γc) = Pr(SNRsl ≤ γc)+Pr(SNRsl > γc)Pr(SNRd ≤ γc|SNRsd ≤ γc),

(3.14)

where the addition of the above probabilities because they are disjoint events, and

the multiplication is because the source-relay link is assumed to fade independently

from the other links. The conditioning was removed for the same reason.

For the case where MRC is allowed at the destination, then the conditional

outage probability at the destination is given by

Pr(SNRd ≤ γc|SNRsd ≤ γc) =
Pr(SNRd ≤ γc)

Pr(SNRsd ≤ γc
. (3.15)

Using (3.15) and (3.14) in (3.13), the conditional outage probability for cooperative

communications with MRC can be calculated as

POC(rsd, rsl, rld) = (1 − f(γc, rsd)) (1 − f(γc, rsl))

+ f(γc, rsl)

[
1 − r−α

sd

r−α
sd − r−α

ld

f(γc, rsd) −
r−α
ld

r−α
ld − r−α

sd

f(γc, rld)

]

(3.16)
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where f(x, y) = exp(−Noxyα

KP
). The above expression can be simplified as follows

POC(rsd, rsl, rld) = (1 − f(γc, rsd)) −
r−α
ld

r−α
ld − r−α

sd

f(γc, rsl) (f(γc, rld) − f(γc, rsd)) .

(3.17)

For the I = 1 case, or when MRC is used at the destination, then using the

approximation exp(−x) ≃ 1− x + x2

2
for small x, the above outage expression can

be approximated at high SNR to

POC(rsd, rsl, rld) ≃
No

KP
rα
sd −

N2
o

2K2P 2
r2α
sd − rα

sd

rα
sd − rα

ld

×
[

No

KP
(rα

sd − rα
ld) +

N2
o

2K2P 2
((rα

ld − rα
sd)(2r

α
sl + rα

ld + rα
sd))

]

(3.18)

Simplifying the above expression, we get

POC(rsd, rsl, rld) ≃
N2

o

2K2P 2
r2α
sd

[
2
rα
sl

rα
sd

+
rα
ld

rα
sd

]
(3.19)

For the I = 0 case, or when no-MRC is used at the destination, then the

conditional outage expression in (3.15) simplifies to

Pr(SNRd ≤ γc|SNRsd ≤ γc) = Pr(SNRd ≤ γc). (3.20)

This is because the SNR received at the destination in this case is just due to the

signal received from the relay-destination path. The conditional outage expression

in this case can be shown to be given by

POC(rsd, rsl, rld) = (1 − f(γc, rsd)) [1 − f(γc, rld)f(γc, rsl)] . (3.21)

3.2.3 Optimal Relay Position

To find the optimal relay position, we need to find the pair (rsl, rld) that minimizes

the conditional outage probability expression in (3.17). First we consider the I = 1

scenario, where MRC is utilized at the receiver.
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MRC Case:

In the following, we are going to prove that the optimal relay position, under fairly

general conditions, is towards the source and on the line connecting the source and

destination. Examining the conditional outage expression in (3.17), it is clear that

for any value of rld, the optimal value for rsl that minimizes the outage expression

is the minimum value for rsl. And since for any value of rld the minimum rsl lies

on the straight line connecting the source and destination, we get the first intuitive

result that the optimal relay position is on this straight line.

Now, we prove that the optimal relay position is towards the source. Normal-

izing with respect to rsd by substituting x = rld

rsd
in (3.17) and 1 − x = rsl

rsd
, we

have

POC(x) =
N2

o

2K2P 2
r2α
sd [2(1 − x)α + xα] (3.22)

taking the derivative with respect to x we get

∂POC(x)

∂x
=

N2
o

2K2P 2
r2α
sd

[
−2α(1 − x)α−1 + αxα−1

]
. (3.23)

Equating the above derivative to zero we get the unique solution

x∗ =
1

1 +
(

1
2

) 1

α−1

. (3.24)

Checking for the second order conditions, we get, that P ′′

OC(x) ≥ 0, which shows

that the problem is convex, and x∗ specified in (3.24) is indeed the optimal relay

position.

Note from the optimal relay position in (3.24), that for propagation path loss

α ≥ 2, we have that x∗ > 0.5, which means that the optimal relay position is

closer to the source node. In Fig. 3.2, we plot the conditional outage probability

expression for different source-destination separation distances, and different values
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Figure 3.2: The effect of the relay location on the outage probability.

for the relay location x. It is clear from the figure that the optimal relay position is,

for a lot of cases, around x = 0.6 to x = 0.75. This is the motivation for proposing

the nearest-neighbor relay selection protocol in the next Section.

No-MRC case:

Next, we determine the optimal relay location for the I = 0 case. From the

conditional outage expression in (3.21), it can be seen that if we have the freedom

to put the relay anywhere in the two-dimensional plane of the source-destination

pair, then the optimal relay position should be on the line joining the source

and the destination- this is because of the fact that if the relay is located at any

position in the two-dimensional plane, then its distances to both the source and the

destination are always larger than their corresponding projections on the straight

line joining the source-destination pair. In this case, we can substitute for rld

by rsd − rsl. The optimal relay position can be found via solving the following
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optimization problem

r∗sl = arg min
rsl

POC(rsd, rsl), subject to 0 ≤ rsl ≤ rsd. (3.25)

Since the minimization of the expression in (3.17) with respect to rsl is equivalent to

minimizing the exponent in the second bracket, solving the optimization problem

in (3.25) is equivalent to solving

r∗sl = arg min
rsl

rη
sl + (rsd − rsl)

η , subject to 0 ≤ rsl ≤ rsd. (3.26)

The above optimization problem can be simply analytically solved, and the optimal

relay position can be shown to be equal to r∗sl = rsd

2
for η > 1. Therefore, the

optimal relay position is exactly in the middle between the source and destination

when no MRC is used at the destination. For this case, we are able to drive a lower

bound on the performance of any relay assignment protocol as will be discussed

later.

3.3 Relay Assignment Algorithms

In this section, we propose two distributed relay assignment algorithms. The first

is a user-user cooperation protocol in which the nearest neighbor is assigned as

a relay. The second considers the scenario where fixed relays are deployed in the

network to help the users.

3.3.1 Nearest-Neighbor Protocol

In this subsection, we propose the Nearest-Neighbor protocol for relay assignment

that is both distributed and simple to implement. In this protocol, The relay

assigned to help is the nearest neighbor to the source as demonstrated in Fig. 3.3.
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Figure 3.3: Illustrating cooperation under nearest neighbor protocol: The nearest

neighbor is at a distance rsl from the source. Therefore, the shaded area should

be empty from any users.

The source sends a “Hello” message to his neighbors and selects the signal received

with the largest SNR, or the shortest arrival time, to be its closest neighbor.

The outage probability expression, which we refer to as PONN , for given source-

relay-destination locations is still given by (3.17). To find the total probability,

we need to average over all possible locations of the user and the relay. The

user’s location distribution with respect to the BS/AP is still given as in the direct

transmission case (3.1). The relay’s location distribution, however, is not uniform.

In the sequel we calculate the probability density function of the relay’s location.

According to our protocol, the relay is chosen to be the nearest neighbor to the

user. The probability that the nearest neighbor is at distance rsl from the source is

equivalent to calculating the probability that the shaded area in Fig. 3.3 is empty.
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Denote this area, which is the intersection of the two circles with centers s and

d, by A(rsd, rsl). For 0 < rsl ≤ ρ − rsd, the area of intersection is a circle with

radius rsl and center s. The probability density function of rsl, prsl
(x), can be

calculated as

prsl
(x) =

∂

∂x
(1 −P(rsl > x))

=
∂

∂x

(
1 −

(
1 − x2

ρ2

)N−1
)

=
2(N − 1)x

ρ2

(
1 − x2

ρ2

)N−2

, 0 < rsl ≤ ρ − rsd.

(3.27)

For ρ− rsd < rsl ≤ ρ + rsd, the intersection between the two circles can be divided

into three areas: 1) the area of the sector acb in circle s; 2) area of the triangle asb;

3) area enclosed by the chord ab in circle d. Hence the intersection area, denoted

by A(rsd, rsl) can be written as

A(rsd, rsl) = r2
slθ +

1

2
r2
sl sin(2θ) +

(
ρ2φ − 1

2
ρ2 sin(2φ)

)
(3.28)

where θ = cos−1
(

ρ2−r2
sl
−r2

sd

2rslrsd

)
, and φ = cos−1

(
r2
sl
−ρ2−r2

sd

2ρrsd

)
. The probability density

function for rsl for this range is given by

prsl
(x) =

∂

∂x

(
1 −

(
1 − A(rsd, rsl)

πρ2

)N−1
)

, ρ − rsd < rsl ≤ ρ + rsd. (3.29)

This completely defines the probability density function for the nearest neigh-

bor and the average can be found numerically as the integrations are extremely

complex. In the sequel, we derive an approximate expression for the outage prob-

ability under the following two assumptions. Since the relay is chosen to be the

nearest neighbor to the source, the SNR received at the relay from the source is

rarely below the threshold γc, hence, we assume that the event of the relay being

in outage is negligible. The second assumption is that the nearest neighbor always
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lies on the intersection of the two circles, as points a or b in Fig. 3.3. This second

assumption is a kind of worst case scenario, because a relay at distance rsl from the

source can be anywhere on the arc âcb, and a worst case scenario is to be at points

a or b. This simplifies the outage calculation as the conditional outage probability

(3.17) is now only a function of the source distance rsl as follows

PONN(rsd) ≃ 1 − f(γc, rsd) −
Noγc

KP
rγ
sdf(γc, rsd). (3.30)

Averaging (3.30) over the user distribution (3.1) and using the definition of the

incomplete Gamma function in (3.10), we get

PONN ≃ 1 − 2

αρ2

(
KP

Noγc

) 2

α

Γ

(
2

α
,
Noγcρ

α

KP

)
− 2

αρ2

(
KP

Noγc

) 2

α

Γ

(
2

α
+ 1,

Noγcρ
α

KP

)

(3.31)

Using the same approximation as above, the conditional outage probability for

the no-MRC case is given by

PONN(rsd) = (1 − f(γc, rsd))
2 . (3.32)

Averaging the above expression over rsd we have

PONN ≃ 1 − 4

αρ2

(
KP

Noγc

) 2

α

Γ

(
2

α
,
Noγcρ

α

KP

)
+

2

αρ2

(
KP

2Noγc

) 2

α

Γ

(
2

α
,
2Noγcρ

α

KP

)
.

(3.33)

3.3.2 Fixed Relays Strategy

In some networks, it might be easier to deploy fixed nodes in the cell to act as

relays. This will reduce the overhead of communications between users to pair

for cooperation. Furthermore, in wireless networks users who belong to different

authorities might act selfishly to maximize their own gains, i.e., selfish nodes. For

such scenarios protocols for enforcing cooperation or to introduce incentives for
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the users to cooperate need to be implemented. In the subsection, we propose

deploying nodes in the network that act as relays and do not have their own

information. Each user will be associated with one relay to help in forwarding the

dropped packets. The user can select the closets relay, which can be implemented

using the exchange of ”Hello” messages and selecting the signal with shortest

arrival time, for example.

Continuing with our circular model for the cell, with uniform users distribution,

the relays are deployed uniformly by dividing the cell into a finite number m of

equal sectors, equal to the number of fixed relays to be deployed. Fig. 3.4 depicts

a network example for m = 3. The relays are deployed at a distance rld from

the destination. This distance should be designed to minimize the average outage

probability as follows

r∗ld = arg min POC(rld), s.t. 0 < rld < ρ (3.34)

where the average outage probability POC(rld) is defined as

POC =

∫ ρ

0

2lsd
ρ2

∫ π
m

− π
m

POC(rsd, rsl(θ), rld)
m

2π
dθdlsd (3.35)

where POC(lsd, lsr, lrd) is defined in (3.17), and the distance from the source to the

fixed relay is given by

rsl(θ) =
√

r2
sd + r2

ld − 2rsdrld cos(θ), (3.36)

where θ is uniformly distributed between [− π
m

, π
m

]. Solving the above optimization

problem is very difficult, hence, we are going to consider the following heuristic. In

the Nearest-Neighbor protocol, the relay was selected to be the nearest neighbor

to the user. Here, we are going to calculate the relay position that minimizes the

mean square distance between the users in the sector and the relay. Without loss of

67



Figure 3.4: Illustrating cooperation under nearest neighbor protocol: The nearest

neighbor is at a distance rsl from the source. Therefore, the shaded area should

be empty from any users.

generality, assuming the line dividing the sector to be the x-axis, the mean square

distance between a user at distance r and angle θ from the center of the cell and

the relay is given by the following function

q(rld) = E
(
‖rejθ − rld‖2

)
, (3.37)

where j =
√
−1, and E denotes the joint statistical expectation over the random

variables r and θ. Solving for the optimal rld that minimizes q(rld)

r∗ld = arg min E
(
‖rejθ − rld‖2

)
(3.38)

we get

r∗ld =
2m

3π
sin
( π

m

)
ρ. (3.39)

Fig. 3.5 depicts the average outage probability versus the number of relays

deployed in the network for different cell sizes. The numerical results are for the
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Figure 3.5: Average outage probability versus the number of relays in fixed relay-

ing.

following parameters: K = 1, α = 3, P = 0.05, R = 1, and No = 10−12. We

can see from the results that the performance saturates at approximately m = 6

relays, which suggests that dividing the cell into 6 sectors with a relay deployed in

each sector can provide good enough performance.

3.3.3 Lower Bound on the Performance: The Genie-aided

algorithm:

For both the MRC and no-MRC case, we determined the optimal relay location.

For the MRC case, the optimal relay position is towards the source and can be

determined according to (3.24. For the no-MRC case, we showed that the optimal

relay position is in the mid-point between the source and the destination. We will

drive a lower bound on the outage probability for any relay assignment protocol

based on a Genie aided approach. This bound serves as a benchmark for the perfor-
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mance of the Nearest-Neighbor protocol, and the fixed-relaying scheme proposed

in the chapter. The Genie-Aided protocol works as follows. For any source node

in the network, a Genie is going to put a relay at the optimal position on the line

joining this source node and the destination (BS/AP).

Next we analyze the average outage performance of the Genie-Aided proto-

col. For the MRC case, substituting the optimal relay position in (3.24) in the

conditional outage expression in (3.17) we get

POC(rsd) = 1 − f(γc, rsd) −
1

1 − x∗ f(γc, (1 − x∗)rsd) (f(γc, x
∗rsd) − f(γc, rsd)) .

(3.40)

Averaging the above expression over the user distribution, the average outage

probability for the Genie-aided lower bound for the MRC case I = 1 is given by

POG,1 = 1 − 2

αρ2

(
KP

Noγc

) 2

α

Γ

(
2

α
,
Noγcρ

α

KP

)

− 1

1 − (x∗)α

2

αρ2

(
KP

Noγc ((1 − x∗)α + (x∗)α)

) 2

α

Γ

(
2

α
,
((1 − x∗)α + (x∗)α) Noγcρ

α

KP

)

+
1

1 − (x∗)α

2

αρ2

(
KP

Noγc ((1 − x∗)α + 1)

) 2

α

Γ

(
2

α
,
((1 − x∗)α + 1)Noγcρ

α

KP

)

(3.41)

We will denote the average probability of outage for the no-MRC case by POG,2.

Substituting the optimal relay position r∗sl in the conditional outage expression

(3.17), we get

POG(rsd) =

(
1 − exp(−Noγcr

α
sd

KP
)

)(
1 − exp(−2Noγc

(
rsd

2

)α

KP
)

)
. (3.42)
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Averaging the above expression over all possible users’ locations,

POG,2 = 1 +
2

αρ2

(
kP

Noγc (1 + 21−α)

) 2

α

Γ

(
2

α
,
Noγc (1 + 21−α) ρα

kP

)

− 2

αρ2

(
kP

Noγc

) 2

α

Γ

(
2

α
,
Noγcρ

α

kP

)
− 2

αρ2

(
kP

Noγc21−α

) 2

α

Γ

(
2

α
,
Noγc2

1−αρα

kP

)
.

(3.43)

3.4 Numerical Results

We performed some computer simulations to compare the performance of the pro-

posed relay-assignment protocols and validate the theoretical results we derived in

this chapter. In all of our simulations, we compared the outage performance of

three different transmission schemes: Direct transmission, Nearest-Neighbor pro-

tocol, and fixed-relaying. In all of the simulations, the channel fading between any

two nodes (either a user and the BS/AP or two users) is modeled as a random

Rayleigh fading channel with unit variance.

For fairness in comparison between the proposed cooperative schemes and the

direct transmission scheme, the spectral efficiency is kept fixed in both cases and

this is done as follows. Since a packet is either transmitted once or twice in the

cooperative protocol, the average rate in the cooperative case can be calculated as

E(Rc) = RcPOD,γc
(rsd) +

Rc

2
POD,γc

(rsd). (3.44)

where Rc is the spectral efficiency in b/s/Hz for cooperative transmission, and

POD,γc
(rsd) denotes the outage probability for the direct link at rate Rc. In (3.44),

note that one time slot is utilized if the direct link is not in outage, and two time

slots are utilized if it is in outage. Note that the later scenario is true even if the

relay does not transmit because the time slot is wasted anyway. Averaging over
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the source destination separation, the average rate is given by

R̄c =
Rc

2

(
1 +

2

αρ2

(
KP

γcNo

) 2

α

Γ

(
2

α
,
Noγcρ

α

KP

))
(3.45)

We need to calculate the SNR threshold γc corresponding to transmitting at rate

Rc. The resulting SNR threshold γc should generally be larger than γnc required

for non-cooperative transmission. It is in general very difficult to find an explicit

relation between the SNR threshold γc and the transmission rate Rc, and thus we

render to a special case to capture the insights of this scenario. Let the outage

be defined as the event that the mutual information I between two terminals

is less than some specific rate R [31]. If the transmitted signals are Gaussian,

then according to our channel model, the mutual information is given by I =

log(1 + SNRsd). The outage event for this case is defined as

OI , {hsd : I < R} =
{
hsd : SNRsd < 2R − 1

}
. (3.46)

The above equation implies that if the outage is defined in terms of the mutual

information and the transmitted signals are Gaussian, then the SNR threshold

γc and the spectral efficiency R are related as γc = 2R
c − 1, i.e., they exhibit an

exponential relation. 1 For the sake of comparison R̄c should be equal to R, the

spectral efficiency of direct transmission. Thus for a given R one should solve

for Rc. This can lead to many solutions for Rc, and we are going to choose the

minimum Rc [22]

1Intuitively, under a fixed modulation scheme and fixed average power constraint, one can

think of the SNR threshold as being proportional to the minimum distance between the con-

stellation points, which in turn depends on the number of constellation points for fixed average

power, and the later has an exponential relation to the number of bits per symbol that determines

the spectral efficiency R.
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In the following simulation comparisons, we study the outage probability per-

formance when varying three basic quantities in our communication setup: the

transmission rate, the transmit power, and the cell radius. In all the scenarios,

we consider direct transmission, nearest-neighbor, fixed relaying with 6 relays de-

ployed in the network, and the Genie-aided lower bound. For all the cooperative

transmission cases, both MRC and no-MRC is examined.

Fig. 3.6 depicts the outage probability versus the transmit power in dBW. It

is clear from the slopes of the curves that cooperation yields more steeper curves

due to the diversity gain. Fixed relaying with MRC has the best performance, and

it is very close to the Genie lower bound with no MRC. Fixed relay has generally

better performance than nearest-neighbor protocols. Cooperation yields around

7dbW savings in the transmit power with respect to direct transmission

Fig. 3.7 depicts the outage probability curves versus the cell radius. Fixed

relaying also has the best performance. There is a 200% increase in the cell radius

at an 0.01 outage. We can see that the gap between direct transmission and

cooperation decrease with increasing the cell size. The rationale here is that with

increasing the cell size, the probability of packets in outage increases, and hence,

the probability that the relay will forward the source’s packet increases. This

reduces the bandwidth efficiency of the system, and hence increases the overall

outage probability. This tradeoff between the spectral efficiency and the diversity

gain of cooperation makes direct transmission good enough for larger cell sizes.

Similar conclusions can be drawn out of Fig. 3.8, which plots the outage prob-

ability versus the spectral efficiency.
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Chapter 4

Cognitive Cooperative

Multiple-Access

Despite the promised gains of cooperative communication demonstrated in the

previous chapters, the impact of cooperation on higher network levels is not com-

pletely understood yet. Most of the previous work on cooperation assume the user

has always a packet to transmit which is not generally true in a wireless network.

For example in a network, most of the sources are bursty in nature which leads

to periods of silence in which the users may have no data to transmit. Such a

phenomenon may affect important system parameters that are relevant to higher

network layers, for example, buffer stability and packet delivery delay.

We focus on the multiple-access layer in this chapter. One can ask many

important questions now. Can we design cooperation protocols taking these higher

layer network features into account? Can the gains promised by cooperation at the

physical layer be leveraged to the multiple-access layer? More specifically, what is

the impact of cooperation on important multiple-access performance metrics such

as stable throughput region and packet delivery delay? We try to address all of
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these important questions to demonstrate the possible gains of cooperation at the

multiple-access layer. A slotted time division multiple-access (TDMA) framework

in which each time slot is assigned only to one terminal, i.e., orthogonal multiple-

access is considered. If a user does not have a packet to transmit in his time slot,

then this time slot is not utilized. These unutilized time slots are wasted channel

resources that could be used to enhance the system performance. Recently, the

concept of cognitive radio has been introduced to allow the utilization of unused

channel resources by enabling the operation of a secondary system overlapping

with the original system (see [59] and references therein).

We propose a novel cognitive multiple-access strategy with the concept of co-

operation. In the proposed protocol the cognitive relay tries to “smartly” utilize

the periods of source silence to cooperate with other terminals in the network,

i.e., to increase the reliability of communications against random channel fades.

In particular, when the relay senses the channel for empty time slots, the slots

are then used to help other users in the network by forwarding their packets lost

in some previous transmissions. Thus this new protocol has cooperative cognitive

aspects in the sense that unused channel resources are being utilized by the relay

to cooperate with other users in the network. It should be pointed out that the

proposed cooperative protocol does not result in any bandwidth loss because there

are no channel resources reserved for the relay to cooperate. We demonstrate later

that this important feature of the proposed protocol can lead to significant gains

especially in high spectral efficiency regimes.

We develop two protocols to implement this new cooperative cognitive multiple-

access (CCMA) strategy. The first protocol is CCMA within a single frame

(CCMA-S), where the relay keeps a lost packet no more than one time frame
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and then drops the packet if it was not able to deliver it successfully to the desti-

nation. The dropped packet then has to be retransmitted by the originating user.

It turns out that in this protocol the relay’s queue is always bounded, and that the

terminals queues are interacting. To analyze the stability of the system’s queues

we resort to a stochastic dominance approach. Analyzing the stability of inter-

acting queues is a difficult problem that has been addressed for ALOHA systems

initially in [60]. Later in [61], the dominant system approach was explicitly intro-

duced and employed to find bounds on the stable throughput region of ALOHA

with collision channel model. Many other works followed that to study the sta-

bility of ALOHA. In [62], necessary and sufficient conditions for the stability of

a finite number of queues were provided, however, the stable throughput region

was only explicitly characterized for a 3-terminals system. In [63], the authors

provided tighter bounds on the stable throughput region for the ALOHA system

using the concept of stability ranks, which was also introduced in the same paper.

The stability of ALOHA systems under a multi-packet reception model (MPR)

was considered in [64] and [65]. Characterizing the stable throughput region for

interacting queues with M > 3 terminals is still an open problem. In CCMA-S,

the interaction between the queues arise due to the role of the relay in enabling co-

operation, which is different from the intrinsic cause of interaction in the ALOHA

system. To analyze the stability of CCMA-S, we introduce a new dominant system

to resolve this interaction.

The second protocol that we propose, named CCMA-Multiple-enhanced (CCMA-

Me), differs in the way the relay handles the lost packets. In CCMA-Me, if a packet

is captured by the relay and not by the destination, then this packet is removed

from the corresponding user’s queue and it becomes the relay’s responsibility to
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deliver it to the destination. The term enhanced refers to the design of the pro-

tocol, as the relay only helps the users with inferior channel gains reflected in the

distances from the terminals to the destination. Different from CCMA-S, the size

of the relay’s queue can possibly be unbounded and so its stability must be taken

into consideration.

In addition to characterizing the stable throughput region of our proposed

protocols, we also analyze the queueing delay performance. Delay is an important

performance measure and network parameter that may affect the tradeoff between

rate and reliability of communication. Delay analysis for interacting queues is a

notoriously hard problem that has been investigated in [66] and [67] for ALOHA.

We consider a symmetric 2-users scenario when analyzing the delay performance

of the proposed protocols.

We summarize the major contributions in this chapter in the following.

• Different from the main thrust of work on cooperative communications that

focus on the physical layer, we investigate the impact of cooperation on

higher network levels, specifically, the multiple-access layer. Moreover, the

approach we are taking has a cross-layer nature as we consider physical layer

parameters in our framework.

• We consider the intrinsic role of source burstiness that results in periods of

silence and wasted channel resources in the design of our proposed multiple-

access protocol. In particular, we propose a cognitive multiple-access strategy

that enables cooperation during the unused channel resources. Thus the

proposed cooperation protocol causes no bandwidth loss.

• We analyze the performance of our proposed protocol in terms of impor-

tant network measures. In particular, we characterize the maximum stable
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throughput region and the delay performance of the proposed protocols.

• We demonstrate that our proposed protocols have significantly better per-

formance over TDMA without relaying, ALOHA, selection, and incremental

decode-and-forward especially at high spectral efficiency regimes.

• This work demonstrates a very important fact that the design and develop-

ment of cooperation protocols for wireless networks should have a broader

view of different network layers as this cross-layer view can lead to significant

performance gains.

Related work that study the impact of cooperation on the multiple-access lay-

ers are few. Cooperation in random access networks has been considered in [68],

[69], [70]. In [69], the authors proposed a distributed version of network diversity

multiple-access (NDMA) [71] protocol and they provided pairwise error probability

analysis to demonstrate the diversity gain. In [68] and [70], the authors presented

the notion of utilizing the spatial separation between users in the network to assign

cooperating pairs (also groups) to each other. In [70], spread spectrum random

access protocols were considered in which nearby inactive users are utilized to gain

diversity advantage via cooperation assuming a symmetrical setup where all ter-

minals are statistically identical. However, the previously cited works still focus

on physical layer parameters as the diversity gains achieved and the outage prob-

ability. The work in this chapter presents, to the best of our knowledge, the first

true investigation of the impact of cooperation on the multiple-access layer.
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Figure 4.1: Network and channel Model.

4.1 System Model

We consider the uplink of a TDMA system. The network consists of a finite number

M < ∞ of source terminals numbered 1, 2, · · · , M , a relay node l1, and a destina-

tion node d, see Fig. 4.1. Let T = {M, l} denote the set of transmitting nodes,

where M = {1, 2, · · · , M} is the set of source terminals, and D = {l, d} denotes

the set of receiving nodes or possible destinations. For simplicity of presentation,

in the following we use terminal to refer to a source terminal.

First, we describe the queueing model for the multiple-access channel. Each

of the M terminals and the relay l has an infinite buffer for storing fixed length

packets. The channel is slotted, and a slot duration is equal to a packet duration.

The arrival process at any terminal’s queue is independent identically distributed

(i.i.d.) from one slot to another, and the arrival processes are independent from

one terminal to another. The arrival process at the i−th queue (i ∈ {1, 2, · · · , M})

1We use l to denote the relay not to confuse with r that denotes distance
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is assumed stationary with mean λi. Terminals access the channel by dividing the

channel resources, time in this case, among them, hence, each terminal is allocated

a fraction of the time. Let Ω = [ω1, ω2, · · · , ωM ] denote a resource-sharing vector,

where ωi ≥ 0 is the fraction of the time allocated to terminal i ∈ M, or it can

represent the probability that terminal i is allocated the whole time slot [72].

The later notation is used as it allows to consider fixed duration time slots with

continuous values of the resource-sharing vector. A time frame is defined as M

consecutive time slots. The set of all feasible resource-sharing vectors is specified

as follows

̥ ,

{
Ω = [ω1, ω2, · · · , ωM ] ∈ ℜM

+ :
∑

i∈M
ωi ≤ 1

}
. (4.1)

A fundamental performance measure of a communication network is the sta-

bility of its queues. Stability can be loosely defined as having a certain quantity

of interest kept bounded. In our case, we are interested in the queue size and the

packet delivery delay to be bounded. More rigourously, stability can be defined

as follows. Denote the queue sizes of the transmitting nodes at any time t by the

vector Qt = [Qt
i, i ∈ T ]. We adopt the following definition of stability used in [62]

Definition 1 Queue i ∈ T of the system is stable, if

lim
t→∞

Pr
[
Qt

i < x
]

= F (x) and lim
x→∞

F (x) = 1. (4.2)

If lim
x→∞

lim
t→∞

inf Pr [Qt
i < x] = 1, the queue is called substable.

From the definition, if a queue is stable then it is also substable. If a queue is

not substable, then it is unstable. An arrival rate vector [λ1, λ2, · · · , λM ] is said to

be stable if there exists a resource-sharing vector Ω ∈ ̥ such that all the queues

in T = {M, l} are stable. The multidimensional stochastic process Qt can be

easily shown to be an irreducible and aperiodic discrete-time Markov process with
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countable number of states and state space ∈ ZM+1
+ . For such a Markov chain, the

process is stable if and only if there exists a positive probability for every queue

being empty [63], i.e.,

lim
t→∞

Pr [Qi(t) = 0] > 0, i ∈ T . (4.3)

If the arrival and service processes of a queueing system are strictly stationary,

then one can apply Loynes’s theorem to check for stability conditions [73]. This

theorem states that if the arrival process and the service process of a queueing

system are strictly stationary, and the average arrival rate is less than the average

service rate, then the queue is stable; if the average arrival rate is greater than the

average service rate then the queue is unstable.

Next, we describe the physical channel model. The wireless channel between

any two nodes in the network is modeled as a Rayleigh narrowband flat fading

channel with additive Gaussian noise. The transmitted signal also suffers from

propagation path loss that causes the signal power to attenuate with distance.

The signal received at a receiving node j ∈ D from a transmitting node i ∈ T at

time t can be modeled as

yt
ij =

√
Gr−γ

ij ht
ijx

t
i + nt

ij, i ∈ T , j ∈ D, i 6= j, (4.4)

where G is the transmitting power, assumed to be the same for all transmitting

terminals, rij denotes the distance between the two nodes i, j, γ is the path loss

exponent, and ht
ij captures the channel fading coefficient at time t and is modeled

as i.i.d. zero-mean, circularly-symmetric complex Gaussian random process with

unit variance. The term xt
i denotes the transmitted packet with average unit power

at time t, and nt
ij denotes i.i.d. additive white Gaussian noise with zero mean and

variance No. Since the arrival, the channel gains, and the additive noise processes
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are assumed stationary, we can drop the index t without loss of generality. We

consider the scenario in which the fading coefficients are known to the appropriate

receivers, but are not known at the transmitters.

In this chapter, we characterize the success and failure of packet reception

by outage events and outage probability, which is defined as follows. For a tar-

get signal-to-noise (SNR) ratio β, if the received SNR as a function of the fad-

ing realization h is given by SNR(h), then the outage event O is the event that

SNR(h) < β, and Pr [SNR(h) < β] denotes the outage probability. This definition

is equivalent to the capture model in [74], [75]. The SNR threshold β is a func-

tion of different parameters in the communication system; it is a function of the

application, the data rate, the signal-processing applied at encoder/decoder sides,

error-correction codes, and other factors. For example, varying the data rate and

fixing all other parameters, the required SNR threshold β to achieve certain sys-

tem performance is a monotonically increasing function of the data rate. Also,

increasing the signal-processing and encode/decoder complexity in the physical

layer reduces the required SNR threshold β for a required system performance.

For the channel model in (4.4), the received SNR of a signal transmitted be-

tween two terminals i and j can be specified as follows

SNRij =
| hij |2 r−γ

ij G

No

, (4.5)

where | hij |2 is the magnitude channel gain square and has an exponential dis-

tribution with unit mean. The outage event for a SNR threshold β is equivalent

to

Oij = {hi,j : SNRij < β} = {hi,j :| hij |2<
βNor

γ
i,j

G
} (4.6)
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Accordingly, the probability of outage is given by,

Pr [Oij ] = Pr

[
| hij |2<

βNor
γ
i,j

G

]
= 1 − exp

(
−βNor

γ
i,j

G

)
, (4.7)

where the above follows from the exponential distribution of the received SNR.

Since we will use the above expression frequently in our subsequent analysis, and

for compactness of representation, we will use the following notation to denote the

success probability (no outage) at SNR threshold β

fij = exp

(
−

βNor
γ
i,j

G

)
. (4.8)

4.2 Cooperative Cognitive Multiple Access (CCMA)

Protocols

In a TDMA system without relays, if a terminal does not have a packet to trans-

mit, its time slot remains idle, i.e., wasted channel resources. We investigate the

possibility of utilizing these wasted channel resources by employing a relay. In

this section, we introduce our proposed cognitive multiple-access strategy based

on employing relays in the wireless network. Furthermore, we develop two pro-

tocols to implement this new approach. We assume that the relay can sense the

communication channel to detect empty time slots and we assume that the errors

and delay in packet acknowledgement feedback is negligible.

First, we describe the new multiple-access strategy. Due to the broadcast

nature of the wireless medium, the relay can listen to the packets transmitted

by the terminals to the destination. If the packet is not received correctly by the

destination, the relay stores this packet in its queue, given that it was able to decode

this packet correctly. Thus, the relay’s queue contains packets that have not been
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transmitted successfully by the terminals. At the beginning of each time slot, the

relay listens to the channel to check whether the time slot is empty (not utilized

for packet transmission) or not. If the time slot is empty the relay will retransmit

the packet at the head of its queue, hence utilizing this channel resource that was

previously wasted in a TDMA system without a relay. Moreover, this introduces

spatial diversity in the network as the channel fades between different nodes in

the network are independent. In the following we develop two different protocols

to implement the proposed cognitive multiple-access approach . The proposed

protocol is cognitive in the sense that it introduces a relay in the network that

tries detecting unutilized channel resources and use them to help other terminals

by forwarding packets lost in previous transmissions.

4.2.1 CCMA-Single frame (CCMA-S)

The first protocol that we propose is cooperative cognitive multiple-access within

a single frame duration or (CCMA-S). The characteristic feature of CCMA-S is

that any terminal keeps its lost packet in its queue until it is captured successfully

at the destination. CCMA-S operates according to the following rules.

• Each terminal transmits the packet at the head of its queue in its assigned

slot, if the terminal’s queue is empty the slot is free.

• If destination receives a packet successfully, it sends an ACK which can be

heard by both the terminal and the relay. If the destination does not succeed

in receiving the packet correctly but the relay does, then the relay stores this

packet at the end of its queue. The corresponding terminal still keeps the

lost packet at the head of its queue
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• The relay senses the channel, and at each empty time slot the relay trans-

mits the packet at the head of its queue, if its queue is nonempty. If the

transmitted packet is received correctly by the destination it sends an ACK

and the corresponding terminal removes this packet from its queue.

• If the relay does not succeed in delivering a packet to the destination during

a time frame starting from the time it received this packet, then the relay

drops the packet from its queue. In this case the corresponding terminal

becomes responsible for delivering the packet to the destination.

Following are some important remarks on the above protocol. According to

the above description of CCMA-S, the relay’s queue has always a finite number of

packets (at most has M backlogged packets). This follows because according to

the protocol, the relay can have at most one packet from each terminal. Thus the

stability of the system is only determined by the stability of the terminals’ queues.

Secondly, successful service of a packet in a frame depends on whether the other

terminals have idle time slots or not. Therefore individual terminals’ queues are

interacting.

4.2.2 CCMA-Multiple frames (CCMA-M)

In this section, we describe the implementation of protocol CCMA-M. The main

difference between protocols CCMA-S and CCMA-M is in the role of the relay and

the behavior of the terminals’ regarding their backlogged packets. More specifically,

a terminal removes a packet from its queue if it is received successfully by either

the destination or the relay. CCMA-M operates according to the following rules.

• Each terminal transmits the packet at the head of its queue in its assigned

time slot. If the queue is empty the time slot is free.
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• If a packet is received successfully by either the destination or the relay, the

packet is removed from the terminal’s queue (the relay needs to send an ACK

if one is not heard by the destination in this case).

• If a packet is not received successfully by both the relay and the destination,

the corresponding terminal retransmits this packet in its next assigned time

slot.

• At each sensed empty time slot, the relay retransmits the packet at the head

of its queue.

One can now point out the differences between the queues in system CCMA-S

and CCMA-M: i) The size of the relay’s queue can possibly grow in CCMA-M as

it can have more than one packet from each terminal, however, it can not exceed

size M in CCMA-S; ii) The terminal’s queues in CCMA-M are not interacting as

in CCMA-S. This is because the terminal removes the packets which were received

correctly by the relay or the destination. In other words, servicing the queue of any

terminal depends only on the channel conditions from that terminal to the desti-

nation and relay, and does not depend on the status of the other terminals’ queues;

iii) The stable throughput region of CCMA-M requires studying the stability of

both the terminals’ queues and the relay’s queue.

4.3 Stability Analysis

The aim of this section is to characterize the stable throughput region of the

proposed cooperation protocols. Furthermore, we compare our results against the

stable throughput regions of TDMA without relaying, ALOHA, selection decode-

and-forward, and incremental decode-and-forward.
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4.3.1 Stability Analysis of CCMA-S

The 2-Terminal Case

In CCMA-S, we observed in the previous section that the relay’s queue size is al-

ways finite, hence it is always stable. For the 2-terminal case, the queues evolve as a

two dimensional Markov-chain in the first quadrant. From the protocol description

in the previous Section, one can observe that the system of queues in CCMA-S

are interacting. In other words, the transition probabilities differ according to

whether the size of the queues are empty or not. For example, if one of the two

terminals’ queues was empty for a long time, then the relay serves the lost packets

from the other terminal more often. On the other hand, if one of the two terminals

queues never empties, then the other terminal will never get served by the relay.

Studying stability conditions for interacting queues is a difficult problem that has

been addressed for ALOHA systems [61], [63]. The concept of dominant systems

was introduced and employed in [61] to help finding bounds on the stability region

of ALOHA with collision channel. The dominant system in [61] was defined by

allowing a set of terminals with no packets to transmit to continue transmitting

dummy packets.

To analyze the stability of CCMA-S, we develop a dominant system to decouple

the interaction of the terminals originating from the role of the relay in cooperation.

Using our developed dominant system we are able to characterize the stability

region of CCMA-S for a fixed resource sharing vector, and hence the whole stability

region. The following Lemma states the stability region of CCMA-S for a fixed

resource sharing vector [ω1, ω2].

Lemma 1 The stability region of CCMA-S for a fixed resource sharing vector
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[ω1, ω2] is given by R(S1)
⋃R(S2) where

R(S1) =
{
[λ1, λ2] ∈ R2

+ : λ2 < h(λ1; w1, w2, f1d, f2d, f2l, fld), forλ1 < ω1f1d.
}

(4.9)

and

R(S2) =
{
[λ1, λ2] ∈ R2

+ : λ1 < h(λ2; w2, w1, f2d, f1d, f1l, fld), forλ2 < ω2f2d.
}

(4.10)

where h(x; α1, α2, α3, α4, α5, α6) = α2α4 + α1α2

(
1 − x

α1α3

)
(1 − α3)α5α6.

Proof Lemma 1 The proof depends on constructing a dominant system

that decouples the interaction between the queues and thus renders the analy-

sis tractable. By dominance, we mean that the queues in the dominant system

stochastically dominate the queues in the original CCMA-S system, i.e., with the

same initial conditions for queue sizes in both the original and dominant systems,

the queue sizes in the dominant system are not smaller than those in the original

system [61].

We define the dominant system for CCMA-S as follows. For j ∈ {1, 2}, define

Sj as

• Arrivals at queue i ∈ M in Sj is the same as CCMA-S,

• The channel realizations hkl, where k ∈ T and l ∈ D, for both Sj and

CCMA-S are identical,

• Time slots assigned to user i ∈ M are identical for both Sj and CCMA-S,

• The noise generated at receiving ends of both systems are identical,

• The packets successfully transmitted by the relay for user j are not removed

from user’s j queue in Sj.
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The above definition of the dominant system implies that queue j evolves exactly

as in a TDMA system without a relay. If both the dominant system and the

original CCMA-S started with the same initial queue sizes, then the queues in

system Sj are always not shorter than those in CCMA-S. This follows because a

packet successfully transmitted for queue j in Sj is always successfully transmitted

from the corresponding queue in CCMA-S. However, the relay can succeed in

forwarding some packets from queue j in CCMA-S in the empty time slots of the

other terminal. This implies that queue j empties more frequently in CCMA-S

and therefore the other terminal is better served in CCMA-S compared to Sj .

Consequently, stability conditions for the dominant system Sj (j ∈ {1, 2}) are

sufficient for the stability of the original CCMA-S system. In the following, we

first derive the sufficient conditions for stability of CCMA-S.

Consider system S1 in which the relay only helps terminal 2 and terminal 1 acts

exactly as in a TDMA system. In order to apply Loynes’ theorem, we require the

arrival and service processes for each queue to be stationary. The queue size for

terminal i ∈ {1, 2} in system S1 at time t, denoted by Qt
i(S1), evolves as follows

Qt+1
i (S1) =

(
Qt

i(S1) − Y t
i (S1)

)+
+ X t

i (S1), (4.11)

where X t
i (S1) represents the number of arrivals in slot t and is a stationary process

by assumption with finite mean E [X t
i (S1)] = λi. The function ()+ is defined as

(x)+ = max(x, 0). Y t
i (S1) denotes the possible (virtual) departures from queue i

at time t; by virtual we mean that Y t
i (S1) can be equal to 1 even if Qt

i(S1 = 0).

We assume that departures occur before arrivals, and the queue size is measured

at the beginning of the slot [61]. For terminal i = 1, the service process can be

modeled as

Y t
1 (S1) = 1

[
At

1 ∩ Ot
1,d

]
, (4.12)
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where 1[·] is the indicator function, At
1 denotes the event that slot t is assigned to

terminal 1, and Ot
1,d denotes the complement of the outage event between terminal

1 and the destination d at time t.2 Due to the stationarity assumption of the chan-

nel gain process {ht
i,d}, and using the outage expression in (4.7), the probability of

this event is given by Pr
[
Ot

1,d

]
= f1d. From the above, it is clear that the service

process Y t
1 (S1) is stationary and has a finite mean given by E [Y t

1 (S1)] = ω1f1d,

where E[·] denotes statistical expectation. According to Loynes, stability of queue

1 in the dominant system S1 is achieved if the following condition holds

λ1 < ω1f1d. (4.13)

Consider now queue 2 in system S1. The difference between the evolution of

this queue and queue 1 is in the definition of the service process Y t
2 (S1). A packet

from queue 2 can be served in a time slot in either one of the two following events:

1) If the time slot belongs to queue 2 and the associated channel ht
2,d is not in

outage; or 2) the time slot belongs to queue 1, queue 1 is empty, in the previous

time slot there was a successful ”maybe virtual” reception of a packet at the relay

from terminal 2, and the relay-destination channel is not in outage. This can be

modeled as

Y t
2 (S1) = 1

[
At

2

⋂
Ot

2,d

]
+ 1

[
At

1

⋂
{Qt

1(S1) = 0}
⋂

At−1
2

⋂
Ot−1

2,l

⋂
Ot−1

2,d

⋂
Ot

l,d

]

(4.14)

where {Qt
1(S1) = 0} denotes the event that terminal’s 1 queue is empty in time

slot t. The two indicator functions in the right hand side of equation (4.14) are

2(·) denotes the complement of the event.
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mutually exclusive, hence, the average rate of the service process is given by

E
[
Y t

2 (S1
1)
]

= ω2f2d + ω1Pr
[
{Qt

1(S
1
1) = 0}

]
ω2 (1 − Pr[O2l]) Pr[O2d] (1 − Pr[Old]) ,

(4.15)

where Pr[Oij] is the probability of outage between nodes i and j. Using Little’s

theorem [76] and (4.13), the probability of queue 1 empty is given by

Pr
[
{Qt

1(S
1
1) = 0}

]
= 1 − λ1

ω1f1d

. (4.16)

Using the expression of the outage probability in (4.7) and Loynes conditions for

stability [73], the stability condition for queue 2 in the dominant system S1 is given

by

λ2 < ω2f2d + ω1ω2

(
1 − λ1

ω1f1d

)
(1 − f2d) f2lfld. (4.17)

Both conditions (4.13) and (4.17) represent the stability region for system S1

for a specific resource-sharing vector (ω1, ω2) pair. Call this region R(S1). Using

parallel arguments for the dominant system S2, we can characterize the stability

region R(S2) for this system by the following pair of inequalities

λ2 < ω2f2d, λ1 < ω1f1d + ω2ω1

(
1 − λ2

ω2f2d

)
(1 − f1d) f1lfld. (4.18)

Since stability conditions for a dominant system is sufficient for the stability of

CCMA-S, any point inside the regions R(S1) and R(S2) can be achieved by the

original system CCMA-S, hence R(S1)
⋃R(S2) is a subset from the stability region

of CCMA-S for a fixed resource sharing pair (ω1, ω2). This region is depicted in

Fig. 4.2.

Up to this point we only proved the sufficient conditions for the stability of

CCMA-S in the Lemma. To prove the necessary conditions, we follow a simi-

lar argument that was used by [61] and [64] for ALOHA systems to prove the
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ω2f2d

ω1f1d ω1f1d+ω2ω1(1-f1d)f1lfld

ω2f2d+ω2ω1(1-f2d)f2lfld

R(S2)

R(S1)

λ1

λ2

Figure 4.2: Stable throughput region for system CCMA-S for a fixed resource-

sharing vector (ω1, ω2) given by R(S1)
⋃R(S2).

indistinguishability of the dominant and original systems at saturation. The ar-

gument is as follows. Consider the dominant system S1 whose stability region

is characterized by the pair of inequalities (4.13), (4.17). Note that if queue 2

does not empty, packets of user 1 are always dropped by the relay in both S1

and CCMA-S, and both systems become identical. In S1, for λ1 < ω1f1d, if

λ2 > ω2f2d + ω1ω2

(
1 − λ1

ω1f1d

)
(1 − f2d) f2lfld then using same argument as be-

fore Qt
1 is stable and Qt

2 is unstable by Loynes, i.e., lim
t→∞

Qt
2 → ∞ almost surely. If

Qt
2 tends to infinity almost surely, i.e., does not empty, then S1 and CCMA-S are

identical, and if both systems are started from the same initial conditions, then

on a set of sample paths of positive probability Qt
2 in CCMA-S never returns to

zero for t ≥ 0. Hence Qt
2 in CCMA-S tends to infinity with positive probability,

i.e., CCMA-S is also unstable. This means that the boundary for the stability

region of the dominant system is also a boundary for the stability region of the

original CCMA-S system. Thus, conditions for stability of the dominant system
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is sufficient and necessary for stability of the original system. This completes the

proof of Lemma 1 �

The whole stability region for system CCMA-S can be determined by taking

the union over all feasible resource-sharing vectors as follows.

R(CCMA-S) =
⋃

Ω∈̥

{
R1(S

1)
⋃

R2(S
1)
}

. (4.19)

We give a complete characterization of the stability region of CCMA-S in the

following Theorem.

Theorem 4 The stability region for a 2-user CCMA-S system is given by

R(CCMA-S) =
{
[λ1, λ2] ∈ R2

+ : λ2 < max [g1(λ1), g2(λ1)]
}

(4.20)

where the functions g1(·) and g2(·) are defined as follows

g1(λ1) =





K2

(
λ1+f1d

2f1d
− f2d

2K2

)2

− K2λ1

f1d
+ f2d, 0 ≤ λ1 ≤ f1d − f1df2d

K2
,

f2d − f2d

f1d
λ1, f1d − f1df2d

K2
< λ1 ≤ f1d.

(4.21)

And the function g2(·) is specified as

g2(λ1) =





f2d − f2d

f1d
λ1, 0 ≤ λ1 <

f2
1d

(1−f1d)f1lfld
,

f1df2d

K1
+ f2d − 2f2d

√
λ1

K1
,

f2
1d

(1−f1d)f1lfld
≤ λ1 ≤ λ∗

1.

(4.22)

where

λ∗
1 =





f1d, (1 − f1d)f1lfld < f1d,

1
4K1

(f1d + K1)
2, f1d ≤ (1 − f1d)f1lfld.

(4.23)

and Ki = (1 − fid)filfld, i ∈ {1, 2}.

Proof Theorem 4 See Appendix A. �
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An interesting observation that we make from the above Theorem is that both

functions g1(λ1) and g2(λ1) are linear on some part of their domain and strictly

convex on the other part. It is not obvious however whether both functions are

strictly convex over their domain of definition, and hence, whether the boundary

of the stability region of CCMA-S given by max{g1, g2} is convex or not. In the

following Lemma, we prove this property.

Lemma 2 The boundary of the stability region of system CCMA-S given by max{g1, g2}

is convex.

Proof Lemma 2 See Appendix B.�

The above Lemma will prove useful in characterizing the relation among the

stability regions of the different multiple-access protocols considered in this chap-

ter. The first relation that we state is that between the stability regions of TDMA

and CCMA-S.

Lemma 3 The stability region of TDMA is contained inside that of CCMA-S. In

other words

R(TDMA) ⊆ R(CCMA-S). (4.24)

The two regions are identical if the following two conditions are satisfied simulta-

neously

(1 − f2d)f2lfld < f2d, (1 − f1d)f1lfld < f1d. (4.25)

Proof Lemma 3 We use Theorem 4 and Lemma 2 in the proof of the this Lemma.

The stability region of TDMA is determined according to the following parametric

inequalities

λ1 ≤ ω1f1d, λ2 ≤ ω2f2d (4.26)
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or equivalently

λ1

f1d

+
λ2

f2d

≤ 1. (4.27)

From Lemma 2, both functions g1 and g2 that determines the boundary of the

stability region of CCMA-S are convex. From the proof of the convexity, we note

that the straight line λ2 = f2d − f2d

f1d
λ1 is a tangent for both functions, hence, it lies

below both functions. Since this straight line is itself the boundary for the TDMA

stability region, then the stability region of TDMA is a subset of that of CCMA-S.

To prove the second part of the Lemma we use the definitions of the functions

g1, g2 in Theorem 4. From (4.93), observe that if (1 − f1d)f1lfld < f1d then the

maximum λ1 is determined by f1d. If simultaneously (1 − f2d)f2lf2d < f2d, then

by substituting both conditions in the domain definitions of the functions g1, g2, it

can be seen that both functions reduce to

g1(λ1) = g2(λ1) = f2d −
f2d

f1d

λ1, 0 ≤ λ1 ≤ f1d, (4.28)

which is the boundary for the stability region of TDMA. Hence if both conditions in

(4.25) are satisfied, CCMA-S and TDMA have the same stable throughput regions.

This completes the proof of the Lemma. �

The Symmetric M-Terminal Case

Stability analysis for the general M-terminal case is very complicated. For the

ALOHA case, only bounds on the stability region have been derived [63], [64]. In

this chapter, we only focus on the symmetric scenario. We define the dominant

system for M-terminal CCMA-S as follows. For 1 ≤ j ≤ N , define SM
j as

• Arrivals at queue i in SM
j is the same as CCMA,
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• The channel realizations hkl, where k ∈ T and l ∈ R, for both SM
j and

CCMA are identical,

• User i ∈ M is assigned the same time slots in both systems,

• The noise generated at receiving ends of both systems are identical,

• The packets served by the relay for the first j terminals are not removed from

these terminals’ queues.

The last rule implies that the first j queues act as in a TDMA system without a

relay. The relay, however, can help the other users j + 1 ≤ k ≤ N in the empty

slots of the TDMA frame.

Now consider system SM
M in which the relay does not help any of the users.

It is clear that the queue sizes in this system are never smaller than those in the

original system CCMA-S. For SM
M , the success probability of transmitting a packet

is equal for all terminals and is given by

Ps(S
M
M ) = Pr [SNR ≥ β] = f1d. (4.29)

The service rate per terminal is thus given by µ(SM
M ) = f1d

M
, due to the symmetry

of the problem. Since system SM
M acts as a TDMA system without a relay, the

queues are decoupled and hence the arrival process and departure process of each

of them is strictly stationary. Applying Loynes theorem, the stability condition

for SM
M is given by

λ < f1d, (4.30)

where λ is the aggregate arrival rate for the M terminals.

Next, let us consider the stability of symmetric CCMA-S. Since SM
M as described

before dominates CCMA-S, if SM
M is stable then CCMA-S is also stable. Therefore,
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for λ < f1d, system CCMA-S is stable. On the other hand, if all the queues in

SM
M are unstable, then none of these queues ever empty, hence, the relay loses its

role and both systems CCMA-S and SM
M are indistinguishable if both started with

the same initial conditions. Therefore, if we have λ > f1d then all the queues in

SM
M are unstable and accordingly system CCMA-S is unstable as well. Therefore,

the maximum stable throughput for system CCMA-S can be summarized in the

following theorem.

Theorem 5 The maximum stable throughput λMST (CCMA-S) for system CCMA-

S is equal to that of a TDMA system without a relay and is given by

λMST (CCMA-S) = f1d. (4.31)

However, we conjecture that for the general asymmetric M-terminals scenario, the

whole stability region of TDMA will be contained inside that of CCMA-S. Another

important issue to point out is that although CCMA-S and TDMA have the same

maximum stable throughput for the symmetrical case, the two systems do not have

the same delay performance as will be discussed later.

4.3.2 Stability Analysis of CCMA with multiple frames

(CCMA-M)

In CCMA-M the relay’s queue can possibly grow and hence should be taken into

account when studying the system stability. This means that for stability we

require both the M terminals’ queues and the relay’s queue to be stable. The

stability region of the whole system is the intersection of the stability regions of

the M terminals and that of the relay. First, we consider the M = 2-terminal

case. According to the operation of system CCMA-M, a terminal succeeds in
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transmitting a packet if either the destination or the relay receives this packet

correctly. The success probability of terminal i in CCMA-M can thus be calculated

as

Pr[Success of terminal i] = Pr
[
Oi,l ∪ Oi,d

]
, (4.32)

where Oi,l denotes the event that the relay received the packet successfully, and

Oi,d denotes the event that the destination received the packet successfully. The

success probability of terminal i ∈ {1, 2} in CCMA-M can thus be specified as

follows

Pi = fid + fil − fidfil. (4.33)

We first consider the stability region for the system determined just by the

terminals’ queues. Since for each queue i ∈ M, the queue behaves exactly as in

a TDMA system with the success probability determined by (4.33), the stability

region RM(CCMA-M) for the set of queues in M is given by

RM(CCMA-M) =
{
[λ1, λ2, · · · , λM ] ∈ RM

+ : λi < ωiPi, ∀i ∈ M, and [ω1, ω2, · · · , ωM ] ∈ ̥
}

.

(4.34)

Next we study the stability of the relay’s queue l. The evolution of the relay’s

queue can be modeled as

Qt
l =

(
Qt

l − Y t
l

)+
+ X t

l , (4.35)

where X t
l denotes the number of arrivals at time slot t and Y t

l denotes the possibility

of serving a packet at this time slot from the relay’s queue (Y t
l (G) takes values

in {0, 1}). Now we establish the stationarity of the arrival and service processes

of the relay. If the terminals’ queues are stable, then by definition the departure

processes from both terminals are stationary. A packet departing from a terminal

queue is stored in the relay’s queue (i.e., counted as an arrival) if simultaneously
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the following two events happen: the terminal-destination channel is in outage and

the terminal-relay channel is not in outage. Hence, the arrival process to the queue

can be modeled as follows

X t
l =

∑

i∈M
1
[
At

i

⋂
{Qt

i 6= 0}
⋂

Ot
id

⋂
Ot

il

]
. (4.36)

In (4.36), {Qt
i 6= 0} denotes the event that terminal’s i queue is not empty, i.e.,

the terminal has a packet to transmit, and according to Little’s theorem it has

probability λi/(ωiPi), where Pi is terminal’s i success probability and is defined in

(4.33). The random processes involved in the above expressions are all stationary,

hence, the arrival process to the relay is stationary. The expected value of the

arrival process can be computed as follows

λl =
∑

i∈M
λi

(1 − fid)fil

Pi
. (4.37)

Similarly, we establish the stationarity of the service process from the relay’s

queue. The service process of the relay’s queue depends by definition on the empty

slots available from the terminals, and the channel from the relay to the destination

being not in outage. By assuming the terminals’ queues to be stable, they offer

stationary empty slots (stationary service process) to the relay. Also the channel

statistics is stationary, hence, the relay’s service process is stationary. The service

process of the relay’s queue can be modeled as

Y t
l =

∑

i∈M
1
[
At

i

⋂
{Qt

i = 0}
⋂

Ot
ld

]
, (4.38)

and the average service rate of the relay can be determined from the following

equation

E[Y t
l ] =

∑

i∈M
ωi(1 − λi

ωiPi

)fld. (4.39)
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Using Loynes and equations (4.37) and (4.39), the stability region for the re-

lay Rl(CCMA-M) is determined by the condition E[X t
l ] < E[Y t

l ]. The total

stability region for system CCMA-M is given by the intersection of two regions

RM(CCMA-M)
⋂Rl(CCMA-M) which is easily shown to be equal to Rl(CCMA-M).

The stability region for CCMA-M with 2 terminals is thus characterized as follows

R(S2) =

{
[λ1, λ2] ∈ R+2 :

λ1

P1
((1 − f1d)f1l + fld) +

λ2

P2
((1 − f2d)f2l + fld) < fld

}

(4.40)

For M = 2, this reveals that the stability region of CCMA-M is bounded by a

straight line. Since the stability region for TDMA is also determined by a straight

line, when comparing both stability regions it is enough to compare the intersection

of these lines with the axes. These intersections for CCMA-M are equal to

λ∗
1(CCMA-M) =

fldP1

fld + (1 − f1d)f1l
, λ∗

2(CCMA-M) =
fldP2

fld + (1 − f2d)f2l
,

(4.41)

while the corresponding values for TDMA are given by

λ∗
1(TDMA) = f1d, λ∗

2(TDMA) = f2d. (4.42)

It is clear that the stability region for TDMA is completely contained inside the

stability region of CCMA-M if λ∗
1(CCMA-M) > λ∗

1(TDMA) and λ∗
2(CCMA-M) >

λ∗
2(TDMA). Using (4.41) and (4.42), these two conditions are equivalent to

fld > f1d, fld > f2d. (4.43)

These conditions have the following intuitive explanation. If the channel between

the relay and destination has higher success probability that the channel between

the terminal and destination, then it is better to have the relay help the terminal

transmit its packets. Note that (4.43) implies that TDMA can offer better per-

formance for the terminal whose success probability does not satisfy (4.43). This
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possible degradation in the performance does not appear in CCMA-S because the

design of CCMA-S does not allow the relay to store the packets it received for

ever. Hence, the performance of protocol CCMA-S can not be less than that of

TDMA. In protocol CCMA-M, however, the relay becomes responsible for all of

the packets it receives, and if the relay-destination channel has a higher probabil-

ity of outage than the terminal-destination channel then the system encounters a

loss in the performance. This calls for the development of an enhanced version of

protocol CCMA-M that takes this into account.

Enhanced Protocol CCMA-Me

The previous discussion motivates the design of an enhanced version of CCMA-M,

which we refer to as CCMA-Me. In this enhanced strategy, the relay only helps

the terminals which are in worst channel condition than the relay itself. In other

words, the relay helps the terminal whose outage probability to the destination

satisfy fld > fid for i ∈ M. Other terminals that do not satisfy this inequality

operate as in TDMA, i.e., the relay does not help them.

Next we calculate the stability region for the enhanced system and consider

M = 2 terminals for illustration. Assume that the relay only helps terminal 1.

Similar to our calculations for the arrival and service processes for the relay in

CCMA-M, we can show that the average arrival rate to the relay in CCMA-Me is

given by

E[X t
l (CCMA-Me)] =

λ1

P1
(1 − f1d)f1l, (4.44)

and the average service rate to the relay is given by

E[Y t
l (CCMA-Me)] =

(
ω1(1 −

λ1

ω1P1
) + ω2(1 − λ2

ω2f2d
)

)
fld. (4.45)
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Using Loynes theorem [73] and equations (4.44) and (4.45), the stability region

R(CCMA-Me) is given by

R(CCMA-Me) =

{
[λ1, λ2] ∈ R2

+ :
λ1

P1
((1 − f1d)f1l + fld)) + λ2

fld

f2d
< fld

}
.

(4.46)

The stability region for the enhanced protocol CCMA-Me is no less than the sta-

bility region of TDMA R(TDMA) ⊆ R2,e, and the proof simply follows from the

construction of the enhanced protocol CCMA-Me.

For a general M-terminal case, the analysis is the same and the stability region

for CCMA-Me can be fully characterized as follows.

Theorem 6 The stability region for M-terminals CCMA-Me is specified as

R(CCMA-Me) =

{
[λ1, λ2, · · · , λM ] ∈ RM

+ :
∑

i∈M1

λi

Pi

((1 − fid)fil + fld)) +
∑

j∈M2

λj
fld

fjd

< fld

}
.

(4.47)

where M1 = {i ∈ M : fld > fid}, or the set of terminals that the relay helps, and

M2 = {i ∈ M : fld < fid} is the complement set.

We observe that the stability region of CCMA-Me is still bounded by a straight

line. This follows because the stability of the system of queues in CCMA-Me is

determined by the stability of a single queue, which is the relay’s queue. It remains

to specify the relation between the stability regions of CCMA-S and CCMA-Me,

which is characterized in the following Theorem.

Theorem 7 The stability region of CCMA-Me contains that of CCMA-S. In other

words,

R(TDMA) ⊆ R(CCMA-S) ⊆ R(CCMA-Me). (4.48)

Proof of Theorem 7: See Appendix C. �
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4.3.3 Existing Cooperation Protocols: Stability Analysis

In this subsection we discuss stability results for some existing decode-and-forward

cooperation protocols. In particular, we consider the family of adaptive relaying

proposed in [22], which comprises selection and incremental relaying. In the fol-

lowing, we discuss stability results for these two protocols and compare them to

our proposed CCMA protocol.

Stability Region for Selection Decode-and-Forward

In this subsection, we characterize the stability region of selection decode-and-

forward (SDF) described as follows. The cooperation is done in two phases. In the

first phase, the source transmits and both the relay and the destination listen. In

the second phase, if the relay is able to decode the signal correctly, then it is going

to forward the received packet to the destination, otherwise the source retransmits

the packet. Accordingly, there is always a specified channel resource dedicated

for the relay to help the source, which is different from the opportunistic nature

of cooperation in our proposed algorithms. Different from [22], we do not allow

the destination to store analog signals in order to do maximum ratio combining

(MRC). This is to have a fair comparison with all the protocols presented in this

chapter which does not utilize MRC. Note that all of the results obtained in this

chapter can be extended to the scenario where the destination saves copies of

received signals and applies MRC, however, it would not add new insights to the

results. For the sake of the analysis of SDF, we also assume that the channel fade

changes independently from one time slot to another, which is different from the

channel model in [22]. Note also that this assumption is in favor of SDF, and in

general if the channel is correlated from one time slot to another, the performance
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of SDF will degrade because of diversity loss.

In the following we analyze the outage probability for SDF under two scenarios.

In the first scenario, the structure of the packets arrivals at the terminal is not

allowed to be altered. Thus, each packet is transmitted in two consecutive time

slots with the original spectral efficiency (for example using the same modulation

scheme). This, however, results in SDF having half the bandwidth efficiency of

TDMA and CCMA because each packet requires two time slots for transmission.

In the second scenario, the bandwidth efficiency is preserved among all protocols.

This can be done by allowing the terminal and the relay to change the structure

of the incoming packets so that each of them transmit at twice the incoming rate

(twice the spectral efficiency). Hence each packet is now transmitted in one time

slot again, and the average spectral efficiency for SDF under this scenario is equal

to that of TDMA and CCMA [22].

For the first scenario, an outage occurs if both the source-destination link and

the source-relay-destination link are in outage. This can be specified as follows

PrSDF (O) = Pr
[(

{SNRi,d < 2β}
⋂

{SNRi,l < 2β}
⋂

{SNRi,d < 2β}
)

⋃(
{SNRi,d < 2β}

⋂
{SNRi,l > 2β}

⋂
{SNRl,d < 2β}

)]
i ∈ M

(4.49)

The factor 2 in front of the SNR threshold β is to account to the fact that the

transmitted power is divided by 2 in the first scenario to have the same energy

per bit (Note that the bandwidth efficiency of SDF in the first scenario is half

of that of CCMA, hence, we need to reduce the transmit power by half). The

first term in the right-hand side of (4.49) corresponds to the event that both the

source-destination and the source-relay link were in outage in the first time slot,

and the source-destination link remained in outage in the second time slot. The
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second term in (4.49) corresponds to the event that the source-destination link was

in outage and the source-relay link was not in outage in the first time slot, but

the relay-destination link was in outage in the second time slot. The probability

in (4.49) can be expressed as

Pri,SDF (O) =
(
1 − f 2

id

)2 (
1 − f 2

il

)
+
(
1 − f 2

id

)
f 2

il

(
1 − f 2

ld

)
, (4.50)

where fij is defined in (4.8). Since a single packet is transmitted in two time slots,

one can think of this protocol as a modified TDMA system with the cooperation

time slot has twice the length of the time slot in TDMA. The average arrival rate

per cooperation time-slot is 2λi for i ∈ M. Loynes condition for stability is given

by

λ1

1 − Pr1,SDF (O)
+

λ2

1 − Pr2,SDF (O)
<

1

2
, (4.51)

where 1 − PrSDF (O) is the success probability for terminal i.

For the second scenario, we need to calculate the SNR threshold β ′ correspond-

ing to transmitting at twice the rate. The resulting SNR threshold β ′ should

generally be larger than β required for transmission at the original rate. It is in

general very difficult to find an explicit relation between the SNR threshold β and

the transmission rate, and thus we render to a special case to capture the insights

of this scenario. Let the outage be defined as the event that the mutual information

I between two terminals is less than some specific rate R [31]. If the transmitted

signals are Gaussian, then according to our channel model, the mutual information

between terminal i ∈ T and terminal j ∈ D is given by I = log(1 + SNRij). The

outage event for this case is defined as

OI , {hij : I < R} . (4.52)

The above equation implies that if the outage is defined in terms of the mutual
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information and the transmitted signals are Gaussian, then the SNR threshold

β and the spectral efficiency R are related as β = 2R − 1, i.e., they exhibit an

exponential relation. Hence for protocol SDF when transmitting at twice the rate

the corresponding SNR threshold β ′ is given by β ′ = 22R − 1, and given β one can

find β ′ through the previous equation. Note that we do not reduce the power in

this second scenario because both SDF and CCMA will have tbe same spectral

efficiency. 3

Stability Region for Incremental Decode-and-Forward

The second relaying strategy that we are considering in our comparison is incre-

mental relaying. In such a strategy, feedback from the destination in the form of

ACK or NACK is utilized at the relay node to decide whether to transmit or not.

Amplify-and-forward incremental relaying was proposed in [22] in which the source

transmits in the first phase, and if the destination was not able to receive correctly

it sends a NACK that can be received by the relay. The relay then amplifies and

forwards the signal it received from the source in the first phase. It can be readily

seen that such a strategy is more bandwidth efficient than SDF because the relay

only transmits if necessary.

In our comparison, we consider a modified version of the incremental relaying

strategy proposed in [22]. In particular, we consider a decode-and-forward incre-

mental relaying with selection capability at the relay (SIDF). In SIDF, the first

3Intuitively, under a fixed modulation scheme and fixed average power constraint, one can

think of the SNR threshold as being proportional to the minimum distance between the con-

stellation points, which in turn depends on the number of constellation points for fixed average

power, and the later has an exponential relation to the number of bits per symbol that determines

the spectral efficiency R.
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phase is exactly as amplify-and-forward incremental relaying. In the second phase,

if the destination does not receive correctly then the relay, if it was able to decode

the source signal correctly, forwards the re-encoded signal to the destination, oth-

erwise the source retransmits again. One can think of this protocol as combining

the benefits of selection and incremental relaying.

Next we analyze the outage probability of SIDF. As we did when studying SDF,

we are also going to consider two scenarios for SIDF, namely, when the packet

structure is not allowed to be changed and the scenario of equal spectral efficiency.

First we consider the first scenario where the packet structure is not allowed to be

changed. The spectral efficiency of SIDF in this case is less that TDMA or CCMA

because the relay is occasionally allocated some channel resources for transmission

with positive probability. Since both SDF and SIDF have the same mechanism

for the outage event, it is readily seen that the outage event for SIDF is also given

by (4.49) with the difference that we only use β in this case without the term 2

because SIDF will use the same transmit power4. The outage event is thus given

by

PrSIDF (O) = (1 − fid)
2 (1 − fil) + (1 − fid) fil (1 − fld) . (4.53)

The above expression represents the success probability of transmitting a packet

in one or two consecutive time slots. Terminal i uses one time slot with probability

fid and two time slots with probability 1 − fid. The average number of time slots

used by terminal i during a frame in SIDF is thus given by 2 − fid. The set of

4This is in favor of SIDF because the transmit power should be reduced to account for the

reduction in the average spectral efficiency.
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queues are not interacting in this case and the stability region is simply given by

∑

i∈M

λi (2 − fid)

1 − PrSIDF (O)
< 1. (4.54)

Next, we consider the second scenario of SIDF where the spectral efficiency is

preserved for SIDF as for TDMA or CCMA. In this scenario, both the terminals

and the relay will be transmitting at a higher rate R̃ such that the average spectral

efficiency is equal to the spectral efficiency R of TDMA or CCMA. The average

spectral efficiency R(SIDF ) of SIDF when transmitting at a spectral efficiency R̃

is given by

R(SIDF ) = R̃ f̃id +
R̃

2

(
1 − f̃id

)
, v(R̃), (4.55)

where f̃id is the success probability for terminal’s i-destination link when operating

at spectral efficiency R̃, and we denote the whole function in the above expression

by v(·). For the sake of comparison R(SIDF ) = v(R̃) should be equal to R. Thus

for a given R one should solve for R̃ = v−1(R). This function can lead to many

solutions for R̃, and we are going to choose the minimum R̃ [22]. The stability

region is thus given by
∑

i∈M

λi

1 − PrSIDF (Õ)
< 1. (4.56)

where PrSIDF (Õ) has the same form as PrSIDF (O) but evaluated at spectral effi-

ciency R̃.

4.3.4 Numerical Results

We compare the stability regions of M = 2-users TDMA, CCMA-S, CCMA-Me,

the two forms of adaptive relaying proposed in [22] (selection and incremental

relaying), and ALOHA as an example of random access.
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In ALOHA, a terminal transmits a packet with some positive probability p if it

has a packet to transmit. This means that there can be collisions among different

terminals due to simultaneous transmissions in a time slot. The stability region for

a general multipacket reception (MPR) ALOHA system was characterized in [64].

To make this chapter self-contained, we state the results from [64] here. We first

introduce the notations used in [64]. Let qi,i denote the probability of successfully

decoding a packet transmitted by user i = 1, 2 given that user i only transmitted,

and qi,{1,2} denote the probability that user i’s packet is successfully decoded given

that both users transmit. If qi,i ≥ qi,{1,2} then [64] characterizes the stability region

of slotted ALOHA as R1

⋂R2 where

R1 ,
{
[λ1, λ2] ∈ R2

+ : [λ1, λ2] lies below the curve λ2 = z(λ1; q1,1, q1,{1,2}, Q1, Q2)
}

(4.57)

and

R2 ,
{
[λ1, λ2] ∈ R2

+ : [λ1, λ2] lies below the curve λ1 = z(λ2; q2,2, q2,{1,2}, Q2, Q1)
}

(4.58)

where Q1 = q1,1 − q1,{1,2} and Q2 = q2,2 − q2,{1,2}. The function z is defined as

follows [64]

z(λ; α, θ, ε, δ) =





θ − λδ
α−ε

, λ ∈ I1,

(
√

αθ
√

λδ)
2

ε
, λ ∈ I2

(4.59)

where I1 =
[
0, θ(α−ε)2

αδ

]
and I2 =

[
θ(α−ε)2

αδ
, αθ

δ

]
.

We are going to specify the parameters qi,i and qi,{1,2} for the capture channel

[64] equivalent to the outage event defined in our work. It is clear that the success

probability qi,i is equivalent to fid in our notation. It remains to compute qi,{1,2},
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i = 1, 2. The received signal model for i = 1 is

yt
1d =

√
Gr−γ

1d ht
1dx

t
1 +

√
Gr−γ

2d ht
2dx

t
2 + nt

d, (4.60)

According to the capture model, a packet is captured if the received signal-to-

interference-and-noise ratio (SINR) exceeds the threshold β. The SINR for termi-

nal 1 is given by

SINR1 =
Gr−γ

1d | h1d |2
No + Gr−γ

2d | h2d |2 . (4.61)

The probability of user’s 1 packet captured is given by

q1,{1,2} = Pr [SINR1 > β] = Pr

[
| h1d |2> Nor

γ
1dβ

G
+ β

(
r1d

r2d

)γ

| h2d |2
]

. (4.62)

The above equation can be easily computed and the success probability is given

by

q1,{1,2} =
1

1 + β
(

r1d

r2d

)γ q1,{1}. (4.63)

Similar formula can be derived for q2,{1,2}.

In Figs 4.3 and 4.4 we plot the stability regions for TDMA, CCMA-S, CCMA-

Me, selection decode-and-forward (SDF), incremental decode-and-forward (SIDF),

and ALOHA for a SNR threshold of β = 35, and β = 64, respectively. For SDF

and SIDF we use the first scenario in which the packet structure is not changed.

The parameters used to depict these results are as follows. The distances in meters

between different terminals are given by r1,d = 120, r2,d = 110, rl,d = 40, r1,l = 85,

r2,l = 80. The propagation path-loss is given by γ = 3.6, the transmit power

G = 0.01 watt, and No = 10−11. In both Figs 4.3 and 4.4, CCMA-Me has the

largest stable throughput region. In Fig. 4.3, CCMA-S and TDMA have identical

stable throughput region, and it can be checked that conditions (4.25) are satisfied

for β = 35. In Fig. 4.4, TDMA is contained inside CCMA-S. Both CCMA-S
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Figure 4.3: Stability regions for the different considered protocols at a SNR thresh-

old equal to β = 35. For this value of β CCMA-S is equivalent to TDMA as

depicted. CCMA-Me has the largest throughput region.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
β=64

λ
1

λ 2

TDMA
CCMA−S
CCMA−Me
SDF
SIDF
ALOHA

Figure 4.4: Stability regions for the different considered protocols at a SNR thresh-

old equal to β = 64. TDMA is contained in CCMA-S, and the gap between SIDF

and CCMA-Me increases in this case.
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Figure 4.5: Aggregate maximum stable throughput versus SNR threshold β in dB.

The propagation path loss is set to γ = 3.5. First scenario is used for SDF and

SIDF. CCMA-Me has the best tradeoff curve among all the other protocols.

and CCMA-Me provide larger stable throughput region over SDF and ALOHA.

This is because of the lost bandwidth efficiency in SDF and the interference in

ALOHA due to collisions. SIDF is very close to CCMA-Me for smaller values of

β, and the gap between them increases with increasing β as depicted in Fig. 4.4.

This is because the bandwidth efficiency of SIDF reduces with increasing β which

increases the probability of using a second time slot by the relay.

Next we demonstrate the tradeoff between the maximum stable throughput

(MST) versus the SNR threshold β and the transmission rate R. For SDF and

SIDF, we consider the two scenarios described in section 4.3.3, where in the first

scenario the incoming packet structure is not changed and hence the two protocols

have less bandwidth efficiency compared to TDMA and CCMA. While in the sec-

ond strategy, the packet structure is changed to preserve the bandwidth efficiency.

The maximum stable throughput results for the two scenarios are depicted in Figs
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Figure 4.6: Aggregate maximum stable throughput versus spectral efficiency R in

b/s/Hz. The propagation path loss is set to γ = 3.5. Second scenario is used for

SDF and SIDF. SIDF has the best performance for low spectral efficiency but it

suffers from a catastrophic degradation when increasing the spectral efficiency R.

CCMA-Me has a graceful degradation due to its bandwidth efficiency, and it has

the best tradeoff for medium to high spectral efficiency.
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4.5 and 4.6, respectively. In both figures, the relative distance between terminals

are, r1,d = r2,d = 130, rl,d = 50, and r1,l = r2,l = 80. In Fig. 4.5, the MST is plotted

against the SNR threshold β and the propagation path loss is set to γ = 3.5. For

SDF and SIDF, we use the first scenario. CCMA-Me has the best tradeoff for the

whole range. TDMA and CCMA-S have identical performance as proven before

for the symmetric case. The maximum attained MST for SDF is 0.5 as one can

expect because of the time slot repetition. ALOHA has better performance over

SDF for low SNR threshold, but for medium and high values of β, SDF has better

performance. SIDF has close performance to CCMA-Me for low values of β, and

CCMA-Me outperforms it for the rest of the SNR threshold range.

In Fig. 4.6 the MST is plotted against the transmission rate R, and we use the

second scenario for SDF and SIDF. For this case the MST of SDF starts from 1

for low rates R but decays exponentially after that. SIDF and SDF have the best

performance for low spectral efficiency regimes where sacrificing the bandwidth by

transmitting at higher rate is less significant than the gains achieved by diversity.

SIDF performs better than SDF because it is more bandwidth efficient. For higher

spectral efficiency regimes, the proposed CCMA-Me provides significantly higher

stable throughput compared to SDF or SIDF. An important point to observe from

Fig. 4.6 is the graceful degradation in the performance of CCMA-Me, while the

sudden catastrophic performance loss in SDF and SIDF. The rationale here is

that the cognitive feature of the proposed CCMA-Me results in no bandwidth loss

because cooperation is done in the idle time slots, while both SDF and SIDF suffer

from a bandwidth loss which increases for SIDF with increasing R. Our results

reveal a very interest observation that utilizing empty time slots to increase system

reliability via cooperation is a very promising technique in designing cooperative
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relaying strategies for wireless networks.

4.4 Throughput Region

In the characterization of the stable throughput region in the previous section,

the source burstiness is taken into consideration. Consider now the scenario under

which all terminals queues are saturated, i.e., each terminal has infinite number

of packets waiting transmission. The maximum throughput supported by any

terminal can be defined under such a scenario by the average maximum number

of packets that can be transmitted successfully by that terminal [65]. The set

of all such saturated throughput for different resource-sharing vectors defines the

throughput region.

Since in both CCMA-S and CCMA-Me the relay role depends on having empty

time slots to enable cooperation, There is no surprise that under such saturated

queues scenario the relay loses its role and CCMA-S and CCMA-Me reduce to

TDMA without relaying. We state this in the following Corollary.

Corollary 1 The throughput regions of TMDA, CCMA-S, and CCMA-Me are

equivalent.

C (TDMA) ≡ C (CCMA-S) ≡ C (CCMA-Me) . (4.64)

From the above corollary, we conclude that the saturated throughput region is

a subset of the stability region for both CCMA-S and CCMA-Me. This is an

important observation because for ALOHA systems it is conjectured in [65] that

the maximum stable throughput region is identical to the throughput region. It

is of interest then to point out that CCMA-S and CCMA-Me are examples of

multiple-access protocols where the stable throughput region is different from the
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throughput region.

4.5 Delay Analysis

In this section we characterize the delay performance of the proposed cognitive

cooperative multiple-access protocols, CCMA-S and CCMA-Me.

4.5.1 Delay Performance for CCMA-S

In CCMA-S, a packet does not depart a terminal’s queue until it is successfully

transmitted to the destination. Therefore, the delay encountered by a a packet is

the one encountered in the terminal’s queue. Delay analysis for interacting queues

in ALOHA has been studied in [66], [67] and more recently for ALOHA with MPR

channels in [64], and it turns out to be a notoriously hard problem. Most of the

known results are only for the 2-users ALOHA case. In this section we consider a

symmetric 2-users CCMA-S scenario and characterize its delay performance.

Define the moment generating function of the joint queues’ sizes processes

(Qt
1, Q

t
2) as follows

G(u, v) = lim
t→∞

E
[
uQt

1vQt
2

]
. (4.65)

From the queue evolution equations in (4.11), we have

E
[
uQt+1

1 vQt+1

2

]
= E

[
uXt

1vXt
2

]
E
[
u(Qt

1
−Y t

1 )
+

v(Qt
2
−Y t

2 )
+]

, (4.66)

where the above equation follows from the independence assumption of the future

arrival processes from the past departure and arrival processes. Since the arrival

processes are assumed to follow Bernoulli random process, the moment generating

function of the joint arrival processes is given by

A(u, v) , lim
t→∞

E
[
uXt

1vXt
2

]
= (uλ + 1 − λ) (vλ + 1 − λ) , (4.67)
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where due to the symmetry of the two terminals, each has an arrival rate λ. From

the definition of the service process of CCMA-S (4.14), it follows that

E
[
u(Qt

1−Y t
1 )

+

v(Qt
2−Y t

2 )
+
]

= E
[
1(Qt

1 = 0, Qt
2 = 0)

]
+ B(u)E

[
1(Qt

1 > 0, Qt
2 = 0)uQt

1

]

+ B(v)E
[
1(Qt

1 = 0, Qt
2 > 0)vQt

2

]
+ D(u, v)E

[
1(Qt

1 > 0, Qt
2 > 0)uQt

1vQt
2

]
,

(4.68)

where

B(z) =
wf1d + w2f1lfld(1 − f1d)

z
+ 1 −

(
wf1d + w2f1lfld(1 − f1d)

)
,

D(u, v) = wf1d(
1

u
+

1

v
) + 2w(1 − f1d),

(4.69)

in which we use w to denote symmetric resource-sharing portion of each terminal.

Substituting (4.67), (4.68), into (4.66) and taking the limits we get

G(u, v) = A(u, v) (G(0, 0) + B(u) [G(u, 0) − G(0, 0)] + B(v) [G(0, v)

−G(0, 0)] +D(u, v) [G(u, v) + G(0, 0) − G(u, 0) − G(0, v)]) .

(4.70)

We can rewrite the above equation as follows G(u, v) = H(u,v)
F (u,v)

, where

H(u, v) = G(0, 0) + B(u) [G(u, 0) − G(0, 0)] + B(v) × [G(0, v) − G(0, 0)]

+ D(u, v)(G(0, 0)− G(u, 0) − G(0, v)),

and F (u, v) = 1 − A(u, v)D(u, v).

(4.71)

Define G1(u, v) ,
∂G(u,v)

∂u
. Due to symmetry, the average queue size is given by

G1(1, 1). Hence to find the average queuing delay, we need to compute G1(1, 1).

First we find a relation between G(0, 0) and G(1, 0) using the following two

properties which follow from the symmetry of the problem: G(1, 1) = 1 and

G(1, 0) = G(0, 1). Applying these two properties to (4.70) along with a simple

application of L’Hopital limit theorem we get

(
w2f1lfld(1 − f1d)

)
G(0, 0)+

(
wf1d − w2f1lfld(1 − f1d)

)
G(1, 0) = wf1d−λ. (4.72)
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Taking the derivative of (4.70) with respect to u, applying L’Hopital twice, and

using the relation in (4.72) we get

G1(1, 1) =
λ(1 − λ)

wf1d − λ
− w2f1lfld(1 − f1d)

wf1d − λ
G1(1, 0). (4.73)

To find another equation relating G1(1, 1) and G1(1, 0), we compute ∂G(u,u)
∂u

at

u = 1. After some tedious but straightforward calculations, we get

∂G(u, u)

∂u
|u=1 = 2λ− 1 +

wf1d − w2f1lfld(1 − f1d)

wf1d − λ
G1(1, 0)− 4wf1dλ − 2wf1d − λ2

2(wf1d − λ)
.

(4.74)

Due to the symmetry of the problem, we have the following property

∂G(u, u)

∂u
|u=1 = 2G1(1, 1). (4.75)

Using the above equation, and solving (4.73) and (4.74) we get

G1(1, 1) =
− (2wf1d + w2f1lfld(1 − f1d))λ2 + 2wf1dλ

2(wf1d + w2f1lfld(1 − f1d))(wf1d − λ)
. (4.76)

The queueing delay for system CCMA-S can thus be determined as in the

following Theorem.

Theorem 8 The average queueing delay for a symmetrical two terminals CCMA-

S system is given by

D(CCMA-S) =
G1(1, 1)

λ
=

− (2wf1d + w2f1lfld(1 − f1d)) λ + 2wf1d

2(wf1d + w2f1lfld(1 − f1d))(wf1d − λ)
. (4.77)

From Theorem 8, it can be observed that at λ = ωf1d the delay of the system be-

comes unbounded, i.e., the system becomes saturated. This confirms our previous

results in Corollary 1 that for a symmetrical system, both TDMA and CCMA-S

have the same maximum stable throughput of λ = ωf1d.
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4.5.2 Delay Performance of CCMA-Me

Due to the symmetrical scenario considered in analyzing the delay performance,

if the relay helps one terminal then it helps all terminals, in which case both

CCMA-M, CCMA-Me become equivalent. In CCMA-M, a packet can encounter

two queuing delays; the first in the terminal’s queue and the second in the relay’s

queue. If a packet successfully transmitted by a terminal directly goes to the

destination, then this packet is not stored in the relay’s buffer. Denote this event

by ξ. The total delay encountered by a packet in CCMA-M can thus be modeled

as

T (CCMA-M) =





Tt, ξ,

Tt + Tl, ξ,

(4.78)

where Tt is the queueing delay in the terminal’s queue, and Tl is the queuing delay

at the relay’s queue. We can elaborate more on (4.78) as follows. For a given packet

in the terminal’s queue, if the first successful transmission for this packet is to the

destination, then the delay encountered by this packet is only the queuing delay

in the terminal’s queue. On the other hand, if the first successful transmission for

this packet is not to the destination, then the packet will encounter the following

delays: queuing delay in the terminal’s queue in addition to the queuing delay in

the relay’s queue.

First, we find the queuing delay either in the terminal’s or relay’s queue, as both

queues have similar evolution equations, with the difference being in the average

arrival and departure rates. Using the same machinery utilized in the analysis of

the queueing delay in CCMA-S to analyze the delay performance of CCMA-M, the

average queue size can be found as

E[N ] =
λ(1 − λ)

µ − λ
, (4.79)
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where λ denotes the average arrival rate and µ denotes the average departure rate.

We now compute the average delay in (4.78). The probability that, for any packet,

the first successful transmission from the terminal’s queue is to the destination is

given by

Pr[ξ] =
f1d

f1d + f1l − f1df1l

=
f1d

P1

. (4.80)

From (4.78), (4.79), and (4.80), the average delay for system CCMA-M is thus

given by

D(CCMA-M) =
f1d

P1

1 − λ

wP1 − λ
+

f1l(1 − f1d)

P1

(
1 − λ

wP1 − λ
+

1 − λl

µl − λl

)
, (4.81)

where λl and µl are the average arrival and departure rates, respectively, for the

relay’s queue defined in (4.36) and (4.38). After simplifying the above equation, the

average queueing delay for system CCMA-M can be summarized in the following

Theorem

Theorem 9 The average queuing delay for a packet in a symmetrical 2-terminal

CCMA-M system is given by

D(CCMA-M) =
1 − λ

wP1 − λ
+

f1l(1 − f1d)

P1

(
1 − λl

µl − λl

)
. (4.82)

4.5.3 Numerical Results for Delay Performance

We illustrate the delay performance of the proposed multiple-access schemes with

varying SNR threshold β through some numerical examples. As in the case for

the stability region, we include the delay performance of ALOHA, TDMA without

relaying, SDF, and SIDF in our results.

Delay performance results for the 2-terminals symmetric ALOHA with capture

has been derived in [64]. We provide the results here for reference. Using the same
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Figure 4.7: Average queueing delay per terminal versus the arrival rate for a SNR

threshold of β = 15.

notation in [64], the average delay performance was proved to be

D(ALOHA) =
1

q1|1

[
q1|1(1 − λ) + p(q1|{1,2} − q1|1)(1 − λ/2)

pq1|1 + p2(q1|{1,2} − q1|1) − λ

]
, (4.83)

where q1|1 and q1|{1,2} = q2|{1,2} are defined as before. In (4.83), p denotes the

transmission probability for both users and it can be optimized to minimize the

average system delay, and the results can be found in [64].

To compare the delay performance of the different multiple-access protocols

considered in this chapter, we plotted the analytical expressions we got for the

queueing delay. The system parameters are the same used to generate the MST

plots in Figs. 4.5 and 4.6. Figs. 4.7 and 4.8 depict the delay results for SNR

thresholds β = 15 and β = 64, respectively. From Fig. 4.7, at very low arrival

rates, ALOHA has the best delay performance. Increasing the arrival rate λ, both

CCMA-S and SDF outperforms other strategies. For higher values of λ, CCMA-Me
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Figure 4.8: Average queueing delay per terminal versus the arrival rate for a SNR

threshold of β = 64.

has the best performance

The situation changes in Fig. 4.8 for β = 64 as both CCMA-S and SIDF

outperform ALOHA even for very small arrival rates. The intuition behind this

is the more stringent system requirements reflected by the higher SNR threshold

β = 64, which makes the interference in ALOHA more severe. This makes our

cognitive multiple-access protocol CCMA-S and CCMA-M perform better than

ALOHA because of its high bandwidth efficiency and the gains of cooperation.

Another important remark is that although CCMA-S and TDMA has the same

MST for the symmetric case, as proven before and as clear from Figs. 4.7 and 4.8

where both protocols saturate at the same arrival rate, CCMA-S has always better

delay performance than TDMA.
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Appendices

Appendix A: Proof of Theorem 4

The stable throughput region of CCMA-S for a fixed resource-sharing vector (ω1, ω2)

is specified in Lemma 1. In order to find the whole stability region of the protocol,

we need to take the union over all possible values of (ω1, ω2) in ̥. One method to

characterize this union is to solve a constrained optimization problem to find the

maximum feasible λ2 corresponding to each feasible λ1. For a fixed λ1, the maxi-

mum stable arrival rate for queue 2 is given by solving the following optimization

problem

max
w1,w2

λ2 = w2f2d + w1w2K2 −
λ1w2K2

f1d

,

s.t. w1 + w2 ≤ 1, λ1 ≤ w1f1d,

(4.84)

where Ki = (1−f2d)f2lfld, and i ∈ {1, 2}. To put this problem in a standard form,

we can equivalently write it as the minimization of −λ2. The Lagrangian of this

optimization problem is given by


−w2K2

−w1K2 + λ1K2

f1d
− f2d


+ u1




1

1


+ u2




−f1d

0


 = 0, (4.85)

where u1, u2 are the complementary slackness variables that are non-negative.

Solving for the complementary slackness variables we get the following relation

between u1 and u2

u1 = w2K2 + u2f1d. (4.86)

This shows that u1 > 0, i.e., the first constraint (w1 + w2 = 1) in (4.84) is met

with equality.

Substituting w2 = 1 − w1 in the cost function in (4.84), we get

λ2 = (1 − w1)f2d + w1(1 − w1)K2 − (1 − w1)
λ1K2

f1d
. (4.87)
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Taking the first derivative of the above equation with respect to w1, we get

∂λ2

∂w1
= −f2d + K2 − 2w1K2 +

λ1K2

f1d
. (4.88)

Since K2 is nonnegative, the second derivative is negative, hence, the cost function

in (4.87) is concave in w1 and the necessary conditions for optimality KKT [77]

are also sufficient. Equating the first derivative in (4.88) to zero, the solution w∗
1

is given by

w∗
1 =

1

2K2

(
K2 − f2d +

λ1K2

f1d

)
. (4.89)

From the first constraint in (4.84), the minimum value for w1 that guarantees the

stability of queue 1 in system S1 is given by w1,min = λ1

f1d
. Hence, if w∗

1 > w1,min,

and given concavity of the cost function, the optimal solution is just w∗
1, otherwise

it is given by w1,min. Characterizing this in terms of the channel parameters, the

optimal solution for the optimization problem in (4.84) is given by

w∗
1 =





1
2K2

(
K2 − f2d + λ1K2

f1d

)
, λ1 ≤ f1d − f1df2d

K2

λ1

f1d
, f1d − f1df2d

K2
< λ1 < f1d.

(4.90)

If λ1 > f1d, then the first queue can never be stable by construction of S1.

Now we solve for the other branch in the stability region given by the dominant

system S2. The equations for this branch are given by (4.17). Similar to the

first stability region branch, solving for the Lagrangian of this branch gives the

necessary condition w1 + w2 = 1. First, we find the maximum achievable stable

rate for the first queue, which is achieved when λ2 = 0. Substituting in (4.17), the

arrival rate λ1 can be written as

λ1 = w1f1d + w1(1 − w1)K1. (4.91)

The above equation is obviously concave. Taking the first derivative and equating
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to zero we get

w∗
1|λ2=0 =

1

2K1

(f1d + K1). (4.92)

Since w1 ≤ 1, then if w∗
1|λ2=0 > 1, i.e., f1d > K1, and given the concavity of the

cost function, we let w∗
1|λ2=0 = 1. Substituting w∗

1|λ2=0 in (4.91), the maximum

achievable rate λ1 can be given by

λ∗
1 =





f1d, f1d > K1,

1
4K1

(f1d + K1)
2, 0 ≤ f1d ≤ K1.

(4.93)

Next for a fixed λ1, we solve for the optimal λ2 that can be achieved from the

second branch. We can write (4.17) in terms of λ2 as follows

λ2 =
f1df2d

K1

+ (1 − w1)f2d − λ1
f2d

w1K1

. (4.94)

Taking the first derivative with respect to w1 we get

∂λ2

∂w1
= −f2d + λ1

f2d

K1w2
1

. (4.95)

The second derivative is negative, which renders the whole function concave.

Equating the first derivative to zero we get

w∗
1 =

√
λ1

(1 − f1d)f1lfld
. (4.96)

From (4.17), we have the following constraint for the stability of the second queue,

λ2 ≤ w2f2d, which can be written in terms of w1 as follows

w1 ≤ 1 − λ2

f2d
. (4.97)

Substituting λ2 from (4.97) into (4.94), we get that the maximum value for w1

in terms of λ1 is given by w1 ≤ λ1

f1d
. Therefore, the optimal value for w1 can be

written as

w∗
1 = min

(√
λ1

(1 − f1d)f1lfld

,
λ1

f1d

)
. (4.98)
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The value of the expression in (4.98) can be shown never to exceed 1 by substituting

the maximum value of λ1 given by (4.93) in the above equation. After some

manipulations, the optimum w∗
1 in (4.98) can be further simplified as follows

w1∗ =





λ1

f1d
, ifλ1 ≤ f2

1d

(1−f1d)f1lfld
,

√
λ1

(1−f1d)f1lfld
, otherwise.

(4.99)

We summarize equations (4.87,4.90,4.94,4.99) describing the envelopes of the

first and second branches as follows. For the first branch given by equations (4.87,

4.90), substituting (4.90) in (4.87) we get

g1(λ1) =





K2

(
λ1

2f1d
+ 0.5 − f2d

2K2

)2

− K2λ1

f1d
+ f2d, 0 ≤ λ1 ≤ f1d − f1df2d

K2
,

f2d − f2d

f1d
λ1, f1d − f1df2d

K2
< λ1 ≤ f1d.

(4.100)

Similarly, by substituting (4.99) in (4.94), we get for the second branch

g2(λ1) =





f2d − f2d

f1d
, λ1 <

f2
1d

(1−f1d)f1lfld
,

f1df2d

K1
+ f2d − 2f2d

√
λ1

K1
,

f2
1d

(1−f1d)f1lfld
≤ λ1 ≤ λ∗

1.

(4.101)

The value for λ∗
1 is given by (4.93). Since g1(λ1) and g2(λ2) are achieved by the

dominant systems S1 and S2 respectively, then they are both achieved by CCMA-S.

This proves Theorem 1. �

Appendix B: Proof of Lemma 2

We prove the convexity of the envelope of region R(CCMA-S). First we consider

the envelope g1(λ1) for the first branch. As shown in Fig. 4.9(a), g1(λ1) is defined

over two regions: For λ1 ∈ [0, f1d−f1df2d

K2
], g1(λ1) , g11(λ1) = K2

(
λ1

2f1d
+ 0.5 − f2d

2K2

)2

−
K2λ1

f1d
+ f2d, while for λ1 ∈ (f1d − f1df2d

K2
, f1d], g1(λ1) , g12(λ1) is a straight line given
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by f2d − f2d

f1d
. It can be readily seen that g1(λ1) is convex over both regions because

its second derivative is nonnegative. Thus to prove that g1(λ1) is convex over the

whole region, we check the continuity and the first derivative at the intersection

point f1d− f1df2d

K2
. It is simple to show that g1(λ1) is continuous at this point. Now,

it remains to check the slope of the tangent at the intersection point. Taking the

first derivative of g11 and g12, we can show that

∂g11(λ1)

∂λ1

=
∂g12(λ1)

∂λ1

|
λ1=f1d− f1df2d

K2

. (4.102)

Therefore, g1(λ1) is also differentiable, which proves that g1(λ1) is convex over its

domain of definition. Similar arguments apply for g2(λ1) depicted in Fig. 4.9(b)

to prove its convexity.

The envelope of the stability region of R(CCMA-S) is given by max [g1(λ1), g2(λ2)].

The maximum of two convex functions can be shown to be convex as follows. Let

0 < a < 1, and λ11, λ12 belong to the feasible region of λ1, then we have

max [g1(aλ11 + (1 − a)λ12), g2(aλ11 + (1 − a)λ12)]

≤ max [ag1(λ11) + (1 − a)g1(λ12), ag2(λ11) + (1 − a)g2(λ12)] , (1)

≤ max [ag1(λ11), ag2(λ11)] + max [(1 − a)g1(λ12), (1 − a)g2(λ12)] (2)

(4.103)

where (1) follows by the convexity of g1(·) and g2(·), and (2) follows by the prop-

erties of the max function. This proves that the envelope of the stability region

for system CCMA-S is convex. �

Appendix C: Proof of Theorem 7

In this appendix, we prove that the stability region of CCMA-S is a subset of that

of CCMA-Me. In the proof of this Theorem, we use two facts: the envelope of

R(CCMA-S) is convex as proved in Lemma 2, and the envelope of R(CCMA-Me) is
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Figure 4.9: Envelopes for the stability region of CCMA-S.

a straight line. Hence, to prove Theorem 3, it suffices to show that the intersections

of the envelope of region R(CCMA-S) with the λ axes are not greater than those for

region R(CCMA-Me). We consider the scenario when both CCMA-S and CCMA-

Me have larger stability regions that TDMA, or equivalently fldfil(1 − fid) ≥ fid,

i = 1, 2, because if this condition is not satisfied the stability region of CCMA-S

becomes identical to that of TDMA , and CCMA-Me was shown to outperform

TDMA, and hence our Theorem is true.

We will consider only the intersections with the λ1 axis, and similar arguments

follow for the λ2 axis. The intersection of R(CCMA-S) with the λ1 axis, or the

maximum stable arrival rate for the first queue is given by (4.93), while that

for R(CCMA-Me) is given by (4.41). Denote the difference between these two

quantities by δ given as follows

δ =
fld(f1d + f1l − f1df1l)

fld + (1 − f1d)f1l

− [f1d + (1 − f1d)f1lfld]
2

4(1 − f1d)f1lfld

. (4.104)

If we prove that δ is nonnegative, then we are done. For an arbitrary fixed value

for the pair (f1d, fld), we consider the range of f1l that satisfies the constraint
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fldf1l(1 − f1d) ≥ f1d. The first derivative of δ with respect to f1l is given by

∂δ

∂f1l
=

fld(1 − f1d)(fld − f1d)

(fld + (1 − f1d)f1l)2
− 1

4
(1 − f1d)fld +

f 2
1d

4(1 − f1d)f 2
1lfld

, (4.105)

Since fld > f1d, the second derivative of the above function is easily seen to be

negative, hence, δ is concave in f1l in the region of interest.

f1l takes values in the range [ f1d

(1−f1d)fld
, 1]. The function δ evaluated at the

minimum value of f1l is

δ|f1l,min
=

fldf1d + f1d

fld + (1 − f1d)f1l
− f1d

=
f1d − f1d(1 − f1d)f1l

fld + (1 − f1d)f1l
> 0.

(4.106)

Hence, δ is positive at the left most boundary of the feasible region of f1l. For the

maximum feasible value of f1l which is equal to 1, the function δ is given by

δ =
fld

1 − f1d + fld
− (f1d + (1 − f1d)fld)

2

4(1 − f1d)fld
. (4.107)

Fig. 4.10 depicts δ for f1l = 1 over the feasible region of the pair (f1d, fld). As

shown in the figure, the value of δ is always positive.

Hence, for an arbitrary feasible value of the pair (f1d, fld), δ is concave in f1l

and positive at the extreme end points of the feasible region of f1l, therefore, δ is

positive for the whole range of f1l for an arbitrary vale of the pair (f1d, fld). This

proves that δ is always positive over the feasible region of success probabilities,

and therefore, R(CCMA-S) is a subset from R(CCMA-Me). This proves Theorem

6. 5�

5The above Theorem has another proof that does not need numerical evaluation, however, it

is complicated and will not add new insights to the results.
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Figure 4.10: Numerical evaluation of δ for f1l = 1 .
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Chapter 5

On the Energy Efficiency of

Cooperative Communications

In the previous chapters, the gains of cooperative communications is studied under

the ideal model of negligible listening and computing power. In some types of wire-

less networks, as in sensor networks, and depending on the type of motes used, the

power consumed in receiving and processing may constitute a significant portion

of the total consumed power. Cooperative diversity can provide gains in terms of

savings in the required transmit power in order to achieve a certain performance

requirement because of the spatial diversity it adds to the system. However, if

one takes into account the extra processing and receiving power consumption at

the relay and destination nodes required for cooperation, then there is obviously a

tradeoff between the gains in the transmit power and the losses due to the receive

and processing powers when applying cooperation. Hence such a tradeoff between

the gains promised by cooperation and this extra overhead in terms of the energy

efficiency of the system should be taken into consideration in the network design.

In this chapter we investigate such a tradeoff and characterize the gains of co-
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operation under such extra overhead. Moreover, we also consider some practical

system parameters as the power amplifier loss, the quality of service (QoS) re-

quired, the relay location, and the optimal number of relays. We compare between

two communications architectures, direct transmission and cooperative transmis-

sion. Our performance metric for comparison between the two architectures is the

energy efficiency of the communication scheme. More specifically, for both archi-

tectures we compute the optimal total power consumption to achieve certain QoS

requirements and we calculate the cooperation gain defined as the ratio between

the power required for direct transmission and cooperation. When this ratio is

smaller than one, this indicates that direct transmission is more energy efficient,

and that the extra overhead induced by cooperation overweighs its gains in the

transmit power. Moreover, we compare between optimal power allocation at the

source and relay nodes and equal power allocation. The results reveal that un-

der some scenarios, equal power allocation is almost equivalent to optimal power

allocation. We also investigate the effect of relay location on the performance to

provide guidelines for relay assignment algorithms. Finally, we generalize the above

results to the case of multiple relays trying to answer the important question of

how many relays should be used for cooperation given some communication setup.

Related work to studying energy efficiency of cooperative transmission in sen-

sor networks can be found in [78]. In [78], distributed space-time codes are utilized

to perform cooperation between clusters of nodes. It is assumed that the interme-

diate hops between the source and the destination can decode correctly without

errors. In our work, we take into consideration the possibility of the wireless chan-

nel being in outage between any two nodes in the network. We also consider an

incremental relaying cooperation strategy which is more bandwidth efficient com-
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pared to distributed space-time codes. Moreover, it is easier to implement than

distributed space-time codes, as the later requires synchronization between the

spatially separated relays performing the distributed space-time code.

5.1 System Model

We consider a single source-destination pair separated by distance rsd. The number

of potential relays available to help the source is N . This is illustrated in Fig. 5.1,

where the distances between source and relay i, and relay i and destination are rsi

and rid, respectively, and i ∈ {1, 2, · · · , N}. First we analyze the performance of

the single relay scenario, and later we extend the results for arbitrary finite N .

We compare the performance of two communication scenarios. In the first sce-

nario only direct transmission between the source and destination nodes is allowed,

and this accounts for conventional direct transmission. In direct transmission, if

the channel link between the source and destination encounters a deep fade or

strong shadowing for example, then the communication between these two nodes
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fails. Moreover, if the channel is slowly varying, which is the case in sensor net-

works due to the stationarity or limited mobility of the nodes, then the channel

might remain in the deep fade state for long time (strong time correlation), hence

conventional automatic repeat request (ARQ) might not help in this case.

In the second communication scenario, we consider a two phase cooperation

protocol. In the first phase, the source transmits a signal to the destination, and

due to the broadcast nature of the wireless medium the relay can overhear this

signal. If the destination receives the packet from this phase correctly, then it

sends back an acknowledgement (ACK) and the relay just idles. On the other

hand, if the destination can not decode the received packet correctly, then it sends

back a negative acknowledgement (NACK). In this case, if the relay was able to

receive the packet correctly in the first phase, then it forwards it to the destination.

So the idea behind this cooperation protocol is to introduce a new ARQ in another

domain, which is the spatial domain, as the links between different pairs of nodes

in the network fade independently. The assumptions of high temporal correlation

and independence in the spatial domain will be verified through experiments as

discussed in Section 5.4.

Next the wireless channel and system models are described. We consider a

sensor network in which the link between any two nodes in the network is subject to

narrowband Rayleigh fading, propagation path-loss, and additive white Gaussian

noise (AWGN). The channel fades for different links are assumed to be statistically

mutually independent. This is a reasonable assumption as the nodes are usually

spatially well separated. For medium access, the nodes are assumed to transmit

over orthogonal channels, thus no mutual interference is considered in the signal

model. All nodes in the network are assumed to be equipped with single-element
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antennas, and transmission at all nodes is constrained to the half-duplex mode,

i.e., any terminal cannot transmit and receive simultaneously.

The power consumed in a transmitting or receiving stage is described as fol-

lows. If a node transmits with power P , only P (1 − α) is actually utilized for RF

transmission, where (1 − α) accounts for the efficiency of the RF power amplifier

which generally has a non-linear gain function. The processing power consumed by

a transmitting node is denoted by Pc. Any receiving node consumes Pr power units

to receive the data. The values of the parameters α, Pr, Pc are assumed the same

for all nodes in the network and are specified by the manufacturer. Following, we

describe the received signal model for both direct and cooperative transmissions.

First, we describe the received signal model for the direct transmission mode.

In the direct transmission scheme, which is employed in current wireless networks,

each user transmits his signal directly to the next node in the route which we

denote as the destination d here. The signal received at the destination d from

source user s, can be modeled as

ysd =

√
P D

s (1 − α)r−γ
sd hsdx + nsd, (5.1)

where P D
s is the transmission power from the source in the direct communication

scenario, x is the transmitted data with unit power, hsd is the channel fading gain

between the two terminals s and d. The channel fade of any link is modeled as a

zero mean circularly symmetric complex Gaussian random variable [4] with unit

variance. In (5.1), γ is the path loss exponent, and rsd is the distance between the

two terminals. The term nsd in (5.1) denotes additive noise; the noise components

are modeled as white Gaussian noise (AWGN) with variance No.

Second, we describe the signal model for cooperative transmission. The co-

operative transmission scenario comprises two phases as illustrated before. The
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signals received from the source at the destination d and relay 1 in the first stage

can be modeled respectively as,

ysd =

√
P c

s (1 − α)r−γ
sd hsdx + nsd, ys1 =

√
P c

s (1 − α)r−γ
s1 hs1x + ns1, (5.2)

where P c
s is the transmission power from the source in the cooperative scenario.

The channel gains hsd and hs1 between the source-destination and source-relay are

modeled as zero-mean circular symmetric complex Gaussian random variables with

zero mean. If the SNR of the signal received at the destination from the source

falls below the threshold β, the destination broadcasts a NACK. In this case, if the

relay was able to receive the packet from the source correctly in the first phase, it

forwards the packet to the destination with power P1

y1d =

√
P1(1 − α)r−γ

1d h1dx + n1d. (5.3)

Cooperation results in additional spatial diversity by introducing this artificial

multipath through the relay link. This can enhance the transmission reliability

against wireless channel impairmens as fading, but will also result in extra receiving

and processing power. In the next Section, we discuss this in more details.

5.2 Performance Analysis and Optimum Power

Allocation

We characterize the system performance in terms of outage probability. Outage

is defined as the event that the received SNR falls below a certain threshold β,

hence, the probability of outage PO is defined as,

PO = P(SNR ≤ β). (5.4)
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If the received SNR is higher than the threshold β, the receiver is assumed to

be able to decode the received message with negligible probability of error. If an

outage occurs, the packet is considered lost. The SNR threshold β is determined

according to the application and the transmitter/receiver structure. For example,

larger values of β is required for applications with higher quality of service (QoS)

requirements. Also increasing the complexity of transmitter and/or receiver struc-

ture, for example applying strong error coding schemes, can reduce the value of β

for the same QoS requirements.

Based on the derived outage probability expressions, we formulate a constrained

optimization problem to minimize the total consumed power subject to a given

outage performance. We then compare the total consumed power for the direct

and cooperative scenarios to quantify the energy savings, if any, gained by applying

cooperative transmission.

5.2.1 Direct Transmission

As discussed before, the outage is defined as the event that the received SNR falls

below a predefined threshold which we denoted by β. From the received signal

model in (5.1), the received SNR from a user at a distance rsd from the destination

is given by

SNR(rsd) =
| hsd |2 r−γ

sd P D
s (1 − α)

No
, (5.5)

where | hsd |2 is the magnitude square of the channel fade and follows an exponen-

tial distribution with unit mean; this follows because of the Gaussian zero mean

distribution of hsd. Hence, the outage probability for the direct transmission mode

POD can be calculated as

POD = P (SNR(rsd) ≤ β) = 1 − exp

(
− Noγrγ

sd

(1 − α)P D
s

)
. (5.6)
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The total transmitted power P D
tot for the direct transmission mode is given by

P D
tot = P D

s + Pc + Pr, (5.7)

where P D
s is the power consumed at the RF stage of the source node, Pc is the

processing power at the source node, and Pr is the receiving power at the desti-

nation. The requirement is to minimize this total transmitted power subject to

the constraint that we meet a certain QoS requirement that the outage probabil-

ity is less than a given outage requirement, which we denote by P∗
out. Since both

the processing and receiving powers are fixed, the only variable of interest is the

transmitting power P D
s .

The optimization problem can be formulated as follows

min
P D

s

P D
tot, s.t. POD ≤ P∗

out. (5.8)

The outage probability POD is a decreasing function in the power P D
s . Substituting

P∗
out in the outage expression in (5.6), we get after some simple arithmetics that

the optimal transmitting power is given by

P D∗
s = − βNor

γ
sd

(1 − α) ln(1 −P∗
out)

. (5.9)

The minimum total power required for direct transmission in order to achieve the

required QoS requirement is therefore given by

P ∗
tot = Pc + Pr −

βNor
γ
sd

(1 − α) ln(1 − P∗
out)

. (5.10)

In the next subsection we formulate the optimal power allocation problem for the

cooperative communication scenario.

5.2.2 Cooperative Transmission

For the optimal power allocation problem in cooperative transmission, we con-

sider two possible scenarios. In the first scenario, the relay is allowed to transmit
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with different power than the source and hence the optimization space is two-

dimensional: source and relay power allocations. The solution for this setting

provides the minimum possible total consumed power. However, the drawback of

this setting is that the solution for the optimization problem is complex and might

not be feasible to implement in sensor nodes. The second setting that we consider

is constraining the source and relay nodes to transmit with equal powers. This

is much easier to implement as the optimization space is one dimensional in this

case, moreover, a relaxed version of the optimization problem can render a closed

form solution. Clearly the solution of the equal power allocation problem provides

a suboptimal solution to the general case in which we allow different power alloca-

tions at the source and the relay. It is interesting then to investigate the conditions

under which these two power allocation strategies have close performance.

First, we characterize the optimal power allocations at the source and relay

nodes. Consider a source-destination pair that are rsd units distance. Let us

compute the conditional outage probability for given locations of the source and

the helping relay. As discussed before, cooperative transmission encompasses two

phases. Using (5.2), the SNR received at the destination d and relay 1 from the

source s in the first phase are given by

SNRsd =
| hsd |2 r−γ

sd P C
s (1 − α)

No
, SNRs1 =

| hs1 |2 r−γ
s1 P C

s (1 − α)

No
. (5.11)

While from (5.3), the SNR received at the destination from the relay in the second

phase is given by

SNR1d =
| h1d |2 r−γ

1d P1(1 − α)

No
. (5.12)

Note that the second phase of transmission is only initiated if the packet received

at the destination from the first transmission phase is not correctly received. The
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terms | hsd |2, | hs1 |2, and | h1d |2 are mutually independent exponential random

variables with unit mean.

The outage probability of the cooperative transmission POC can be calculated

as follows

POC = P ((SNRsd ≤ β) ∩ (SNRsl ≤ β))

+ P ((SNRsd ≤ β) ∩ (SNRld ≤ β) ∩ (SNRsl > β))

=
(
1 − f(rsd, P

C
s )
) (

1 − f(rsl, P
C
s )
)

+
(
1 − f(rsd, P

C
s )
)
(1 − f(rld, Pl)) f(rsl, P

C
s ),

(5.13)

where f(x, y) = exp(−Noβxγ

y(1−α)
). The first term in the above expression corresponds

to the event that both the source-destination and the source-relay channels are in

outage, and the second term corresponds to the event that both the the source-

destination and the relay-destination channels are in outage while the source-relay

channel is not. The above expression can be simplified as follows

POC =
(
1 − f(rsd, P

C
s )
) (

1 − f(rld, Pl)f(rsl, P
C
s )
)
. (5.14)

The total average consumed power for cooperative transmission to transmit a

packet is given by

E[P C
tot] =(P C

s + Pc + 2Pr)P(SNRsd ≥ β)

+ (P C
s + Pc + 2Pr)P(SNRsd < β)P(SNRs1 < β)

+ (P C
s + P1 + 2Pc + 3Pr)P(SNRsd < β)P(SNRs1 > β),

(5.15)

where the first term in the right hand side corresponds to the event that the direct

link in the first phase is not in outage, therefore, the total consumed power is only

given by that of the source node, and the 2 in front of the received power term

Pr is to account for the relay receiving power. The second term in the summation

corresponds to the event that both the direct and the source-relay links are in
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outage, hence the total consumed power is still given as in the first term. The last

term in the total summation accounts for the event that the source-destination

link is in outage while the source-relay link is not, and hence we need to account

for the relay transmitting and processing powers, and the extra receiving power

at the destination. Using the Rayleigh fading channel model, the average total

consumed power can be given as follows

P C
tot =(P C

s + Pc + 2Pr)f(rsd, P
C
s )

+ (P C
s + Pc + 2Pr)

(
1 − f(rsd, P

C
s )
) (

1 − f(rsl, P
C
s )
)

+ (P C
s + P1 + 2Pc + 3Pr)

(
1 − f(rsd, P

C
s )
)
× f(rsl, P

C
s ).

(5.16)

We can formulate the power minimization problem in a similar way to (5.8)

with the difference that there are two optimization variables in the cooperative

transmission mode, namely, the transmit powers P C
s and P1 at the source and

relay nodes respectively. The optimization problem can be stated as follows

min
P C

s ,P1

P C
tot(P

C
s , P1), s.t. POC(P C

s , P1) ≤ P∗
out. (5.17)

This optimization problem is nonlinear and does not admit a closed form solution.

Therefore we resort to numerical optimization techniques in order to solve for this

power allocation problem at the relay and source nodes, and the results are shown

in the simulations section.

In the above formulation we considered optimal power allocation at the source

and relay node in order to meet the outage probability requirement. The perfor-

mance attained by such an optimization problem provides a benchmark for the

cooperative transmission scheme. However, in a practical setting, it might be dif-

ficult to implement such a complex optimization problem at the sensor nodes. A

more practical scenario would be that all the nodes in the network utilize the same
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power for transmission. Denote the equal transmission power in this case by PCE ;

the optimization problem in this case can be formulated as

min
PCE

P C
tot(PCE), s.t. POC(PCE) ≤ P∗

out. (5.18)

Beside being a one-dimensional optimization problem that can be easily solved,

the problem can be relaxed to render a closed form solution. Note that at enough

high SNR the following approximation holds exp(−x) ≃ (1 − x); where x here is

proportional to 1/SNR.

Using the above approximation in (5.16), and after some mathematical manip-

ulation, the total consumed power can be approximated as follows

P C
tot ≃ PCE + Pc + 2Pr + (PCE + Pc + Pr)

k1

PCE
− (PCE + Pc + Pr)

k1k2

P 2
CE

. (5.19)

Similarly, the outage probability can be written as follows

POC ≃ k1k2

P 2
CE

+
k1k3

P 2
CE

− k1k2k3

P 3
CE

, (5.20)

where k1 =
βNorγ

sd

1−α
, k2 =

βNorγ
sl

1−α
, and k3 =

βNorγ
ld

1−α
. This is a constrained optimization

problem in one variable and its Lagrangian is given by

∂P C
tot

∂PCE

+ λ
∂POC

∂PCE

= 0, (5.21)

where the derivatives of the total power consumption P C
tot and the outage proba-

bility POC with respect to the transmit power PCE are given by

∂P C
tot

∂PCE
= 1 +

k1k2 − (Pc + Pr)k1

P 2
CE

+
2k1k2(Pc + Pr)

P 3
CE

;

∂POC

∂PCE

=
−2(k1k2 + k1k3)

P 3
CE

+
3k1k2k3

P 4
CE

,

(5.22)

respectively. Substituting the derivatives in (5.22) into the Lagrangian in (5.21),

and doing simple change of variables 1/PCE = x, the Lagrangian can be written
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in the following simple polynomial form

1 + (k1k2 − (Pc + Pr)k1)x
2 + 2(k1k2(Pc + Pr)

− λ(k1k2 + k1k3))x
3 + 3λk1k2k3x

4 = 0,

(5.23)

under the outage constraint

(k1k2 + k1k3) x2 − k1k2k3x
3 = P∗

out. (5.24)

The constraint equation above is only a polynomial of order three, so it can be

easily solved and we can find the root that minimizes the cost function.

5.3 Multi-Relay Scenario

In this section, we extend the protocol described in Section 5.1 to the case when

there is more than one potential relay. Let N be the number of relays assigned

to help a given source. The cooperation protocol then works as an N -stage ARQ

protocol as follows. The source node transmits its packets to the destination and

the relays try to decode this packet. If the destination does not decode the packet

correctly, it sends a NACK that can be heard by the relays. If the first relay is

able to decode the packet correctly, it forwards the packet with power P1 to the

destination. If the destination does not receive correctly again, then it sends a

NACK and the second candidate relay, if it received the packet correctly, forwards

the source’s packet to the destination with power P2. This is repeated until the

destination gets the packet correctly or the N trials corresponding to the N relays

are exhausted.

We model the status of any relay by 1 or 0, corresponding to whether the

relay received the source’s packet correctly or not, respectively. Writing the status

of all the relays in a column vector results in a N × 1 vector whose entries are
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either 0 or 1. Hence, the decimal number representing this N × 1 vector can

take any integer value between 0 and 2N − 1. Denote this vector by Sk where

k ∈ {0, 1, 2, · · · , 2N − 1}.

For a given status of the N relays, an outage occurs if and only if the links

between the relays that decoded correctly and the destination are all in outage.

Denote the set of the relays that received correctly by χ(Sk) = {i : Sk(i) = 1, 1 ≤

i ≤ N}, and χc(Sk) as the set of relays that have not received correctly, i.e.,

χc(Sk) = {i : Sk(i) = 0, 1 ≤ i ≤ N}. The conditional probability of outage given

the relays status Sk is thus given by

POC|Sk
= P


SNRsd ≤ β

N⋂

j∈χ(Sk)

(SNRjd ≤ β)


 , (5.25)

The total outage probability is thus given by

POC =
2N−1∑

k=0

P(Sk)POC|Sk
. (5.26)

We then need to calculate the probability of the set Sk, which can then be written

as

P(Sk) = P


 ⋂

i∈χ(Sk)

(SNRsi ≥ β)
⋂

j∈χc(Sk)

(SNRsj ≤ β)


 . (5.27)

The average outage probability expression can thus be given by

POC =

2N−1∑

k=0

(1 − f(rsd, P
c
s ))

∏

j∈χ(Sk)

(1 − f(rjd, Pj))f(rsj, P
c
s )

∏

j∈χc(Sk)

(1 − f(rsj, P
c
s )) .

(5.28)

where Pj, j ∈ {1, 2, · · · , N}, is the power allocated to the j-th relay.

Next we compute the average total consumed power for the N -relays scenario.

First we condition on some relays’ status vector χ(Sk)

E [P c
tot] = E [E [P c

tot|χ (Sk)]] =
2N−1∑

k=0

P (χ(Sk))E [P c
tot|χ(Sk)] ; (5.29)
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For a given χ (Sk), we can further condition on whether the source get the packet

through from the first trial or not. This event happens with probability f(rs,d, P
c
s ),

and the consumed power in this case is given by

P c,1
tot = P c

s + (N + 1)Pr + Pc; (5.30)

The complementary event that the source failed to transmit its packet from the

direct transmission phase happens with probability 1 − f(rs,d, P
c
s ), and this event

can be further divided into two mutually exclusive events. The first is when the first

| χ(Sk) | −1 relays from the set χ(Sk) fails to forward the packet and this happens

with probability
∏|χ(Sk)|−1

i=1 (1 − f(ri,d, Pi)) and the corresponding consumed power

is given by

P c,2
tot = P c

s + (N + 1+ | χ(Sk) |)Pr + (| χ(Sk) | +1)Pc +

|χ(Sk)|∑

n=1

Pχ(Sk)(n); (5.31)

And the second is when one of the intermediate relays in the set χ(Sk) successfully

forwards the packet and this happens with probability
∏j−1

m=1 (1 − f(rm,d, Pm)) f(rj,d, Pj)

if this intermediate relay was relay number j, and the corresponding power is given

by

P c,3,j
tot = P c

s + (N + 1 + j)Pr + (1 + j)Pc +

j∑

i=1

Pχ(Sk)(i). (5.32)

From (5.29), (5.30), (5.31), and (5.32), the average total consumed power can be

given by

E [P c
tot] =

2N−1∑

k=0

P (χ(Sk))
{
f(rs,d, P

c
s )P c,1

tot

+ (1 − f(rs,d, P
c
s ))



|χ(Sk)|−1∏

i=1

(1 − f(ri,d, Pi))P c,2
tot

+

|χ(Sk)|−1∑

j=1

j−1∏

m=1

(1 − f(rm,d, Pm)) f(rj,d, Pj)P
c,3,j
tot





 .

(5.33)
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The optimization problem can then be written as

min
P

P C
tot(P), s.t. POC(P) ≤ P∗

out. (5.34)

where P = [P c
s , P1, P2, · · · , PN ]T .

5.4 Experimental and Simulation Results

5.4.1 Experimental Results

In our system model we have assumed the channel independence between the

following links: the source-relay link, the source-destination link, and the relay-

destination link. Moreover, a strong motivation for applying cooperative trans-

mission instead of ARQ in the time domain, is the assumption of high temporal

correlation which results in delay and requires performing interleaving at the trans-

mitter side. In this section, we have conducted a set of experiments to justify these

two fundamental assumptions.

The experiments are set up as follows. We have three wireless nodes in the

experiments, one of them acts as the sender and the other two act as receivers. Each

wireless node is computer equipped with a IEEE 802.11g wireless card, specifically,

we utilized three LINKSYS wireless-G USB network adaptors. The sender’s role

is to broadcast data packets with a constant rate, while the two receivers’ role is

to decode the packets and record which packet is erroneous. The traffic rate is

100 packets per second, and the size of each packet is 554 bytes (including packet

headers). The two receivers are placed together, with the distance between them

being 20cm. The distance between the transmitter and the receiver is around

5 meters. The experiments have been mainly conducted in office environments.

The experiments results, which are illustrated next, have revealed two important
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Figure 5.2: Sequence of packet errors at the two utilized wireless cards.

observations: the channels exhibit strong time correlation for each receiver, while

there is negligible dependence between the two receivers. Fig. 5.2 illustrates one

instantiation of the experiments. The first figure illustrates the results obtained at

the first receiver and the second figure is for the second receiver.

For each figure, the horizontal axis denotes the sequence number of the first

100000 packets, and the vertical axis denotes whether a packet is erroneous or not.

First, from these results we can see that packet errors exhibit strong correlation

in time. For example, for the first receiver, most erroneous packets cluster at

around 22nd second and around 83rd second. Similar observations also hold for

the second receiver. If we take a further look at the results we can see that in

this set of experiments the duration for the cluster is around 2 seconds. To help

better understand the time correlation of erroneous packets, we have also used a

two-state Markov chain to model the channel, as illustrated in Fig. 5.3. In this

model “1” denotes that the packet is correct, and “0” denotes that the packet

is erroneous. Pi|j denotes the transition probability from state i to state j, that
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Figure 5.3: Modelling the channel by a two (on-off) state Markov chain to study

the time correlation.

is, the probability to reach state j given the previous state is i. The following

transition probabilities have been obtained after using the experimental results to

train the model: P1|0 = 0.03, P1|1 = 0.999, P0|0 = 0.97, P0|1 = 0.001. These results

also indicate strong time correlation. For example, given the current received

packet is erroneous, the probability that the next packet is also erroneous is around

P0|0 = 0.97.

Now we take a comparative look at the results obtained at the two receivers.

From these results we can see that although there exists slight correlation in packet

errors between the two receivers, it is almost negligible. To provide more concrete

evidence of independence, we have estimated the correlation between the two re-

ceivers using the obtained experiment results. Specifically, we have measured the

correlation coefficient between the received sequences at the two receivers and we

found that the correlation coefficient is almost 0 which indicates a strong spatial

independence between the two receivers.
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5.4.2 Simulation Results

As discussed in the previous sections, there are different system parameters that

can control whether we can gain from cooperation or not. Among which are the

received power consumption, the processing power, the SNR threshold, the power

amplifier loss, and the relative distances between the source, relay, and destination.

In order to understand the effect of each of these parameters, we are going

to study the performance of cooperative and direct transmission when varying

one of these parameters and fixing the rest. This is described in more details in

the following. In all of the simulations, the aforementioned parameters take the

following values when considered fixed: α = 0.3, β = 10, No = 10−3, Pc = 10−4

Watt, Pr = 5 × 10−5, QoS = P∗
out = 10−4. We define the cooperation gain as the

ratio between the total power required for direct transmission to achieve a certain

QoS, and the total power required by cooperation to achieve the same QoS.

First, we study the effect of varying the receive power Pr as depicted in Fig.

5.4. We plot the cooperation gain versus the distance between the source and

the destination for different values of receive power Pr = 10−4, 5 × 10−5, 10−5

Watt. At source-destination distances below 20m, the results reveal that direct

transmission is more energy efficient than cooperation, i.e., the overhead in receive

and processing power due to cooperation outweighs its gains in saving the transmit

power. For rsd > 20m, the cooperation gain starts increasing as the transmit power

starts constituting a significant portion of the total consumed power. This ratio

increases until the transmit power is the dominant part of the total consumed

power and hence the cooperation gain starts to saturate.

In the plotted curves, the solid lines denote the cooperation gain when utilizing

optimal power allocation at the source and the relay, while the dotted curves
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denote the gain for equal power allocation. For rsd ≤ 100m, both optimal power

allocation and equal power allocation almost yield the same cooperation gain. For

larger distances, however, a gap starts to appear between optimal and equal power

allocation. The rationale behind these observations is that at small distances

the transmit power is a small percentage of the total consumed power and hence

optimal and equal power allocation almost have the same behavior, while at larger

distances, transmit power plays a more important role and hence a gap starts to

appear.

In Fig. 5.5 we study the effect of changing the SNR threshold β. The distance

between source and destination rsd is fixed to 100m. It is clear that the cooperation

gain increases with increasing β, and that for the considered values of the system

parameters, equal power allocation provides almost the same gains as optimal

power allocation. In Fig. 5.6 we study the effect of the power amplifier loss α. In

this case, we plot the total consumed power for cooperation and direct transmission

versus distance for different values of α. Again below 20m separation between the

source and the destination, direct transmission provides better performance over

cooperation. It can also be seen from the plotted curves that the required power

for direct transmission is more sensitive to variations in α than the power required

for cooperation. The reason is that the transmit power constitutes a larger portion

in the total consumed power in direct transmission than in cooperation, and hence

the effect of α is more significant. The QoS, measured by the required outage

probability, has similar behavior and the results are depicted in Fig. (5.7).

Next we study the effect of varying the relay location. We consider three

different positions for the relay, close to the source, in the middle between the

source and the destination, and close to the destination. In particular, the relay
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position is taken equal to (rsl = 0.2rsd, rld = 0.8rsd), (rsl = 0.5rsd, rld = 0.5rsd),

and (rsl = 0.8rsd, rld = 0.2rsd).

Figs. 5.8 and 5.9 depict the power required for cooperation and direct trans-

mission versus rsd for equal power and optimal power allocation, respectively. In

the equal power allocation scenario, the relay in the middle gives the best results,

and the other two scenarios, relay close to source and relay close to destination

provide the same performance. This can be expected because for the equal power

allocation scenario the problem becomes symmetric in the source-relay and relay-

destination distances. For the optimal power allocation scenario depicted in Fig.

5.9, the problem is no more symmetric because different power allocation is allowed

at the source and relay. In this case, numerical results show that the closer the

relay to the source the better the performance. The intuition behind this is that

when the relay is closer to the source, the source-relay channel is very good and

almost error-free.

From both figures, it is also clear that for small source-destination separation

rsd, equal and optimal power allocation almost provide the same cooperation gain

while for larger rsd optimal power allocation provides more gain. Another impor-

tant observation is that at small distances below 100m, the location of the relay

does not affect the performance much. This makes the algorithms required to select

a relay in cooperative communications simpler to implement for source-destination

separations in this range. Finally, the threshold behavior below 20m still appears

where direct transmission becomes more energy efficient.

Fig. 5.10 depicts the multiple relays scenario for different values of outage

probability P∗
out. The results are depicted for a source-destination distance of

100m, and for N = 0, 1, 2, 3 relays, where N = 0 refers to direct transmission. As
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Figure 5.4: Cooperation gain versus the source-destination distance for different

values of received power consumption .

shown in Fig. 5.10, for small values of required outage probability, one relay is

more energy efficient than two or three relays. As we increase the required QoS,

reflected by P∗
out, the optimal number of relays increases. Hence, our analytical

framework can also provide guidelines to determining the optimal number of relays

under any given scenario.
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Figure 5.5: Cooperation gain versus the SNR threshold β.
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for optimal power allocation at source and relay.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we have developed and analyzed cooperative communications proto-

cols for wireless networks that can achieve significantly higher energy and band-

width efficiency compared to non-cooperative schemes. Our results indicate that

cooperative communications indeed offers a paradigm shift to the design of wire-

less networks that can yield to achieving the increasing demands of future wireless

applications. More specifically, we have addressed the following problems.

In Chapter 2, we proposed a class of cooperative diversity protocols for multi-

node wireless networks employing decode-and forward relaying. This class of pro-

tocols consists of schemes in which each relay can combine the signals arriving from

an arbitrary but fixed number of previous relays along with that received from the

source. We derived exact expressions for the SER of a general cooperation scheme

for both MPSK and MQAM modulation. Also, we provided approximations for

the SER which are shown to be tight at high enough SNR. Our theoretical anal-

ysis reveals a very interesting result: this class of cooperative protocols shares the
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same asymptotic performance at high enough SNR. Thus the performance of a

simple cooperation scenario in which each relay combines the signals arriving from

the previous relay and the source is asymptotically exactly the same as that for

the most complicated scenario in which each relay combines the signals arriving

from all the previous relays and the source. The analysis also reveals that the pro-

posed protocols achieve full diversity gain in the number of cooperating terminals.

Moreover, we formulated the optimal power allocation problem, and show that the

optimum power allocated at the nodes for an arbitrary network follow a certain

ordering. We found that the optimal power allocation scheme does not depend on

the quality of the direct link between the source and the destination. Furthermore,

we provided closed form solutions for the optimal power allocation for some net-

work topologies of practical interest, and we showed through numerical examples

that our theoretical results match with the simulation results.

In Chapter 3, we addressed the relay-assignment problem for coverage extension

in cooperative transmission over wireless networks based on the knowledge of the

channel statistics governed by the users’ spatial distribution. We proposed two

distributed relay-assignment protocols. The Nearest-neighbor is a simple algorithm

in which the relay is selected to be the nearest neighbor to the user. We also

considered the scenario where fixed relays are deployed in the network to help

the existing users. Outage performance of the proposed protocols was analyzed.

We further developed lower bounds on the performance of any relay assignment

protocol via a Genie aided method. Our numerical results indicate significant

gains in the system performance. In particular, fixing the average transmit power,

significant increase in the coverage area of the network can be achieved by our

simple distributed protocols. Similarly, fixing the cell radius, the average power
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required to achieve a certain outage probability is significantly reduced.

In Chapter 4, we studied the impact of cooperative communications at the

multiple-access layer. We introduced a new cognitive multiple-access protocol in

the presence of a relay in the network. The relay senses the channel for idle chan-

nel resources and exploits them to cooperate with the terminals in forwarding

their packets. We developed two protocols to implement the proposed multiple-

access strategy, namely, CCMA-S and CCMA-Me. We characterized the maximum

stable throughput region of the proposed protocols and compared them to some

existing adaptive relaying strategies, non-cooperative TDMA, and random-access

ALOHA. Moreover, we studied the delay performance of the proposed protocols.

Our analysis reveals significant performance gains of the proposed protocols over

their non-cognitive counterparts. This is because the proposed multiple-access

strategies do not result in any bandwidth loss, as cooperation is enabled only in

idle “unused” channel resources, which results in a graceful degradation of the

maximum stable throughput when increasing the communication rate. On the

other hand, the maximum stable throughput of non-cognitive relaying strategies

as selection and incremental relaying suffer from catastrophic degradation with in-

creasing the communication rate, because of their inherent bandwidth inefficiency.

Furthermore, we showed that the throughput region of the proposed protocols is a

subset from their maximum stable throughput region, which is different from the

case in ALOHA where it is conjectured that both regions are identical.

In Chapter 5, we consider a practical framework for analyzing the performance

of cooperative transmission in sensor networks by considering the extra overhead

induced by enabling cooperation. This extra overhead appears in the extra pro-

cessing and receiving powers at the relays and destination. Our analytical and
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numerical results reveal an interesting threshold behavior that separates regions

where direct transmission is better from regions where cooperation prevails. We

also show that under certain scenarios, equal power allocation has very close per-

formance to optimal power allocation. Moreover, we show that for small distances

between the source and the destination, the performance is not sensitive to relay lo-

cation, which leads to simpler relay assignment algorithms. Our results also reveal

that cooperative communication is more robust to poor power amplifier designs

compared to direct transmission. Our analytical framework can also be utilized to

determine the optimal number of relays for any given scenario. In summary, we

provide important guidelines for wireless sensor network designers to decide when

and how to apply the cooperative communication paradigm, and when is direct

transmission more energy efficient.

6.2 Future Work

There are several problems that can lead to fruitful research in cooperative com-

munications and networking, among which we believe the following are of high

relevance.

6.2.1 Cooperation among Correlated Sources

This problem is of high relevance to sensor networks as the measurements taken at

different sensors may have some correlation structure. For the three node model,

we can think of the relay as having a correlated version of the signal transmitted by

the source. New relaying strategies that take into account such correlation struc-

ture need to be developed. In decode-and-forward schemes, for example, the relay
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can utilize this correlation as side information for decoding the source’s message.

Another possibility is that the relay can communicate its information simultane-

ously to the base-station using some orthogonal codes or distributed space-time

codes saving the bandwidth loss in conventional cooperation. Distributed source-

coding can be done jointly with cooperation (distributed space-coding) to optimize

some distortion function depending on the problem.

6.2.2 Cognitive Cooperative Communications

It is well established now that the scarce spectrum is under-utilized (spectral holes).

One way to reuse it is by introducing a secondary system that opportunistically

shares the spectrum of the primary users through the utilization of cognitive radio.

In a much broader sense, one can think that these spectral holes can also be used

to enhance the performance of the primary system. An interesting and important

problem to investigate is how to divide the new resources “spectral holes” between

cooperation (to enhance the primary system performance), and spectrum sharing

by secondary users, and what is the fundamental tradeoff between them. This

depends on the type of data and required quality of service for both systems.

Another important problem that is relevant to the two scenarios above, is the issue

of spectrum sensing. This should be done in a distributed cooperative manner to

be robust against the effects of channel fading, shadowing, and the uncertainty of

the interference signal.
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