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While wireless communication has dramatically changed the way people work

and interact, the wireless era continues to be plagued by insufficient security. With-

out necessary countermeasures, even a few attackers can break down the whole

network. On the other hand, attacker detection can be extremely challenging in

realistic scenarios because misbehavior may also be caused by various other fac-

tors, such as noise and uncertainty, and perfect monitoring is either impossible

to achieve or too expensive to afford. In this dissertation we have investigated

how to secure wireless ad hoc networks against insider attacks in noisy and hostile

environments, based only on local and imperfect monitoring.

In traditional ad hoc network applications, nodes usually belong to the same

authority and pursue some common goals. The inherent cooperative nature of



such networks makes them extremely vulnerable to insider attacks. For example,

by dropping other nodes’ packets and/or injecting an overwhelming amount of traf-

fic, insider attackers can easily break down the whole network. In this dissertation

we have first studied how to secure such ad hoc networks against insider attacks

under noise and imperfect monitoring. Besides devising a set of efficient monitor-

ing and attacker detection mechanisms to defend against routing disruption and

injecting traffic attacks, we have also formally analyzed the dynamic interactions

between good nodes and attackers under a game theoretic framework, where both

the optimal defending strategies and the maximum damage that can be caused by

insider attackers have been derived.

In many civilian applications, nodes in ad hoc networks tend to act selfishly.

Stimulating selfish nodes to act cooperatively poses one key research challenge,

especially in realistic contexts. In this dissertation we have also investigated how

to design attack-resistant cooperation mechanisms for such networks. We have

first designed an attack-resistant cooperation stimulation strategy for mobile ad

hoc networks, then formally analyzed the issue of secure cooperation in ad hoc

networks under a game theoretic framework. Finally, we have derived a set of

reputation-based attack-resistant and cheat-proof cooperation strategies for such

ad hoc networks that can work well in noisy and hostile environments under im-

perfect monitoring.
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Chapter 1

Motivation and Contributions

1.1 Motivation

A wireless ad hoc network is a group of nodes without requiring centralized admin-

istration or fixed network infrastructure, in which nodes can communicate with

other nodes out of their direct transmission ranges by cooperatively forwarding

packets for each other through wireless connections [69, 79]. Since ad hoc net-

works can be easily and inexpensively set up as needed, they have a wide range of

applications, such as military exercises, disaster rescue, mine site operations, etc.

In traditional military and emergency applications, nodes in an ad hoc network

usually belong to the same authority and pursue some common goals. To maximize

the overall system performance, nodes usually work in a fully cooperative way,

and will unconditionally forward packets for each other. We refer to such ad hoc

networks as cooperative ad hoc networks. Recently, emerging applications of ad

hoc networks are also envisioned in civilian usage [16, 18, 19, 45, 58, 60, 78, 99]. In

civilian applications, nodes typically do not belong to a single authority and may

not pursue a common goal. Consequently, fully cooperative behaviors, such as
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unconditionally forwarding packets for each other, cannot be taken for granted.

On the contrary, in order to save limited resources, such as battery power, nodes

may tend to be “selfish”. We refer to such ad hoc networks as autonomous ad hoc

networks.

Since ad hoc networks are usually deployed in hostile environments and nodes

may tend to be selfish, before they can be successfully deployed in practice, the

following two critical issues must be resolved first: security and node cooperation.

When ad hoc networks are designed without taking into consideration necessary

security concerns, adversaries can easily exploit the possible vulnerabilities of the

network to cause damage. In many critical applications, such as in battle fields,

the potential damage caused by attacks can be fatal. Meanwhile, since nodes may

be selfish, without necessary cooperation mechanisms, nodes may not be willing to

help the others, and consequently the network may reach a non-cooperative state.

This contradicts the original purpose of designing ad hoc networks: nodes should

help each other to extend the coverage and/or to best utilize the limited resources.

Security in wireless ad hoc network has drawn extensive attentions over the

past several years [3, 34, 36, 42, 58, 96, 101]. It has been realized that securing ad

hoc networks can be extremely challenging. In wireless networks, due to unre-

stricted channel access, a variety of attacks can be easily launched, ranging from

passive eavesdropping to active interfering. Since ad hoc networks usually do not

have centralized monitoring or management points, the situation can be further

deteriorated. Meanwhile, nodes in ad hoc networks may not have enough physical

protection, and can be easily captured and compromised by adversarial parties

and become insider attackers. Without necessary countermeasures, even a few

attackers can break down the whole network.
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Past research on securing ad hoc network have mainly focused on preventing

attackers from entering the network through mechanisms such as secure key dis-

tribution and secure neighbor discovery [34–37, 42, 65, 76, 95, 101]. However, the

research on defending ad hoc networks against insider attacks is still in its prelim-

inary stage. For example, in the literature, only very few works have implicitly

considered insider attackers, such as in [16,58]. On the other hand, insider attacks

can be very common in ad hoc networks due to the self-organized nature of ad hoc

networks and due to that nodes can be easily captured and compromised.

Besides insider attacks, another important aspect that has been widely ignored

is the effects of noise and imperfect monitoring. In general, the wireless environ-

ments are usually full of noise and uncertainties. Meanwhile, due to the limited

resource constraint and distributed nature, imperfect monitoring in ad hoc net-

works is either impossible to achieve or too expensive to afford. How to secure

ad hoc networks under noise and imperfect monitoring and how to design effective

and robust monitoring mechanisms pose another research challenges. For example,

how to design robust attacker detection mechanisms that are able to distinguish

those malicious behavior caused by attackers from those caused by noise or incor-

rect monitoring? What is the maximum possible damage that can be caused by

attackers under noise and imperfect monitoring? What are the optimal defending

strategies? None of them have been fully addressed in the literature.

Besides security, node cooperation is also a critical issue that needs to be ad-

dressed. Recently, many schemes have been proposed to stimulate node cooper-

ation in ad hoc networks, such as in [6, 7, 16, 18, 19, 26, 31, 58–60, 78, 80, 99, 100].

These schemes can be roughly categorized into two types: payment-based and

reputation-based. In payment-based methods, such as in [7, 18, 19, 99, 100], nodes
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request help from others by paying them. In reputation-based schemes, such as

in [6, 16, 26, 31, 58–60, 78, 80], whether a node can get help from the others based

on its reputation, which is usually determined by its past actions observed by

its peers. Comparing to the payment-based schemes, the advantage of reputation-

based schemes lies in that they do not require tamper-proof hardware or centralized

banking service to process billing information, while the drawback is that in some

situations cooperation cannot be effectively stimulated.

Although many schemes have been proposed to stimulate cooperation among

selfish nodes in ad hoc networks, most of them have assumed that nodes have

accurate monitoring, and will act rationally whose only goal is to maximize their

own payoff. In other words, they have not considered possible malicious behaviors.

However, since ad hoc networks are usually deployed in noisy and hostile envi-

ronments, without taking into consideration possible malicious behaviors, those

proposed schemes can easily collapse. The situation is further deteriorated in real-

istic contexts when the environment is noisy and the monitoring cannot be perfect,

since both selfish and malicious nodes can take advantage of noise and imperfect

monitoring to improve their performance or cause more damage. How to design

attack-resistant and cheat-proof cooperation strategies that can work well in noisy

hostile environments will be one major challenge in autonomous ad hoc networks,

and none of the existing works have fully addressed it.

1.2 Contributions

In summary, this dissertation has investigated how to establish secure and reli-

able ad hoc network services in hostile environments under noise and imperfect

monitoring. Specifically, two important issues have been addressed: 1) how to
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secure cooperative ad hoc networks against insider attacks under noise and imper-

fect monitoring, and 2) how to design attack-resistant and cheat-proof cooperation

strategies for autonomous ad hoc networks that can work well in noisy and hostile

environments. The contributions lie in three aspects: secure ad hoc network pro-

tocol design, formal analysis of security and cooperation in ad hoc networks, and

effective and robust monitoring mechanism design.

Secure ad hoc network protocol design: In this dissertation we have de-

signed a series of effective secure protocols to handle various attacks. Specifically,

we have presented a set of secure routing protocols to handle various routing dis-

ruption attacks, such as dropping packets attack, black hole attack, etc. By using

a novel self-evaluation mechanism, malicious node detection can be significantly

speeded up. Meanwhile, since they can distinguish routing disruptions caused by

nodes’ temporary misbehavior and those caused by malicious attacks, the pro-

posed protocols can work well in noisy environments. Following that, we have also

presented a set of effective protocols to handle various types of injecting traffic at-

tacks. Under which the optimal strategies from the attackers’ point of view is not

to launch injecting traffic attacks. When stimulating cooperation among selfish

nodes, we have also designed a set of secure receipt submission and credit update

protocols to support attack-resistant cooperation stimulation.

Formal analysis of security and cooperation in ad hoc networks: One

major contribution of this dissertation would be the formal analysis of security

and cooperation in ad hoc networks under noise and imperfect monitoring, as well

as under insider attacks. Specifically, for cooperative ad hoc networks, we have

modeled the dynamic interactions between good nodes and attackers as securing

routing and packet forwarding game. Under a game theoretic framework, we have
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derived the optimal defending strategies and the maximum possible damage that

the attackers can cause. For autonomous ad hoc networks, we have jointly studied

the security and cooperation issues under a game theoretic framework. We have

first derived the cheat-proof cooperation strategies for two nodes scenarios, then

demonstrated when cooperation among selfish nodes can be effectively stimulated

and how to obtain optimal cheat-proof and attack-resistant cooperation strategies

for autonomous ad hoc networks under realistic scenarios.

Effective and robust monitoring mechanism design: To defend against

insider attacks, one has to base on what being observed about the others’ behav-

iors. However, due to the fully distributed nature of ad hoc networks and the

limited resource constraints, perfect monitoring is either impossible to achieve or

too expensive to afford. In this dissertation, we have presented several robust mon-

itoring mechanisms to detect various malicious behaviors. Specifically, to handle

routing disruption attacks, we have proposed a light-weight monitoring mecha-

nism based on end-to-end acknowledge and intermediate node reporting. When

the proposed monitoring mechanism is used, a malicious node has to either admit

dropping packets, or provide reports that are most likely conflicting with others

which can make them easily be detected. We have also designed a robust and cost-

efficient monitoring mechanism to detect possible injecting traffic attacks, where

only packet headers need to be listened and decoded. Besides that, we have also

designed another robust monitoring mechanism for autonomous ad hoc networks to

help detecting whether some nodes have dropped other nodes’ packets or receipts,

which are used to claim credits from the requesters.
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1.3 Thesis Organization

The rest of this dissertation is organized as follows. Chapter 2 introduces the

related works, describes the system models, and presents some notations that will

be used throughout this dissertation.

The first major part of this dissertation consists of the following chapters:

Chapter 3, Chapter 4, and Chapter 5. This part is dedicated to study how to se-

cure cooperative ad hoc network against insider attacks under noise and imperfect

monitoring. Specifically, Chapter 3 studies how to defend against routing disrup-

tion attacks [93], Chapter 4 investigates how to defend against injecting traffic

attacks [90], and Chapter 5 provides formal analysis of securing cooperative ad

hoc networks under noise, imperfect monitoring, and insider attacks [89].

The second major part of this dissertation consists of Chapter 6 and Chap-

ter 7. This part studies how to design attack-resistant cooperation strategies for

autonomous ad hoc networks that can work well in noisy and hostile environments.

Specifically, Chapter 6 presents an attack-resistant cooperation stimulation system

for autonomous mobile ad hoc networks [91], and Chapter 7 focuses on the game

theoretic analysis of cooperation and security in autonomous ad hoc networks [92].

Finally, Chapter 8 concludes this dissertation and presents future directions.
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Chapter 2

Background

2.1 Related Works

2.1.1 Security in Wireless Ad Hoc Networks

In wireless ad hoc networks, since all nodes share the common communication

medium, attackers can easily launch a variety of attacks ranging from passive

eavesdropping from active interfering. For example, a simple and straight-forward

attack is jamming attack, where attackers can disrupt the other nodes’ normal

communications by introducing interferences. Various schemes have been proposed

to handle jamming attack in the literature. One way to handle jamming attack is

to design robust physical layer technologies, such as spread spectrum, which are

resistant to RF jamming [71, 72, 77]. By using some spreading codes only known

to the communicating peers, nodes have created a secret channel among them.

Recently, several new approaches have also been proposed to handle jamming

attacks in a more efficient way, such as those proposed in [20, 55, 81, 83, 84]. In

this dissertation we will not focus on jamming attack, and will assume that some
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existing schemes, such as those proposed in [71,83], have been employed to address

such attacks.

Besides physical layer attacks, attackers can also try to interrupt the normal

Medium Access Control (MAC) layer behaviors, such as described in [53, 74]. In

this dissertation, we will not focus on specific types of MAC layer attacks. Instead,

we will focus on some general attack models which have incorporated the effects

of MAC misbehavior. In [22], Cagalj et. al. have also studied the possible MAC

layer selfish and cheating behaviors in wireless CSMA/CA networks.

To secure wireless ad hoc network, we can first try to prevent attackers from

entering the networks. This can be achieved by applying necessary access con-

trol and authentication [42, 101], such as secure key distribution [8, 21, 43] and

secure neighbor discovery [34, 36], etc. For example, Zhou and Haas investigated

distributed certificate authorities in ad hoc networks using threshold cryptogra-

phy [101]. Hubaux et al. developed the idea of self-organized public-key infras-

tructure similar to PGP in the sense that public-key certificates are issued by

the users [42,43]. The difference with PGP is that in their system, certificates are

stored and distributed by the users. Capkun et al. have also discussed how to build

security associations with the help of mobility in mobile ad hoc networks [24].

Since in ad hoc network nodes relies on each other to forward packets, routing

has become one of the most active research topics during the last decade, and

various routing protocols have been proposed, such as DSR [47, 48], AODV [70],

OLSR [25], and TBRPF [63]. Some performance comparison among various rout-

ing protocols have been demonstrated in [2]. However, in order to work properly,

these protocols need trusted working environments, while in reality the environ-

ments is usually adversarial. Some examples of routing attacks are: black hole,
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gray hole, wormhole, rushing attack, and frame-up [34–37]. For example, the at-

tackers can create a wormhole through collusion in the network to short circuit

the normal flow of routing packets [35], or can apply rushing attack to disseminate

route request quickly through the network [36]. By creating a wormhole or apply-

ing rushing attacks, the attackers can prevent good routes from being discovered,

and increase their chance of being on discovered routes. Once an attacker is on a

certain route, it can create a black hole by dropping all the packets passing through

it, or create a gray hole by selectively dropping some packets passing through it.

If the protocols have the mechanism to track malicious behavior, an attacker can

also try to frame up good nodes. In addition, an attacker can modify the packets

passing through it, which has similar effects as dropping packets, but a little bit

more severe because more network resources will be wasted when the following

nodes on this route continue forwarding this corrupted packet.

In the literature, various secure routing protocols have been proposed, such

as [3, 9, 12, 13, 17, 23, 27, 34–39, 58, 62, 65, 66, 68, 76, 86, 87, 94, 95, 98]. For example,

Papadimitratos and Haas [65] have proposed a secure routing protocol for mobile

ad hoc networks that guarantees the discovery of correct connectivity information

over an unknown network in the presence of malicious nodes. Sanzgiri et al [76]

have considered a scenario that nodes authenticate routing information coming

from their neighbors while not all the nodes on the route will be authenticated by

the sender and the receiver. Hu, Perrig and Johnson [34] have proposed Ariadne, a

secure on-demand ad hoc network routing protocol, which can prevent attackers or

compromised nodes from tampering with uncompromised routes that (only) consist

of uncompromised nodes. In [35, 36], they have described how to defend against

rushing attacks through secure neighbor discovery and how to apply packet leashes
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to defend against wormhole attacks. Later, Capkun and Hubaux have investigated

secure routing in ad hoc networks in which security associations exist only between

a subset of all pairs of nodes [23].

However, most of the existing secure routing schemes have focused on prevent-

ing illegitimate nodes from being on the routes. In other words, they have focused

on defending against outside attackers. In ad hoc networks, due to the loose ac-

cess control and weak physical protection, insider attackers can be very common.

In the literature, very few schemes have considered insider attacks. Among them

the most representative one is proposed by Marti et al [58]. They focused on

the case that nodes agree to forward packets but fail to do so, and proposed two

tools that can be applied upon source routing protocols: watchdog and pathrater.

Specifically, each node launches a “watchdog” to monitor its neighbors’ packet

forwarding activities and to make sure that these neighbors have forwarded the

packets according to its requests. Pathrater will be used to prevent misbehaving

nodes from being on the selected routes when performing route discovery. How-

ever, this system suffers some problems, and many attacks can cause a malicious

behavior not being detected, such as ambiguous collisions, receiver collisions, lim-

ited transmission power, collusion, and partial dropping. Meanwhile, due to noise

and possible attacks, good nodes can also be easily marked as malicious. In other

words, the proposed scheme may suffer both high false alarm ratio and high miss

detect ratio when performing attacker detection.

Following [58], CONFIDANT was proposed to detect and isolate misbehav-

ing node and thus make it unattractive to deny cooperation [16]. Comparing to

the schemes proposed in [58], CONFIDANT allows the reputation to propagate

throughout the network. However, since the scheme still rely on watchdog, they
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also suffer the same types of problems as [58]. Furthermore, once reputation is

allowed to propagate, attackers can also collude to frame up or blackmail other

nodes [15]. Besides [16,58], Ning and Sun have also provided a case study of insider

attacks against mobile ad hoc routing protocols by focusing on AODV.

Security in ad hoc networks has also been addressed from the intrusion detection

point of view, such as [40,41,96,97]. In these works, the authors have discussed how

to apply intrusion detection techniques to secure wireless ad hoc networks. They

examined the vulnerabilities of a wireless ad hoc network, then introduced multi-

layer integrated intrusion detection and response mechanisms. Such techniques can

also be used to deal with insider attacks. However, in their work they have not

described specific mechanisms to secure ad hoc networks. Furthermore, no formal

analysis of securing ad hoc networks against insider attacks has been provided.

Besides the above mentioned attacks, attackers can also launch various types

of other attacks to disrupt the normal communications. For example, one severe

attack is Sybil attack [29, 61], where an attacker can behave as if it were a larger

number of nodes, for example by impersonating other nodes or simply by claiming

false identities. In [3] the authors have also studied JellyFish attacks. Another

types of severe attacks, which will be thoroughly studied in this dissertation, is

injecting traffic attacks, that is, the attackers will try to inject an overwhelming

amount of traffic into the network to consume valuable network resources and de-

grade the network performance. Section 2.3 describes the attack model considered

in this dissertation.
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2.1.2 Cooperation Stimulation in Ad Hoc Networks

In the literature, many schemes have been proposed to address the issue of cooper-

ation stimulation in ad hoc networks [6,7,16,18,19,26,31,58–60,78,80,99,100]. One

way to stimulate cooperation among selfish nodes is to use payment-based meth-

ods, such as those proposed in [7,18,19,99,100]. In [18], a cooperation stimulation

approach was proposed by using a virtual currency, called nuglets, as payments for

packet forwarding, which was then improved in [19] using credit counters. However,

tamper-proof hardware is required in each node to count the credits. In [99], Sprite

was proposed to stimulate cooperation. It releases the requirement of tamper-proof

hardware, but requires a centralized credit clearance service trusted by all nodes.

Furthermore, these schemes consider only nodes’ selfish behavior, while in many

situations nodes can be malicious. Payment-based cooperation stimulation mech-

anisms have also been proposed in [7,100]. Although these schemes can effectively

stimulate cooperation among selfish nodes, the requirement of tamper-proof hard-

ware or central billing services greatly limits their potential applications.

Another way to stimulate cooperation among selfish nodes is to use reputation-

based methods with necessary monitoring [58, 60]. Actually, the watchdog mech-

anism proposed in [58] can also be regarded as a reputation-based cooperation

stimulation scheme. Following [58], Core has been proposed to enforce coopera-

tion among selfish nodes [60], which uses watchdog as a basic building module. As

mentioned before, these schemes suffer some problems. For example, many attacks

can cause a malicious behavior not being detected in these schemes, and malicious

nodes can easily propagate false information to frame up others. Meanwhile, these

schemes can only isolate misbehaving nodes, but cannot actually punish them,

and malicious nodes can still utilize the valuable network resources even after be-
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ing suspected or detected.

Besides that, efforts have also been made toward mathematically analyzing

cooperation in autonomous ad hoc networks by applying game theory, such as

[6, 26, 30, 31, 59, 78, 80]. In [78], Srinivasan et. al. provided a mathematical frame-

work for cooperation in ad hoc networks by focusing on the energy-efficient aspects

of cooperation. In [30, 31], Felegyhazi et. al. defined a game model and identi-

fied the conditions under which cooperation strategies can form an equilibrium.

In [59], Michiardi et. al. studied the cooperation among selfish nodes in a co-

operative game theoretic framework. In [6], Altman et. al. studied the packet

forwarding problem in a non-cooperative game theoretic framework and provide a

simple punishing mechanism considering end-to-end performance objective of the

nodes. The study of selfish behavior in ad hoc networks has also been addressed

in [26,80]. All these schemes consider only selfish behavior and most of them study

cooperation enforcement under a repeated game framework. Since these works are

highly related to our work, in later chapters the difference between our work and

these works as well as the uniqueness of our work will be further demonstrated.

Recently, Cagalj et al have also studied the selfish and cheating behaviors in

wireless CSMA/CA networks under a game theoretic framework [20,22]. They have

used both cooperative and non-cooperative game theory to model and analyze the

co-existence of multiple CSMA/CA selfish users, and proposed a simple channel

access protocol that discourages selfish behavior and results in the optimal and

fair allocation of the available bandwidth. In their work, besides Nash equilibrium,

Pareto optimality and fairness have also been considered when deriving the optimal

strategies. However, in their work, they have not considered the situations where

some nodes’ goals are to harm other specific nodes. Meanwhile, the game model
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in [20, 22] is also different from ours presented in Chapter 7 in the sense that the

strategy space, utility functions, and solution formats are totally different.

In this dissertation, we have used game theory to analyze the dynamic inter-

actions among different nodes. Roughly speaking, game theory deals with multi-

person decision making, in which each decision maker tries to maximize his own

utility [32,64]. Game theory has been used to solve various problems in networking

and telecommunication applications, such as resource allocation [5,46,57,73,82,85],

flow and congestion control [4], routing games [7,50,51,54,75], cooperation enforce-

ment in ad hoc networks [6,26,31,59,78,80]. In our work, we mainly focus on the

most important concept in game theory: Nash equilibrium1. Specifically, we adopt

Nash equilibrium as a basic optimality metric to measure the performance of those

derived strategies.

2.2 System Description

Now we introduce some basic assumptions of the wireless ad hoc networks networks

to be considered. We assume that each node is equipped with a battery with limited

power supply, communicates with other nodes through wireless connections, and

can move freely inside a certain area when mobile ad hoc networks are considered.

In cooperative ad hoc networks, nodes are classified into good or malicious, while

in autonomous ad hoc networks, nodes are classified into selfish or malicious.

We mainly focus on the scenarios that the wireless links are bidirectional, but

not necessarily be symmetric. That is, if node A is capable of transmitting data

to node B directly, then node B is also capable of transmitting data to A directly,

1A Nash equilibrium is a strategy profile for a game with the property that no player can

benefit by changing his strategy while the other players keep their strategies unchanged [64].
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though the two directions may have different bandwidths. This assumption holds

in most wireless communication systems. In this paper, neighbor refers to that two

nodes are in each other’s transmission range, and can directly communicate with

each other. We assume that the MAC layer protocol supports acknowledgement

(ACK) mechanism. That is, if node A has sent a packet to node B, and B has

successfully received it, then node B needs to notify A of the reception immediately.

In this dissertation we will mainly focus on source routing, where source routing

means that when sending a packet, the source lists in the packet header the com-

plete sequence of nodes through which the packet is to traverse. In general, due to

the multihop nature, when a node wants to send a packet to a certain destination,

a sequence of nodes will usually be requested to help forwarding this packet. We

refer to the sequence of ordered nodes as a route, the set of intermediate nodes

on a route as relays, and the procedure to discover a route as route discovery. In

general, the route discovery can be partitioned into three stages. In the first stage,

the requester notifies other nodes in the network that it wants to find a route to

a certain destination. In the second stage, other nodes in the network will make

their decisions on whether they will agree to be on the discovered route. In the

third stage, the requester will determine which route should be used.

Without otherwise explicit specification, we will use DSR [47] as the underlying

routing protocol. There are two basic operations in DSR: route discovery and route

maintenance. In DSR, when a source S wishes to send packets to a destination D

but does not know any routes to D, S will initiate a route discovery by broadcasting

a ROUTE REQUEST packet, specifying the destination D and a unique ID. When

a node receives a ROUTE REQUEST not targeting on it, it first checks whether

this request has been seen before. If yes, it will discard this packet, otherwise,
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it will append its own address to this REQUEST and rebroadcasts it. When

the REQUEST arrives at D, D then sends a ROUTE REPLY packet back to S,

including the list of accumulated addresses (nodes). A source may receive multiple

ROUTE REPLYs from the destination, and can cache these routes in its Route

Cache. Route Maintenance handles link breakages. If a node detects the link to the

next hop is broken when it tries to send a packet, it will send a ROUTE ERROR

packet back to the source to notify this link breakage. The source then removes

the route having this broken link from its Route Cache. For subsequent packets

to the destination, the source will choose another route in its Route Cache, or will

initiate a new Route Discovery when no route exists.

As we have mentioned before, in this dissertation we will focus on defending

against insider attacks. We assume that each node has a unique and verifiable

identity, such as a public/private key pair, and there is a secure binding between

a node’s public key and its address. We also assume that a node can know or

authenticate other nodes’ public keys, but no node will disclose its private key to

others unless it has been compromised. We do not assume that nodes trust each

other, since some nodes may be malicious or be compromised.

In [14], Bobba et. al. have studied how to establish security associations be-

tween pairs of nodes in mobile ad hoc networks without relying on any trusted

security service. Specifically, they have shown how to bootstrap security for the

routing layer, and have used the notion of statistically unique and cryptographi-

cally verifiable (SUCV) identifiers to implement a secure binding between IP ad-

dresses and keys. They have also demonstrated that the solution is applicable to

various routing protocols, such as Ariadne [34] and SEAD [37]. In our work, we as-

sume the scheme proposed in [14] will be applied to bootstrap security association
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among nodes.

In ad hoc networks, in general not all packet forwarding decision can be per-

fectly executed. For example, when a node has decided to help another node to

forward a packet, the packet may still be dropped due to link breakage or the

transmission may fail due to channel errors. In this dissertation we refer to those

factors that may cause decision execution error as noise, which include environ-

mental unpredictability and system uncertainty, channel noise, mobility, etc. When

necessary, we will use pe to denote the average packet dropping probability due to

noise. It is worth mentioning that the packet dropping probability may vary over

time due to the varying channel conditions, mobility, etc.

We also assume that some underlying monitoring schemes have been employed

(such as those proposed in [58] and those described in Chapter 3, Chapter 4, and

Chapter 6) which can let the source know whether its packets have been successfully

delivered to their destinations. Meanwhile if a packet has been dropped by some

relay, the underlying monitoring mechanism can let the source know who has

dropped this packet. However, we do not assume any perfect monitoring, instead,

we assume that even a node has successfully forwarded a packet, with probability

no more than pf it can be observed as dropping packet (i.e., false alarm). On the

other hand, when a packet has been dropped by a certain relay, with probability no

more than pm this can be observed as a forwarding event (i.e., miss detect). Here

pf and pm characterize the capability of the underlying monitoring mechanism.

It is easy to understand that pf and pm may vary according to the underlying

monitoring mechanism and the monitoring environment.

When evaluating the performance of proposed strategies, besides theoretical

analysis, we have also conducted various simulations. In our simulations, we use
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an event-driven simulator to simulate mobile ad hoc networks. The physical layer

assumes a fixed transmission range model, where two nodes can directly commu-

nicate with each other successfully only if they are in each other’s transmission

range. The MAC layer protocol simulates the IEEE 802.11 Distributed Coordina-

tion Function (DCF) [44]. DSR will be used as the underlying routing protocol.

When considering mobile ad hoc networks, we assume that each mobile node moves

according to the random waypoint model [88], which can be characterized by the

following three parameters: a node starts at a random position, waits for a dura-

tion called the pause time that is modeled as a random variable with exponential

distribution, then randomly chooses a new location and moves towards the new lo-

cation with a velocity uniformly chosen between vmin and vmax. When it arrives at

the new location, it waits for another random pause time and repeats the process.

2.3 Attack Model

Next we exploit the possible attacks that can be launched in such networks. We

say a route R = “R0R1 . . . RM” is valid at time t if for any 0 ≤ i < M , Ri and Ri+1

are in each other’s transmission range. We say a link (Ri, Ri+1) is broken at time t

if Ri and Ri+1 are not in each other’s transmission range. It is easy to see that at

time t, a packet can be successfully delivered from its source S to its destination

D through the route R = “R0R1 . . . RM” with R0 = S and RM = D within the

delay constraint τ if and only if all of the following conditions are satisfied:

1. R is a valid route at time t, and no links on route R are broken during the

transmission.

2. No errors have been introduced to the packet.
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3. No intermediate nodes (including S) on route R will drop the packet.

4. The total transmission time is less than τ .

In order to degrade the network performance, the attackers can either directly

break the ongoing communications, or try to waste other nodes’ valuable resources.

Based on the above analysis we can see that from the attackers’ point of view, the

following attacks can be used:

A1. Emulate link breakage: When a node Ri wants to transmit a packet to the

next node Ri+1 on a certain route R, if Ri+1 is malicious, Ri+1 can simply

keep silent to let Ri believe that Ri+1 is out of Ri’s transmission range, which

can dissatisfy the condition 1.

A2. Drop/modify/delay packets: Dropping a packet can dissatisfy the condition

3, modifying a packet can dissatisfy the condition 2, and delaying a packet

can dissatisfy the condition 4.

A3. Prevent good routes from being discovered: Such attacks can either dissatisfy

the condition 1, or increase their chance of being on the discovered routes

and then launching various attacks such as A1 and A2. Two examples are

wormhole and rushing attacks [35,36].

A4. Inject traffic: Malicious nodes can inject an overwhelming amount of packets

to overload the network and consume other nodes’s valuable energy. When

other nodes forward these packets but cannot get payback from attackers,

the consumed energy is wasted.

A5. Collusion attack: Attackers can work together in order to improve their

attacking capability.
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A6. Slander attack: Attackers can also try to say something bad about the others.

A7. Impersonation: Attackers can also try to impersonate good nodes to achieve

their various malicious goals, such as causing other nodes to believe these

good nodes are malicious.

A8. Sybil attack: An attacker can behave as if it were a larger number of nodes,

for example by impersonating other nodes or simply by claiming false iden-

tities [29,61].

Among these inside attacks, A1, A2, and A3 can be regarded as the specific

types of routing disruption attacks, A4 can be regarded as resource consumption

attacks, while A5, A6, A7, and A8 can be regarded as auxiliary methods to further

improve attackers’ capabilities.
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Chapter 3

Secure Ad Hoc Networks Against

Routing Disruption Attacks

In this chapter we investigate how to defend cooperative ad hoc networks against

routing disruption attacks, that is, attackers attempt to cause legitimate data

packets to be routed in dysfunctional ways, and consequently cause packets to be

dropped or extra network resources to be consumed. To defend against such at-

tacks, we have designed a set of light-weight mechanisms with low overhead. First,

each node launches a route traffic observer to monitor the behavior of each valid

route in its route cache, and to collect the packet forwarding statistics submitted

by the nodes on this route. Since malicious nodes may submit false reports, each

node also keeps cheating records for other nodes. If a node is detected as dishon-

est, this node will be excluded from future routes, and the other nodes will stop

forwarding packets for it. Third, each node will try to build friendship with other

nodes to speed up malicious node detection. Route diversity will also be explored

by each node to discover multiple routes to the destination, which can increase the

chance of defeating malicious nodes who aim to prevent good routes from being
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discovered. In addition, adaptive route rediscovery will be applied to determine

when new routes should be discovered.

This chapter is organized as follows. Section 3.1 describes the proposed mech-

anisms in detail. Section 3.2 analyzes the security of the proposed mechanisms.

Section 3.3 presents the simulation results and performance evaluation. Finally,

Section 3.4 summarizes this chapter.

3.1 Defense Mechanism Description

Before describing the detail of proposed mechanisms, which is referred to as HADOF

(the acronym of Honesty, Adaptivity, Diversity, Observer, and Friendship), we first

introduce some notations, as listed in Table 3.1. We focus on insider attacker, and

assume that all nodes in the network are legitimate. Meanwhile, if two nodes set

up communication between them, they must have built a trust relationship, and

trust the information reported by each other. This trustiness can be built outside

of the context of the network (e.g. friends), or through certain authentication

mechanisms after the network has been set up. In this chapter we use S to denote

the source and D to denote the destination, and use traffic pair to refer to a pair

of nodes (S, D) communicating with each other directly or indirectly.

3.1.1 Route Traffic Observer

In HADOF, each node launches a route traffic observer (RTO) to periodically

collect the traffic statistics of each valid route in its route cache. Here a valid route

refers to a route without receiving any link breakage report. At the end of each

pre-determined interval, the RTO examines each traffic pair (S, D) and each route
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Table 3.1: Notations for each traffic pair

Ri The ith available route from S to D in S’s Route Cache.

Li Number of intermediate nodes on the route Ri.

FNcur(A,S, Ri) The number of packets originated from S and forwarded by A via

route Ri in this interval.

RNcur(A,S,Ri) The number of packets originated from S and received by A via route

Ri in this interval.

FNtot(A,S) The total number of packets originated from S and forwarded by A.

RNtot(A,S) The total number of packets originated from S and received by A.

Pcur(A,S, Ri)
FNcur(A,S,Ri)
RNcur(A,S,Ri)

, the packet delivery ratio of A for S via route Ri in this

interval.

Pavg(A,S) FNtot(A,S)
RNtot(A,S) , the overall packet delivery ratio of A for S.

H(A, S) A’s honesty score in S’s point of view.

Ri to D in S’s route cache that has been used in this interval. In particular, the

RTO collects RNcur(A, S,Ri) and FNcur(A, S, Ri) reported by each node A on this

route. This can be done by letting D periodically send back an agent packet to

collect such information, or letting each node periodically report its own statistics

to S. For each node A known by S, S’s RTO also keeps a record of RNtot(A, S)

and FNtot(A, S). To reduce overhead, the RTO of S will request reports from the

intermediate nodes of a route only when S realizes that some packets have been

dropped on this route in this interval based on the reports submitted by D.

After the RTO has finished collecting packet forwarding statistics, it recalcu-

lates the expected quality of those routes that have been used in this interval. In

general, the expected route quality is affected by many factors, such as the for-

warding history of each node on this route, the hop number, the current traffic load
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and traffic distributions, etc. Before defining the expected route quality metric,

we first define the expected packet delivery ratio of A for S, P (A, S), as follows:

P (A, S) = (1− β)Pavg(A, S) + βPcur(A, S, Ri). (3.1)

That is, P (A, S) is a weighted average of Pcur(A, S,Ri) and Pavg(A, S), and β is

used to adjust the weight between them. The intuition behind this is that when

predicting a node’s future performance, we consider not only this node’s current

performance, but also its past history. It is easy to see that the range of P (A, S)

is between 0 and 1. In HADOF, the expected route quality Q(Ri) for route Ri is

calculated as follows:

Q(Ri) =
∏

A∈Ri

P (A, S) ∗H(A, S)− λ ∗ Li, (3.2)

where H(A, S) is A’s honesty score in S’s view indicating the suspicious degree of

A. H(A, S) ranges from 0 to 1, with 1 indicating being honest and 0 indicating

being malicious. The criteria of calculating H(A, S) is presented in Section 3.1.2.

In (3.2), a small positive value λ is introduced to account for the effects of hop

number. As a result, if two routes have the same value for the product in the right

hand of (3.2), the route with less hops is favored. The intuition behind this is that

we expect a route with less hops having less influence on the network. In HADOF,

the values of P (S, S), P (D, S), H(S, S) will always be 1, since a source trusts itself

and the corresponding destination.

3.1.2 Cheating Record and Honesty Score

When S’s RTO collects packet forwarding statistics, malicious nodes may submit

false reports. For example, it may report a smaller RN value and a larger FN

value to cheat the source and frame up its neighbors. To address this, each source
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S A B C D

Figure 3.1: Detection of cheating behavior

keeps a Cheating Record (CR) database to track whether some nodes have ever

submitted or been suspected to submit false reports to it. S will mark a node as

malicious if S has enough evidence that the node has submitted false reports.

Initially, S assumes that all nodes are honest, and sets the honesty score H(A, S)

for each node A to be 1. After each report collection which is performed period-

ically, S will try to detect whether some nodes on a route are cheating through

checking the consistence of the received reports. For example, in Fig. 3.1, both

A and B are on the route R with A being ahead of B. A cheating behavior is

detected if S finds that FNcur(A, S, R) 6= RNcur(B,S, R). If one of them (A or B)

is trusted by S (e.g., that node is S itself or D), then the other node can be marked

as cheating by S, and the honesty score of the cheating node will be set to be 0.

Otherwise, S can only suspect that at least one of them is cheating. In this case,

the honesty scores of both nodes are updated as

H(A, S) = αH(A, S) (3.3)

H(B,S) = αH(B, S) (3.4)

where 0 < α < 1 is used to indicate the punishment degree. In addition, if

FNcur(A, S, R) > RNcur(B,S, R), S will reset the value of FNcur(A, S,R) using

RNcur(B,S, R), reset the value of RNcur(B,S, R) using FNcur(B, S, R), and recal-

culate FNtot(A, S) and RNtot(B,S) using the updated values. Since it makes no

sense that FNcur(A, S, R) < RNcur(B,S, R), we will not consider this situation.

Once a node has been detected as cheating, punishment should be applied on it.

In HADOF, when S detects a node B being malicious, S will put B in its blacklist
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(equivalent to set H(B, S) to be 0), stop forwarding any packets originated from

B, and refuse to be on the same route as B in the future.

Next we introduce a mechanism to recover the honesty scores of nodes that

have been framed up by malicious nodes. We still use the example in Fig. 3.1

to illustrate this mechanism. When S finds the reports submitted by A and B

conflicting with each other, that is, FNcur(A, S, R) > RNcur(B,S, R), besides

decreasing A’s honesty score, S will also increase the number of possible frame-up

attacks launched by B to A, and records the difference between FNcur(A, S, R)

and RNcur(B, S, R). Similarly, S does the same thing to B. If later S detects that

B is a cheating node, S will check how many nodes have ever been framed up by B

and for each node how many times. Assume A has been framed up by B m times,

S will recover A’s honesty score as follows:

H(A, S) =
H(A, S)

αm
, (3.5)

which is always bounded by 1. Meanwhile, S also needs to increase FNtot(A, S)

or decrease RNtot(A, S) to recover the inaccuracy caused by frame-up attacks

launched by B.

3.1.3 Friendship

Since a malicious node knows the source and destination of each route that it is

on, to avoid being detected, it will only frame up its neighbors who are neither

the source nor the destination. Therefore, even when the CR database has been

activated, the malicious nodes can only be suspected, but cannot be proved as

cheating by the source. This can be mitigated by taking advantage of the existing

trustiness relationship. Each node maintains a private list of trust nodes that it

27



considers to be honest. Now if B submits false reports to S to frames up A, while

S trusts A, B can be detected by S immediately, and H(B, S) will be set to be 0.

3.1.4 Route Diversity

Since there may exist more than one route from a source to a destination, it is usu-

ally beneficial to discover multiple routes. In [2, 67], the authors have shown that

using multiple routes can reduce the route discovery frequency. In this chapter, we

investigate how route diversity can be used to defend against routing disruption

attacks. In DSR, discovering multiple routes from a source to a destination is

straight-forward. Let MaxRouteNum be the maximum number of ROUTE RE-

PLYs that the destination can send back for the route requests with the same re-

quest ID. By varying MaxRouteNum, we can discover different number of routes.

By exploring route diversity, we have better chance to defeat attackers who aim to

prevent good routes from being found. Meanwhile, since there may exist multiple

routes, the source can always use the route with the best quality according to

certain criteria.

When a new route R is discovered, for each node A on this route, FNcur(A, S, R)

and RNcur(A, S, R) should be initialized to be 0. Since this route has never been

used before, its expected quality can be calculated as

Q(R) =
∏
A∈R

Pavg(A, S) ∗H(A, S)− λ ∗ L. (3.6)

The difference between (3.6) and (3.2) lies in that only nodes’ past history on the

route are used in (3.6).

Since there may exist multiple routes to D in S’s Route Cache, S needs to

decide which route should be used. One possible way is to always use the one

with the best expected quality. However, this may not be the best choice. For
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example, the quality of a route may degrade dramatically after being injected into

a lot of traffics. In this chapter, the following procedure is used to distribute

traffics among multiple routes, and adaptively determine which route should be

used. Let Qthreshold be a pre-determined quality threshold, and let R1, . . . , RK be

the K routes with the expected quality higher than Qthreshold. Once S wants to

send a packet to D, S randomly picks a route among them. The probability that

route Ri (1 ≤ i ≤ K) will be picked is determined as

Prob(Ri) =
Q(Ri)

Q(R1) + · · ·+ Q(RK)
(3.7)

If no route has expected quality higher than Qthreshold, the route with the highest

expected quality will be selected.

3.1.5 Adaptive Route Rediscovery

Due to mobility and the dynamically changing traffic patterns, some routes may

become invalid after a while, or their quality may change. Usually, a new route

discovery should be initiated by S when there exist no available routes from S to

D. In this chapter, we use an adaptive route rediscovery mechanism to determine

when a new route discovery should be initiated: if S wants to send packets to D,

and there exist no routes to D with quality higher than Qthreshold in S’s route cache,

S then initiates a new route discovery.

3.1.6 Implementation

We have implemented HADOF upon DSR, which includes two major procedures:

packet sending procedure and traffic statistics and cheating records updating pro-

cedure. The packet sending procedure is described in Fig. 3.2(a). When S wants to
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S wants to send 

a packet to D 

Is there any
such route?

Pick one among these 
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procedure discribed in 

section IV.D, and use this
route to send the packet

S initiates a new route 
discovery to D.  Use the 
route with the highest 

expected quality to send 
the packet if there exists.

 Find all the routes to D

in S’s Route Cache

with expected quality 

higher than Qthreshold

YESNO

Traffic statistics and
cheating records update 

for pair (S, D)

Time to update?

Is there any 
valid route in S’s Route Cache 

for this traffic pair?

No

Update traffic statistics 
and honesty scores 

as described in 
Section IV.A and IV.B 

Does any route have 
quality higher than 

Qthreshold?

S initiates a new 
route discovery to D

YES

YES NO

YES

NO

(a) Packet sending procedure (b) Statistics update procedure

Figure 3.2: HADOF implementation

send a packet to D, S first checks its route cache to find whether there exist valid

routes to D. If there exist no valid routes, S initiates a new route discovery with

the destination being D. If there exist some valid routes, but none has expected

quality higher than Qthreshold, S picks the route with the best expected quality, and

initiates a new route discovery. Otherwise, S randomly picks one route according

to the procedure described in Section 3.1.4.

The procedure for updating/maintaining traffic statistics and cheating records

is described in Fig. 3.2(b). The source S periodically calls this procedure to collect

traffic statistics for each route that has been used in this interval. Based on the

mechanisms described in Section 3.1.1 and Section 3.1.2, S updates the expected

route quality and cheating records. If necessary, a new route discovery should be

initiated when certain conditions are satisfied, as described in Section 3.1.5.
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Figure 3.3: A simple example

3.2 Security Studies

This section analyzes the security aspects of HADOF in terms of defending against

various routing disruption attacks. Throughout this section, we will use Fig. 3.3

as a simple example to illustrate different situations.

Black Hole and Gray Hole Attacks: In HADOF, the source can quickly

detect a gray hole or black hole based on the reports it has collected and past

records of each node. Without loss of generality, assume B has created a gray hole

on route “SABCD” in Fig. 3.3. Based on the reports submitted by A, B, C, and D,

S can know that some of them have dropped packets. Node B can be detected as

creating a black/gray hole by S if Pavg(B,S) and Pcur(B, S, “SABCD”) are low,

and RN(B, S) value is larger than a pre-defined threshold, where a relatively large

RN(A, S) is used to make sure that this is not transient phenomenon.

Frame-up Attacks without Collusion: Besides dropping packets, a ma-

licious node can also submit false reports to cheat the source and frame up its

neighbors. For example, on the route “SABCD”, if B is malicious, B can submit a

smaller RN value to frame up A and a larger FN number to frame up C. In HADOF,

a source can detect frame-up attacks through checking the consistence of the re-

ports it has collected. We still use the route “SABCD” as an example, and assume

that the malicious nodes work alone. If B has reported a larger FNcur(B,S, R) to
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frame up C, S can detect this by finding FNcur(B, S,R) > RNcur(C, S,R) where

R denotes the route “SABCD”. Now we analyze the possible consequence of this

frame-up. First, B cannot increase its Pcur(B,S, R) and P (B, S) since S will use

RNcur(C, S, R) to replace FNcur(B,S, R). Second, B can only make S suspect C,

but cannot make S believe that C is malicious. Third, if C is trusted by S, then B

can be detected immediately, and will be excluded from any route originated from

S in the future. Fourth, B’s own honesty score will be decreased. Therefore, B can

cause only limited damage by framing up others, but has to take the risk of being

detected as malicious, especially when friendship has been introduced.

Frame-up Attacks with Collusion: Next we show that collusion in frame-up

attacks cannot further deteriorate the situation. We still use the route “SABCD”

as an example. In the first case, the malicious nodes are neighbors of each other.

For example, B and C. Without loss of generality, we can view them as one node

B′, with RNcur(B
′, S, R) = RNcur(B, S,R) and FNcur(B

′, S, R) = FNcur(C, S,R).

That is, B and C together have the same effects as B′ working alone, and the

only difference is that they can release one node by sacrificing of the other one,

that is, by letting it take all the responsibilities. In the second case, the malicious

nodes are not neighbors of each other. For example, A and C are malicious and

work together to frame up B. It can be seen that the effect of A and C jointly

framing up B is the same as that of A and C framing up B independently. Thus

we conclude that in HADOF collusion cannot further improve the capability of

frame-up attacks.

Rushing Attacks: In rushing attacks, an attacker can increase its chance of

being on the route by disseminating ROUTE REQUESTs quickly and suppressing

any later legitimate ROUTE REQUESTs [36]. For example, in Fig. 3.3, if V can
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broadcast the ROUTE REQUESTs originated from S more quickly than A and E,

then all the ROUTE REQUESTs broadcasted by A and E will be ignored. The

direct consequence is that V appears on all the routes returned by D. Later V

can drop packets and frame up its neighbors. Now we show how rushing attacks

can be handled using HADOF. If S detects that no routes to D in its route cache

work well, it will check whether these routes share a critical node where all packets

from S to D pass through it. In this example, the critical node is V. If V has low

Pavg(V, S) value and low H(V, S), S has reasons to suspect that V has launched

rushing attacks. S then initiates a new route discovery and explicitly exclude V

from being on discovered routes.

Wormhole Attacks: A pair of attackers can create a wormhole in the network

via a private network connection to disrupt routing by short circuiting the normal

flow of routing packets [35]. For example, in Fig. 3.3, if W and V are attackers

and have created a wormhole between them, V can quickly forward any ROUTE

REQUESTs it receives to W, and let W broadcast them. There are two variations

based on whether V and W append their addresses to the REQUESTS. If they

append their addresses, they are similar as rushing attackers, and the method

discussed above can be used to handle them. The situation becomes more severe

if they do not append their addresses. For example, W and V can make S believe

that D is its neighbor, and later V can create a black hole to drop all the packets

originated from S and targeting D. In HADOF, if S finds no routes returned by

D are valid, or S has not received any acknowledgement from D, S has reason

to suspect that there exists a wormhole between S and D. S then activates an

neighbor discovery techniques such as in [35,36] to prevent attackers from creating

wormholes.
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In summary, HADOF can handle various routing disruption attacks very well,

such as gray hole, black hole, frame-up, and rushing attacks, and wormhole attacks,

and is collusion-resistant.

3.3 Simulation Studies

In this set of simulations, 100 nodes are randomly deployed inside a rectangular

area of 1000m × 1000m. The maximum transmission range is 250m. There are

20 traffic pairs randomly generated for each simulation. For each traffic pair, the

packet arrival is modelled as a Poisson process, and the average packet inter-arrival

time is uniformly chosen between 0.04 and 0.2 second, such that each traffic pair

injects different traffic load to the network. The size of each data packet after

encryption is 512 bytes, and the link bandwidth is 1 Mbps. Among the 100 nodes,

we vary the total number of malicious nodes from 5 to 20. In our implementation,

the malicious nodes will submit false reports only when it has dropped packets and

this false reports cannot be detected easily. For example, a malicious node will not

submit false reports to frame up the sources or the destinations.

In the simulations, we focus on mobile ad hoc networks, and each node moves

randomly according to a random waypoint model, and two sets of average pause

time are used: 0 second and 50 seconds. The average pause time of 0 second

represents a high mobility case where nodes keep moving, while the average pause

time of 50 seconds represents a moderate mobility case. We set α = 0.9, β = 0.6,

λ = 0.02, and Qthreshold = 0.8. The maximum number of returned routes is set 5

and the maximum number of hops per route is set 10.

In our simulations, the baseline system is implemented as follows: the baseline

DSR is used, and for each route discovery, only one route is returned. No adaptive
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Figure 3.4: Packet drop ratio comparisons under gray hole attacks

route rediscovery is used, and no malicious node detection mechanisms are applied.

It is expected that the baseline system will perform badly in most situations.

For comparison, the mechanism proposed in [58] has also been implemented,

which includes two major components: watchdog and pathrater. To make watch-

dog work properly, we have modified the MAC layer protocol to ensure the follow-

ing property: after node B receives a packet from node A and needs to forward

this packet to node C, B can start the forwarding only if both A and C are idle

and ready to receive packets. When using watchdog, a node will report to the

source when another node refuses to forward more than certain number of packets

for it. In our implementation, we set the threshold to be 5. In addition, each

route discovery initiated by source S will return at most 5 routes, and the route

with the best quality (calculated using pathrater) will be used. When the route

in use becomes invalid due to link breaks, instead of using the routes in S’s Route

Cache, S will initiate a new route discovery. The reason is that with a very high

probability those routes may also not work or may work badly due to mobility and

traffic dynamics. The SSR (Send extra Route Request) extension has also been
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implemented.

The following metrics will be used to evaluate the performance of HADOF.

• Packet drop ratio: The percentage of data packets that have been sent by

not been received by the destinations, which equals to 1 minus end-to-end

throughput.

• Overhead: In this chapter, we consider routing overhead, energy consump-

tion overhead, encryption overhead, and complexity overhead. Given a traffic

pattern, routing overhead indicates how many route discoveries have been

initiated by the sources. Energy consumption overhead denotes how much

extra energy need to be consumed. To keep the confidentiality and integrity

of the transmitted content, extra cryptographic operations are needed, and

the encryption overhead describes how many extra cryptographic operations

are needed by these mechanisms. Complexity overhead accounts for the extra

storage and computations needed by applying these mechanisms.

We use “baseline” to denote the baseline system, “watchdog” to denote the

system based on watchdog and pathrater, and “HADOF” to denote the system

based on HADOF. We use different node movement patterns for each simulation

by changing the average pause time and the seed of random number generator. By

varying the number of malicious nodes and the average pause time, we get different

configurations. For each configuration, the results are averaged over 25 rounds

of simulations, where at each round we change the random seed to get different

movement and traffic patterns. To make fair comparison, for each configuration

and each round of simulation, the same movement and traffic patterns were used

by all the three systems.
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Figure 3.5: Effects of frame-up attacks

3.3.1 Packet Drop Ratio Comparisons

We compare the packet drop ratios of the three systems under different scenarios.

First, we compare the packet drop ratios under only gray hole attacks. That is,

no nodes will submit false reports. Second, we compare the packet drop ratios

under both gray hole and frame-up attacks, where some malicious nodes will drop

packets and frame up their neighbors when possible. Third, we show how friendship

mechanism can mitigate the effects of frame-up attacks.

Gray hole: In our simulations, we vary the number of malicious nodes from

5 to 20. The gray hole is implemented in such a way that each malicious node

drops half of the packet passing through it. The simulation results under different

configurations are plotted in Fig. 3.4. From these results we can see that HADOF

outperforms watchdog in all situations. For example, under the configuration of

pause time 50 seconds, 20 malicious nodes, the packet drop ratio of baseline is more

than 40%, watchdog can reduce the packet drop ratio to 22%, while for HADOF,

the packet drop ratio is only 16%, that is, more than 33% improvement is obtained

over watchdog under this configuration. Under the configuration of pause time 50

seconds, 5 malicious nodes, more than 55% improvement is obtained over watchdog

by HADOF.
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Gray hole plus frame-up attacks: We investigate the packet drop ratio un-

der both gray hole and frame-up attacks. In HADOF, the only way for a malicious

node to frame up a good node is to let the source suspect that the good node is

cheating. To achieve this, a malicious node can report a smaller RN number than

the actual value to frame up the node ahead of it on the route, and/or report a

larger FN number than the actual value to frame up the node just following it on

the route. However, the malicious node can never make the source believe that a

good node is cheating, since malicious node cannot create solid evidence.

In watchdog, there exist a variety of ways for a malicious node to frame up

good ones. For example, if node A has sent a packet to B and asks B to forward

it to C, B has many ways to make A believe that it has sent the packet to C while

B did not send packets or intentionally caused transmission failure. As reckoned

in [58], many reasons can cause a misbehaving node not being detected, such as

ambiguous collisions, receiver collisions, limited transmission power, false misbe-

havior, collusion, and partial dropping. In our simulations, we only implement

the frame-up attacks through receiver collisions. That is, B will forward packet to

C only when it knows that C cannot correctly receive it (e.g., C is transmitting

data to another node, or receiving data from another node). Since A can only

tell whether B has sent the packet to C, but cannot tell whether C has received it

successfully, B can easily frame up its neighbors.

Fig. 3.5 shows the simulation results with the configurations of 20 malicious

nodes, half of them applying frame-up attacks. First we can see that the degrada-

tion of HADOF caused by frame-up attacks is limited. Second, we see that frame-

up degrades the performance of both, and affects watchdog more than HADOF.

Meanwhile, it is important to point out that we have shown the best-case results for
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Figure 3.6: Effects of friendship mechanism

watchdog because we have made many assumptions which favor watchdog, such as

no collusion attacks, only receiver collisions, perfect MAC protocol. For HADOF,

no extra assumptions are needed.

Effectiveness of Friendship: In the previous simulations, friendship has not

been introduced and the source only trusts the destination. Next we show the

results after introducing friendship mechanism to combat frame-up attacks. We

conduct simulations under the situations that each source has 20 friends which

are randomly chosen among all good nodes in the network. Fig. 3.6 shows the

simulation results using HADOF with the configuration of average pause time 50

seconds, 20 malicious nodes, half of them launching both gray hole and frame-up

attacks, and half of them only launching gray hole attacks. From these results we

can see that the effects of frame-up attacks can be overcome when trustiness has

been established among certain number of users. For example, with 20 friends, the

packet drop ratio, which is 15%, is even lower than the situation that no frame-up

attacks are launched, which is 16%.

3.3.2 Overhead Comparisons

Routing Discovery Overhead: For each simulation, we have counted the total

39



0

400

800

1200

1600

0 100 200 300 400 500

N
um

be
r 

of
 R

ou
te

 D
is

co
ve

rie
s

Time (Seconds)

average pause time: 50 seconds, 20 malicious nodes

baseline
watchdog

HADOF

Figure 3.7: Route discovery overhead comparison

number of route discoveries that have been initiated by all the sources. Fig. 3.7

shows the results under the configuration of average pause time 50 seconds, 20

malicious nodes, and only gray hole attacks. From these results we can see that

though HADOF needs to initiate route discoveries preventively, it still has the

lowest routing discovery overhead. In the baseline system, only one route is re-

turned for each route discovery, which explains why baseline needs to initiate more

route discoveries. This also verifies the effectiveness of path diversity. Surprisingly,

watchdog has the highest route discovery overhead, which comes from its high false

alarm ratio, since a new route discovery will be initiated once no route has average

reputation larger than 0.

Energy Consumption Overhead: One major drawback of watchdog is that

it consumes much more energy than HADOF, because each node has to keep

monitoring its neighbors’ transmission activities. We use Fig. 3.1 to illustrate why

watchdog needs to consume extra energy. For example, after B sends a packet to

C and asks C to forward the packet to D, B has to keep listening C’s transmission.

If C is a malicious node, C can launch resource consumption attacks to consume

B’s energy by putting off forwarding packets for B. Even if C is a good node, B

still needs to consume extra energy to receive, decode, and compare the packets
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transmitted by C with the packets stored in B’s buffer. This consumes a lot of

extra energy. By requiring nodes to keep monitoring their neighbors, watchdog

not only reduces network capacity, but also consumes extra energy. On the other

hand, HADOF has no such drawbacks.

Encryption Overhead: As we discussed before, all packets should be en-

crypted and signed to ensure data confidentiality and integrity. Otherwise, outside

attackers can easily intercept those messages through eavesdropping. Compared

with the baseline system, HADOF introduces some encryption overhead which

comes from encrypting the reports. In most situations only the destination needs

to submit reports, and the source and the destination already share a secrete key

for data encryption. Thus, the reports from the destination can just be encrypted

by this secrete key, which introduces little overhead. In addition, if the amount

of data for reporting packet forwarding statistics is much less than the amount of

data, which is generally true, the overhead of encrypting reports of intermediate

nodes on the route will become negligible compared with data encryption overhead.

Complexity Overhead: In HADOF, each source needs to launch a route

traffic observer to maintain and update traffic statistics, and maintain records to

track cheating behavior. However, both can be implemented using simple data

structures, and consume little memory. The computation overhead comes from

updating traffic statistics, route quality, and cheating records. These operations

will not introduce a lot computation burden. In watchdog, each node also needs

to keep a reputation database and need to calculate route quality. Moreover, each

node in watchdog needs to keep an extra buffer to store the packets that it has

requested its neighbors to forward but not yet confirmed, which consumes a lot

extra memory, and introduces extra computation overhead to compare the packets.
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3.4 Summary

In this chapter we proposed HADOF to defend against routing disruption attacks

launched by inside attackers, which can be implemented upon the existing source

routing protocols. HADOF is capable of adaptively adjusting routing strategies ac-

cording to the network dynamics and nodes’ past records and current performance.

It can handle various attacks launched by malicious nodes, such as black hole, gray

hole, frame-up, rushing attacks, and wormhole attacks. Moveover, HADOF intro-

duces little overhead to the existing routing protocols, and is fully distributed.

Extensive simulation studies have also confirmed the effectiveness of HADOF.
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Chapter 4

Secure Ad Hoc Networks Against

Injecting Traffic Attacks

Chapter 3 has demonstrated how to defend against routing disruption attacks.

In this chapter, we will study another class of powerful attacks: injecting traf-

fic attacks. Specifically, attackers inject an overwhelming amount of traffic into

the network in attempt to consume valuable network resources, and consequently

degrade the network performance. Since in ad hoc networks, nodes need to coop-

eratively forward packets for other nodes, such networks are extremely vulnerable

to injecting traffic attacks, especially those launched by insider attackers.

In this chapter, we first proposed a set of fully distributed defense mechanisms

which can effectively detect injecting data packets attacks, even when attackers can

use advanced transmission techniques, such as directional antennas, in attempt to

avoid being detected. We have also derived the theoretical upper-bounds for the

probability that attackers can successfully launch injecting data packets attacks

without being detected. The results show that from attackers’ point of view, the

best injecting data packets strategy is to conform to their original data packets
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injection rate. That is, the best strategy is not to launch injecting data pack-

ets attacks. To further decrease the incurred overhead, we have then proposed

a centralized defense mechanisms with de-centralized implementation. By letting

some nodes under strong protection to perform attack detection, the detection

performance can be further improved and the average overhead can be dramati-

cally decreased. Besides injecting data packet attacks, the query-flooding attacks

have also been studied and the tradeoff between limiting query rate and system

performance is exploited.

This chapter is organized as follows. Section 4.1 describes the system model

and investigates the possible types of injecting traffic attacks. Section 4.2 describes

the proposed fully distributed defense mechanisms. The theoretical analysis of

the proposed distributed defense mechanisms are presented in Section 4.3. In

Section 4.4, a centralized detection mechanism with de-centralized implementation

is described. Simulation results are presented in Section 4.5. Finally, Section 4.6

summarizes this chapter.

4.1 Injecting Traffic Attacks

Similar as in Chapter 3, in this chapter we also focus on cooperative ad hoc net-

works, where nodes are classified into two types: good and malicious. We focus

on the scenario that nodes use omnidirectional transmission techniques, such as

omnidirectional antennas. However, attackers are allowed to use directional trans-

mission techniques, such as directional antennas [52] or adaptive beamforming [33],

to improve their attacking capabilities.

According to the system goal, each node may schedule to generate and send a

sequence of packets to certain destinations. We call a source-destination pair to
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Figure 4.1: An example of long route attack

be legitimate if this pair is needed to achieve the system goal. For each legitimate

source-destination pair (s, d) in the network, we assume that the number of packets

that is scheduled to inject by this pair until time t is Ts,d(t). In general, the exact

value of Ts,d(t) may not be known a priori by other nodes in the network. In

this chapter we assume that a loose upper-bound of Ts,d(t), denoted by fs,d(t),

can be estimated by some nodes in the network, which is referred to as the traffic

injection upper-bounds associated to pair (s, d). Without loss of generality, we

simply assume that all data packets have the same size.

As mentioned before, in this chapter our focus is on defending against injecting

traffic attacks. Roughly speaking, injecting traffic attacks can be classified into

two types: query-flooding attack and injecting data packets attack (IDPA). Due to

the changing topology or traffic pattern, nodes in ad hoc networks may need to

frequently perform route updates, which may require broadcasting query messages.

Then attackers can broadcast query message with a very high frequency to consume

valuable network resources. We call such attack as query-flooding attack. Besides

query-flooding attacks, attackers can also inject an overwhelming amount of data

packets into the network to request other nodes to forward. When other nodes

process and forward these packets, their resources (e.g., energy) are wasted. We

call such attack as injecting data packets attack (IDPA). Since in general the size
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of data packet is much larger than the size of query messages, and the injection

rate of data packets is much higher than the injection rate of query message, the

damage that can be caused by injecting data packets attack is usually more severe

than by query-flooding attacks.

We first consider the possible ways that IDPA can be launched by attackers s

and d with s being the source and d being the destination. The simplest way, which

is called simple IDPA, is that s picks a route R to d and injects an overwhelming

amount of packets into the network, which is much higher than the legitimate

bound fs,d(t).

In the second way, which is called long route IDPA, s picks a very long route

to inject data packets into the network. For example, as in Fig. 4.1, s can pick

the route “swcbahefgd” to send packets from s to d with the number of injected

packets conforming to the legitimate bound fs,d(t). By doing this way, s and d can

achieve the same effect as increasing its traffic injecting rate.
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Figure 4.2: An example of multiple route attack

In the third and advanced way, which is called multiple routes IDPA, s

picks multiple routes to d and simultaneously injects traffic into the network via

these routes. For example, as shown in Fig. 4.2, s uses four routes “sa1 . . . b1d”,

“sa2 . . . b2d”, “sa3 . . . b3d” and “sa4 . . . b4d” to inject packets into the network. By

doing in this way, the traffic can be distributed among multiple routes such that
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for each route the packet injection rate conforms to the legitimate bound fs,d(t),

though the total number of injected packets can be much higher than fs,d(t). More-

over, the attackers can also take advantage of advanced transmission techniques,

such as directional antenna and beamforming, to avoid being detected.

Besides injecting data packets, attackers can also inject an overwhelming amount

of query messages into the network to request other nodes to forward, which is

called query-flooding attacks. The advantage of query-flooding attacks lies in that

for each query, more nodes in the network may be involved to process and forward

packets than IDPA. Although query messages are usually much smaller than data

packets, when the query frequency is high, the damage can still be severe.

4.2 Defense Mechanisms

In order to detect whether a node has launched injecting traffic attacks, we have to

base on the observed behavior of that node. In other words, a node can be marked

as launching injecting traffic attacks only if it has been observed by some other

nodes that it has injected too much traffic (higher than the legitimate bound), or

it has sent traffic to illegitimate destinations. Therefore, the following mechanisms

will be required by the defense system:

• A robust packet delivery mechanism where for any packet injected by node

x, x cannot deny that this packet is form it and no other nodes can generate

the same packet without colluding with x. This is addressed in Section 4.2.1.

• A robust traffic monitoring mechanism to count the number of packets in-

jected by each node in the network. This is addressed in Section 4.2.2.

• A robust detection mechanism to detect injecting traffic attacks based on

observed information. This is addressed in Section 4.2.3.
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4.2.1 Route Discovery and Packet Delivery

In this chapter we adopt DSR [47] as the underlying routing protocol to perform

route discovery. Meanwhile, to defend against possible attacks, the following se-

curity enhancements will also be incorporated into the DSR protocol:

• When node s initiates a route discovery to destination d, besides the source

destination pair, the query packet should also includes a unique ID associated

to this query and the sequence number corresponding to the last data packet

that s has sent to d. In this chapter, the following format is used for each

query packet:

{s, d, ids(s, d), seqs(s, d), signs(s, d, ids,d, seqs(s, d))}

Here ids(s, d) is the sequence number of this query packet, which has an initial

value of 1 and is required to be increased by 1 after each query has been issued

by the pair (s, d). seqs(s, d) is the sequence number of the last packet that has

been injected into the network by the pair (s, d). signs(s, d, ids,d, seqs(s, d))

is the signature generated by s based on the message {s, d, ids,d, seqs(s, d)}.

• When a good node x receives a route request packet with s being the source

and d being the destination, x first checks whether the following conditions

can be satisfied:

1. the source-destination pair (s, d) is legitimate;

2. all signatures are valid;

3. idx(s, d) < ids(s, d), where idx(s, d) is the maximum query sequence

number corresponding to the pair (s, d) that x has seen before;
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4. seqx(s, d) ≤ seqs(s, d), where seqx(s, d) is the maximum data packet

sequence number corresponding to the pair (s, d) that x has seen before;

5. no nodes appended to the request packet have been detected as mali-

cious by x;

6. less than Tmaxhop relay nodes have been appended to the query packet,

where Tmaxhop is a system-level parameter indicating the maximum num-

ber of relays that a route can have.

7. x has not forwarded any request for the pair (s, d) in the last Tx(s, d)

interval, where Tx(s, d) is the minimum query forwarding interval spec-

ified by x to indicate that x will forward at most 1 route request for

(s, d) in any Tx(s, d) interval.

If all of the above conditions can be satisfied, we call such a request as a valid

request. In this situation, x will assign the value of ids(s, d) to idx(s, d),

assign the value of seqs(s, d) to seqx(s, d), append its own address to the

route request packet and sign the whole packet, and rebroadcast the new

query. If only the conditions from 1 to 4 are satisfied, x will only assign the

value of ids(s, d) to idx(s, d), assign the value of seqs(s, d) to seqx(s, d). In

all other situations, x will discard this route request, and perform necessary

attacker detection. Assume request is the received valid query message that

x has decided to forward, then the following format will be used for x to

append its own address:

{request, x, signx(request, x)}

Once a source has decided to send a packet to a certain destination using a

certain route, a data packet delivery transaction should be started. The proposed
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data packet delivery mechanism works as follows. Suppose that node s is to send a

packet with payload msg and sequence number seqs(s, d) to destination d through

the route R. s first generates two signatures sigh and sigb, with sigh being gen-

erated based on the message {R, seqs(s, d)} and sigb being generated based on

the message {R, seqs(s, d), MD(msg)} where MD() is a digest function such as

SHA-1 [1]. The format of the packet to be sent is as follows:

{R, seqs(s, d), sigh,msg, sigb}. (4.1)

We refer to {R, seqs(s, d), sigh} as the header of the packet, and refer to {msg, sigb}
as the body of the packet. Next, s transmits this packet to the next node on route

R, and is required to increase the value of seqs(s, d) by 1. The advantage of

generating two signatures will be demonstrated later.

When a node (e.g., x) detects that a certain packet is to be transmitted by a

certain node (e.g., y), a first decodes and checks the header of the packet. Assume

{R, seqs(s, d), sigh} is the header of the transmitted packet, a needs to continue

receiving and decoding the body of the packet only if all of the following conditions

are satisfied:

1. the signature sigh is valid;

2. x is on the route R and is the target of this transmission;

3. no nodes on route R has been detected as malicious by x;

4. seqs(s, d) > seqx(s, d);

5. route R has no more than Tmaxhop relays;

6. x has agreed to participate on this route before and the route has not expired,

where each route will be set an expiration time.
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If all of the above conditions are satisfied, x will continue receiving and decoding

the body of the packet, assuming it is {msg, sigb}. If the signature sigb is valid,

x will forward the packet to the next node on the route, and assign the value of

seqs(s, d) to seqx(s, d).

4.2.2 Traffic Monitoring

Traffic monitoring is an indispensable component to detect possible injecting traffic

attacks. In the chapter, each node will keep monitoring its neighbors’ transmission

activities using the proposed header watcher mechanism. Specifically, when a node

x detects that a neighbor y is transmitting a data packet, no matter whether x is

the receiver of this transmission or not, x will try to receive and decode the packet

header sent by y. Actually this is needed by most wireless networks: without

decoding the header, how can a node know whether this packet target at it or not?

The uniqueness of the proposed header watcher mechanism lies in that each node

will also check the validity of the signature for the packet header. If the signature

of the packet header is valid, x will put the packet header into the set List(s, d, x)

in x’s records, which will be used later to detect whether s has launched injecting

traffic attacks.

Unlike the “watchdog” mechanism introduced in [58], which requires a node

to buffer all the packets that it has sent or forwarded and to keep monitoring

its neighbors’ transmission activities in order to check whether those packets have

been forwarded by them, the “header watcher” mechanism proposed in this chapter

only requires a node to monitor the packet headers around its neighborhood. Since

only packet header needs to be received and decoded, and the header of a packet is

much shorter than the body of a packet, a lot of effort can be saved comparing to
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the watchdog mechanism which requires receiving, decoding, and comparing the

whole packets.

In general, if all packet headers received by node x are recorded, with the

increase of x’s staying time in the network, more and more storage will be required.

Actually, in our scheme, for each legitimate source-destination pair (s, d), only

those packet headers received after the last valid route request issued by (s, d)

need to recorded by x; in another words, only those packet headers whose sequence

numbers are larger than the sequence number broadcast by s in its last valid route

request packet. With this modification, the storage requirement become very small

and does not increase over x’s staying time in the network. In Section 4.4, we will

also show how to further decrease the storage requirement.

4.2.3 Injecting Traffic Attack Detection

In this chapter each good node in the network will perform injecting traffic attack

detection based on the observed behaviors. Specifically, for each source-destination

pair (s, d) with List(s, d, x) being non-empty in good node x’s records, the following

detection rules will be used by x to check whether s has launched injecting traffic

attacks:

• Rule 1: If List(s, d, x) is not empty and the source-destination pair (s, d) is

illegitimate, x will mark s as malicious.

• Rule 2: x received a request issued by an illegitimate source-destination

(s, d), x will mark s as malicious.

• Rule 3: For any packet header {R, seqs(s, d), sigh} which belongs to List(s, d, x),

if route R has more than Tmaxhop relays, x will mark s as malicious.
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• Rule 4: If x detects that there exist two valid packet headers {R, seqs(s, d), sigh}
and {R′, seq′s(s, d), sig′h} in the set List(s, d, x) with seqs(s, d) = seq′s(s, d)

but R 6= R′, x will mark s as malicious.

• Rule 5: Let seqmax(s, d) be the maximum possible sequence number corre-

sponding to the source-destination pair (s, d) at time t, that is, seqmax(s, d) =

fs,d(t) at time t. If x detects that there exists a sequence number seqs(s, d)

in List(s, d, x) with seqs(s, d) > seqmax(s, d), x will mark s as malicious.

The first two rules imply that only legitimate source-destination pairs can inject

packets into the network. Rule 3 implies that no routes should have more than

Tmaxhop relays. Rule 4 handles multiple route attack. Rule 5 handles attackers

which inject more packets than they should. In summary, rule 4 and 5 are used to

prevent attackers from injecting more packets than they are allowed by associating

each packet with a unique sequence number. That is, no any two packets for the

same traffic pair should have the same sequence number, and the sequence number

has to be increased monotonically.

Once x detects that s is launching injecting traffic attacks, x will also inform

the other nodes in the network by broadcasting an ALERT message which in-

cludes evidence such as the corresponding packet headers. When other good nodes

have received the ALERT message, after necessary verification (i.e., signatures are

valid), they will also mark s as malicious.

Next we analyze the effects of possible impersonation attacks that can be

launched by attackers. In the proposed mechanisms, the only way that an at-

tacker m can impersonate a good node s whose has not been compromised is to

first record the packets that s has transmitted, then later forwards/broadcasts

these packets. Specifically, there are two situations:
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• Situation 1: m recorded a query packet issued by s and rebroadcast it later.

However, since this query packet has been seen by all other nodes in the

network due to the flooding nature of query message, no nodes will further

process this query packet.

• Situation 2: m recorded a data packet issued by s and forwarded it later.

However, since nodes on the route associated to this data packet will only

process this packet at most one time, forwarding this packet at time t1 by m

cannot cause damage to other nodes.

In summary, impersonation attack cannot cause further damage to good nodes in

the network. Furthermore, it can be readily checked that as long as s is good and

has not been compromised, the probability that x will mark s as malicious is 0.

That is, the false alarm ratio of the above detection rules is 0.

4.2.4 Overhead Analysis

Now we analyze the overhead associated with the above defense mechanisms. Ac-

cording to the above description, there is no extra communication overhead. Mean-

while, the computation overhead comes from generate and verify the signatures.

More specifically, the extra computation overhead comes from generating and ver-

ifying the signatures for packet headers. Comparing to packet body, the length of

packet header is much smaller, so the extra computation overhead is also small.

Now we analyze the storage overhead. In the proposed defense mechanism, each

node needs to store the set of packet headers between two consecutive route query

requests. In mobile ad hoc networks, due to dynamic topology change, the time

interval between two consecutive route query requests is usually short. Therefore,
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the number of packet headers that need to be stored is also small. Section 4.4 will

discuss how to further reduce the storage overhead.

4.3 Theoretical Analysis

According to the secure route discovery procedure described in Section 4.2.1, a

good node x will only forward at most 1 route request in any time interval Tx(s, d)

for any legitimate source-destination (SD) pair (s,d), and will not forward route

requests for any illegitimate SD pairs, therefore the total damage that can be

caused by attackers launching query flooding attacks is bounded. Next we analyze

the effects of IDPA. Assume that node s is malicious and tries to launch IDPA

with d being the destination of the packets injected by s. To avoid being detected

immediately, the SD pair (s, d) must be legitimate and d must be malicious too,

otherwise, s can be easily detected by d as malicious. According to Section 4.1,

there are three possible ways to launch IDPA: simple IDPA, long-route IDPA and

multiple-route IDPA.

We first consider simple IDPA. According to Section 4.2.1, in order for good

nodes to forward packets for s, s has to increase the sequence number seqs(s, d) by

1 after each packet delivery. Unless all nodes on the selected route are malicious,

which makes no sense, the good nodes on route R can easily detect that s is

launching IDPA by comparing the received packets’ sequence number with fs,d(t)

defined in Section 4.2.3. That is, when launching simple IDPA, the attackers can

be immediately detected and can cause negligible damage.

If s launches long-route IDPA, since much more good nodes will be involved,

s can cause similar damage as launching simple IDPA. However, as described in

Section 4.2.1, the maximum allowable number of hops per route is bounded by
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Tmaxhop, and good nodes will drop all packets with the associated number of hops

more than Tmaxhop. Therefore the damage is upper-bounded by fs,d(t)Tmaxhop.

Finally we consider the multiple-route IDPA. To avoid being detected imme-

diately, the packet injection rate to each route must conform to fs,d(t), and the

selected routes must be node-disjoint, that is, no selected routes should share any

common good node except s and d, otherwise, if a good node x lies in more than

one route from s to d, it can easily detect whether s and d have launched multiple-

route IDPA. Meanwhile, the packets passing through the same route should have

different sequence numbers in order for good nodes on the route to forward them.

Based on whether s allows packets in different routes to share the same sequence

numbers and what transmission techniques s will use, there are three cases:

• Case 1: s dose not allow packets on different routes to share the same se-

quence numbers. Since seqs(s, d) ≤ fs,d(t) is required to let s avoid being

detected immediately, in this case s has no extra gain by comparing with

launching simple IDPA.

• Case 2: s allows packets on different routes to share the same sequence

numbers, and transmits packets omnidirectionally. Since s’s neighbors will

keep monitoring s’s packets transmission, they can easily detect that some

packets sent by s through different routes use the same sequence number,

which indicates that s is launching IDPA. Therefore if s can only transmit

packets omnidirectionally, s should not launch multiple-route IDPA.

• Case 3: s allows packets on different routes to use the same sequence num-

bers, and can transmit packets using directional transmission techniques.

Since now s’s neighbors cannot receive s’ transmission not targeting on them,

they have little chance to directly detect that s is launching IDPA. However,
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since good nodes in the network use omnidirectional transmission techniques,

the probability that s can successfully launch multiple-route IDPA without

being detected still approaches 0, as to be shown next.

Next we derive the upper-bounds for the probability that s is able to success-

fully pick n node-disjoint routes to inject data packets without being detected

immediately, as illustrated in Case 3. We consider the most general situation that

the destination d does not know the exact locations of those nodes within its trans-

mission range, and all d’s neighbors are good nodes. Given a node x and a certain

area S, we say that x is randomly deployed inside S according to the 2D uniform

distribution if for any subarea S1 ⊂ S we have P (x ∈ S1|x ∈ S, S1 ⊂ S) = S1/S.

Then we have the following theorem.

Theorem 4.3.1 Suppose that N good nodes are independently deployed inside a

large area of S according to the 2D uniform distribution. Suppose that all of these

N nodes use omnidirectional transmission techniques and r is their common max-

imum transmission distance. Suppose that the SD pair (s, d) collude to launch

IDPA with s using directional transmission technique and s and d not knowing the

exact location of the nodes inside d’s receiving range (which is r). If the defending

mechanisms described in Section 4.2 are used by good nodes, then the probability

P (n, r,N) that the two attackers can successfully pick n node-disjoint routes to

launch multiple-route IDPA without being detected immediately is upper-bounded

by

P (n, r,N) ≤
(

3
√

3

4π

)(n
2) N∑

k=n

P1(k, N)


n

(
3
√

3

4π

)(n−1
2 )




k−n

. (4.2)

where P1(k, N) is defined as follows:

P1(k, N) =

(
N

k

)(
πr2

S

)k (
1− πr2

S

)N−k

. (4.3)
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Before proving Theorem 4.3.1, we first prove the following lemmas.

Lemma 4.3.2 Assume N nodes are independently deployed inside an area of S

according to the 2D uniform distribution. For any node x inside subarea S1 ⊂ S

and for any subarea S2 ⊂ S1, we have

P (x ∈ S2|x ∈ S1, S2 ⊂ S1 ⊂ S) =
S2

S1

(4.4)

Proof

P (x ∈ S2|x ∈ S1, S2 ⊂ S1 ⊂ S) =
P (x ∈ S2, x ∈ S1|S2 ⊂ S1 ⊂ S)

P (x ∈ S1|S2 ⊂ S1 ⊂ S)
=

P (x ∈ S2|S2 ⊂ S)
P (x ∈ S1|S1 ⊂ S)

=
S2

S1
.

(4.5)

That is, the conditional distribution of x in S1 is independent of S, which is also

the 2D uniform distribution.

Lemma 4.3.3 Assume nodes x and y are independently deployed inside a certain

area S according to the 2D uniform distribution. Given x ∈ S1 ⊂ S and y ∈ S1 ⊂
S, and given any subareas Sx ⊂ S1 and Sy ⊂ S1, we have

P (x ∈ Sx, y ∈ Sy|x ∈ S1, y ∈ S1, Sx ⊂ S1, Sy ⊂ S1)

= P (x ∈ Sx|x ∈ S1, Sx ⊂ S1)P (y ∈ Sy|y ∈ S1, Sy ⊂ S1) (4.6)

Proof Since the deployment of x and y are independent of each other, we have

P (x ∈ Sx, y ∈ Sy|x ∈ S1, y ∈ S1, Sx ⊂ S1, Sy ⊂ S1)

= P (x ∈ Sx|x ∈ S1, Sx ⊂ S1, y ∈ Sy ⊂ S1) ∗

P (y ∈ Sy|y ∈ S1, Sy ⊂ S1, x ∈ S1, Sx ⊂ S1)

= P (x ∈ Sx|x ∈ S1, Sx ⊂ S1)P (y ∈ Sy|y ∈ S1, Sy ⊂ S1)

That is, the distribution of x and y inside S1 are independent of each other.
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Lemma 4.3.4 Let S be a circular area with o being the center and R being the

radius. Assume that node x lies in S and P (A ∈ S1|A ∈ S, S1 ⊂ S) = S1

S
. Let d(x)

denote the random variable of the distance from x to o, then

P (d(x) = r|x ∈ S) =

{
2r
R2 0 ≤ r ≤ R

0 r > R
(4.7)

Proof For any 0 < r ≤ R, we have

P (d(x) = r|x ∈ S) = lim
∆→0

πr2/πR2 − π(r −∆)2/πR2

∆
=

2r

R2
(4.8)

For any r > R, we have x /∈ S, which implies P (d(x) = r|x ∈ S) = 0.

Lemma 4.3.5 Let S be a circular area with o being its center and R being its

radius. Given that two nodes a and b independently deployed in S according to the

2D uniform distribution, we have

P (|ab| > R|a ∈ S, b ∈ S) =
3
√

3

4π
, (4.9)

where |ab| denote the distance between a and b.

a

b

SI

SII

e

α
R

r/2
c d

o

Figure 4.3: Illustration

Proof We use Figure 4.3 to help illustrating the proof. Let r denote the distance

from a to o, let Co denote the circle with o being the center and R being the radius,
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and let Ca denote the circle with a being the center and R being the radius. Let

c and d be the intersecting points between the two circles Co and Ca, and let

α = 6 coa = 6 doa. Let SI(r) denote the intersecting area inside both circles Co

and Ca with |oa| = r, and let SII(r) denote the area of S subtracted by SI(r).

Then we have

P (|ab| > R
∣∣a ∈ S, b ∈ S) =

∫ R

0

2r

R2

SII(r)

S
dr, (4.10)

where (4.10) comes from Lemma 4.3.5. We first calculate SI(r):

SI(r) = 2

(
R2 arccos

r

2R
− r

2

√
R2 − (

r

2
)2

)
, (4.11)

where α = arccos( r
2R

). Then SII(r) can be calculated as

SII(r) = R2

(
π − 2 arccos

r

2R
− r

R2

√
R2 − (

r

2
)2

)
. (4.12)

By integrating (4.12) into (4.10), we have P (|ab| > R
∣∣a ∈ S, b ∈ S) = 3

√
3

4π
.

Lemma 4.3.6 Assume that n nodes A = {a1, . . . , an} are independently deployed

inside a circular area S according to the 2D uniform distribution with R being the

radius, then we have

P (|aiaj| > R : ∀ai, aj ∈ A) ≤ P (|a1a2| > R)(
n
2) (4.13)

Proof

P (|aiaj| > R : ∀ai, aj ∈ A)

= P (|a1a2| > R, . . . |a1an| > R, . . . , |an−1an| > R)

= P (|a1a2| > R
∣∣|a1a3| > R, . . . |an−1an| > R)P (|a1a3| > R, . . . , |an−1an| > R)

= P (|a1a2| > R
∣∣|a1ai| > R, |a2ai| > R : ∀3 ≤ i ≤ n)P (|a1a3| > R, . . . , |an−1an| > R)

Given |a1ai| > R and |a2ai| > R for any 3 ≤ i ≤ n, we can draw a circle with

ai being the center and R being the radius. To conform to the statement that
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“∀ai, aj ∈ A, |aiaj| > R”, both a1 and a2 cannot lie inside the intersecting area

between this circle and the circle with o being the center. That is, a1 and a2 are

now restricted in an area of S ′ ⊂ S smaller than S. So the probability that |a1a2|
is larger than R under such restrictions will become smaller than without such

restrictions. That is,

P (|a1a2| > R
∣∣|a1ai| > R, |a2ai| > R) ≤ P (|a1a2| > R : ∀3 ≤ i ≤ n). (4.14)

Following the same arguments we can have

P (|aiaj| > R : ∀ai, aj ∈ A) ≤
∏

1≤i<j≤n

P (|aiaj| > R). (4.15)

Since there are total
(

n
2

)
items in the product, and nodes in A are symmetric, we

can conclude that (4.13) holds.

Lemma 4.3.7 Assume n+m nodes {a1, . . . , an, b1, . . . , bm} are independently de-

ployed inside a circular area S according to 2D uniform distribution with R being

the radius. Let A = {a1, . . . , an} and B = {b1, . . . , bm}, then we have

P (|aibl| > R or |ajbl| > R : ∀ai, aj ∈ A, bl ∈ B, i 6= j) ≤ (
nP (|a1b1| > R)n−1

)m (4.16)

Proof Let Ai = A − {ai}. Given any b ∈ B, to say “|aib| > R or |ajb| > R :

∀ai, aj ∈ A, ai 6= aj” is equivalent to say “there exists at least one Ai with |xb| > R

for any x ∈ Ai”, that is,

P (|aib| > R or |ajb| > R : ∀ai, aj ∈ A, ai 6= aj)

= P ((|xb| > R : ∀x ∈ A1) or . . . or (|xb| > R : ∀x ∈ An))

≤
n∑

i=1

P (|xb| > R : ∀x ∈ Ai)

= nP (|xb| > R : ∀x ∈ A1)

≤ nP (|a1b| > R)n−1
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Due to the symmetry and independence of the m nodes in B, we can concludes

that (4.16) holds.

Now Theorem 4.3.1 can be proved as follows:

Proof Let Cd denote the circle with d being the center and r being the radius. For

s and d to be able to successfully pick n node-disjoint routes to launch multiple-

route IDPA without being detected immediately, they need to pick at least n

distinct nodes inside Cd, one for each route, to act as the last intermediate nodes

on these routes. Since s and d do not know the exact locations of the nodes

inside Cd, these n nodes can only be randomly selected. It is easy to see that the

following three necessary conditions must be satisfied in order for the attackers

to succeed:

C1. There exist at least n nodes inside Cd, otherwise, s and d can never have n

node-disjoint routes between them.

C2. Given that there are k ≥ n nodes inside Cd, and that s and d are to randomly

select n nodes among them to act as the last intermediate node for these n

node-disjoint routes, then for any two nodes among the n nodes selected by s

and d, no node should lie in the other nodes’ transmission range. Otherwise,

if any two of the n nodes lie in each other’s transmission range, they can

easily detect that s is launching multiple-route IDPA.

C3. Given that the n nodes have been selected by s and d, there should exist

no other good nodes (nodes excluding the selected n good nodes) which can

simultaneously lie in any two of these n nodes’ transmission range. Other-

wise, if there exist one such node, then it can easily detect that s is launching

multiple-route IDPA.
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Let P1(k, N) denote the probability that there are k nodes inside Cd, P2(n, r, k)

denote the probability that the condition C2 can be satisfied given that the n nodes

are randomly selected among k ≥ n nodes inside Cd, and P3(n, r, k, N) denote the

probability that the condition C3 can be satisfied given there are k ≥ n nodes

inside Cd and the n nodes have been determined by s and d. It is easy to see that

P (n, r,N) ≤
N∑

k=n

P1(k, N)P2(n, r, k)P3(n, r, k, N). (4.17)

Since nodes are independently deployed inside S according to the 2D uniform

distribution, we can immediately have

P1(k, N) =

(
N

k

)(
πr2

S

)k (
1− πr2

S

)N−k

. (4.18)

Given that k nodes lie in Cd, according to Lemma 4.3.2 and Lemma 4.3.3, it is

equivalent to say that these k nodes are independently deployed inside Cd according

to the 2D uniform distribution. According to Lemma 4.3.5 and Lemma 4.3.6, we

can have

P2(n, r, k) =

(
3
√

3

4π

)(n
2)

. (4.19)

To simplify the analysis, we consider a modified version of condition C3: given

any two nodes among the selected n nodes, there should exist no other good nodes

inside Cd but not belonging to these n nodes which can simultaneously lie in these

two nodes’ transmission range. That is, only a small subset of the applicable

nodes are considered. Let P ′
3(n, r, k, N) denote the probability that the modified

condition C3 can be satisfied given there are k ≥ n nodes inside Cd and the n nodes

have been determined by s and d, then we must have P3(n, r, k, N) ≤ P ′
3(n, r, k, N).

According to Lemma 4.3.5 and Lemma 4.3.7, the probability that the modified

63



condition C3 can be satisfied is upper-bounded by

P ′
3(n, r, k,N) ≤


n

(
3
√

3

4π

)(n−1
2 )




k−n

(4.20)

By combining the above results, we can conclude that (4.2) as well as Theorem 4.3.1

holds.

Theorem 4.3.8 The probability that two colluding attackers s and d can success-

fully pick 6 or more node-disjoint routes to launch multiple-route IDPA without

being detected immediately is 0.

Proof For the attackers s and d (assuming s is the source and d is the destination)

to simultaneously pick 6 routes to launch multiple-route IDPA, it needs to pick

6 nodes within d’s receiving range, that is, the circular area Cd with d being the

center and r the radius. Let A = {a1, a2, a3, a4, a5, a6} denote the set of 6 selected

nodes by s and d that lies inside Cd. One necessary condition for the attackers to

succeed is that for any ai, aj ∈ A, we must have |aiaj| > r for any aj ∈ A and

aj 6= ai. Now we show that it is not achievable. If there exist ai, aj ∈ A with

6 aidaj = 0, then we must have |aiaj| ≤ r. Next we only need to consider the

situations that for any ai, aj ∈ A, 6 aidaj 6= 0. For each node ai ∈ A, we draw a

radial originated from d and passing ai, and let a′i be the intersecting point between

the radial dai and the circumference of the circle Cd. Any two radials will partition

the circular area Cd into two sectors. We say a sector is singleton if none of the

nodes in A lie inside this sector (including the arc but excluding the two radials).

It is easy to say that the 6 nodes will partition the circle into 6 singleton sectors.

To satisfy the above necessary condition, the angle of each singleton sector should

be more than π/3: if the angle of a singleton section is no more than π/3, let ai

be the node on one side of this sector, and aj be the node on the other side of this
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sector, then for any point x that lies in the segment da′i and any point y that lies

in the segment da′j, we must have |xy| ≤ r. Since we have 6 singleton sectors, and

each singleton sector has an angle of more than π/3, the summed angle is more

than 2π, which contradicts the fact that a circle is 2π. Given this conclusion, it is

trivial to show that more than 6 routes is also not achievable.

We have also evaluated through experiments the upper-bounds of the success

ratio for two colluding attackers s and d to launch multiple-route IDPA with s

using directional transmission technique. Given a rectangular area of 20r × 20r,

we put d in the center of the area. At each round of experiment, we independently

deploy 400r2ρ nodes inside the area according to 2D uniform distribution and

randomly pick n nodes inside d’s receiving range, where ρ is referred to as the

node density. We say (s, d) may succeed only if all of the three necessary conditions

presented in the proof of Theorem 4.3.1 are satisfied. For each configuration of

route number n and node density ρ, 107 experiments have been conducted, and

the upper-bounds are obtained as the ratio of total success number over the total

number of experiments.
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Figure 4.4: Upper bounds of attackers’ success probability

Both experimental and theoretical upper-bounds are plotted in Figure 4.4,

where “theo” denotes the theoretical upper-bounds obtained using (4.2), “expe”
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denotes the experimental upper-bounds obtained through experiments described

above, and “n” denotes the number of node-disjoint routes to be picked by the

malicious SD pair (s, d). In Figure 4.4, the normalized node density is defined as

the average number of nodes inside an area of πr2. Since both the theoretical and

experimental upper-bounds corresponding to n = 4 and n = 5 are almost equal

to 0 across all illustrated node densities (e.g., for n = 4, all values are less than

2 × 10−3), the four curves associated to n = 4, 5 have almost overlapped into one

single curve, which is the lowest curve illustrated in Figure 4.4. For n = 2, 3, we

can see that the success ratio increases first with the increase of node density until

it arrives at a peak, then decreases with the further increase of node density, which

is consistent with (4.2). The reason is as follows: with the increase of the node

density, the probability P1 that the condition C1 can be satisfied increases mono-

tonically from 0 to 1, the probability P2 that the condition C2 can be satisfied

keeps unchanged, while the probability P3 that the condition C3 can be satisfied

decreases monotonically from 1 to 0, and when ρ is small, the value of P1 dom-

inates the bound, while when ρ is large, the value of P3 dominates the bound.

From Figure 4.4 we can also see that there exist gaps between theoretical results

and experimental results. The reason is that when we calculate the probability of

condition C3 being satisfied, only a subset of applicable nodes have been consid-

ered, which make the theoretical upper-bounds a little bit looser (higher) than the

experimental upper-bounds.

The above upper bounds are evaluated based on a fixed topology, that is, the set

of links E(t) keeps unchanged for all time index t. However, due to node mobility,

E(t) will change over time t, therefore s needs to frequently update routes. Then

after several route updates, the probability that s still has not been detected as
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malicious will be very small. For example, assume that each route update is

independent, after 5 times of route updates, even for n = 2, the probability that

s has not been detected as malicious is less than 0.06%. That is, attackers has

negligible chance to flee. In summary, when the malicious SD pair (s, d) tries to

launch IDPA, to avoid being detected and to maximize the damage, the optimal

strategy is to use only one route to inject data packets by conforming to both the

maximum hop number Lmaxhop and the legitimate rate λs,d, which is equivalent to

say that the optimal strategy is not to launch IDPA.

Besides injecting traffic by themselves, attackers may also impersonate good

nodes to launch injecting traffic attacks in attempt to avoid being detected as

well as let those impersonated good nodes being mistakenly detected as malicious.

Next we analyze the effects of possible impersonation attacks that can be launched

by attackers. In the proposed mechanisms, the only way that an attacker m

can impersonate a good node s who has not been compromised is to first record

the packets that s has transmitted, then later forwards/broadcasts these packets.

Specifically, there are two situations:

• Situation 1: m recorded a query packet issued by s and rebroadcast it later.

However, since this query packet has been seen by all other nodes in the

network due to the flooding nature of query message, no nodes will further

process this query packet.

• Situation 2: m recorded a data packet issued by s and forwarded it later.

However, since nodes on the route associated to this data packet will only

process this packet at most one time, forwarding this packet at time t1 by m

cannot cause damage to other nodes.

In summary, impersonation attack cannot cause further damage to good nodes in
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the network. Further, it is ready to check that as long as a good node s has not

been compromised, with no chance it will be marked as malicious. That is, the

false alarm ratio of the above detect rules is 0.

4.4 Centralized Detection with De-centralized Im-

plementation

The defense system described in Section 4.2 are fully distributed. However, the

drawback this system is that it may have relatively high storage complexity. Mean-

while, each node needs to have prior knowledge of the set of legitimate traffic pairs,

which may not be available to all nodes in general. Next we describe a modified ver-

sion of the proposed defense system. In the modified version, instead of performing

attacker detection by itself, each good node will report the observed information

to certain nodes which we called centralized detectors, then the centralized detec-

tor will perform attacker detection based on the collected traffic information. In

general, the centralized detectors will be under stronger protection than normal

nodes and may have more powerful computation capability and more storage, such

as base station.

The detailed description of the modified defense system is as follows. First,

the route discovery and packet delivery procedure is the same as described in Sec-

tion 4.2.1. Second, the monitoring mechanism is still header watcher as described

in Section 4.2.2 with the following modification: for each good node, instead of

storing all listened valid packet headers locally, most time it does not need to

any packet headers locally, but only needs to store the following three-tuple (traf-

fic pair, sequence number, route) that is associated to each listened valid packet
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headers. A good node needs to record the full packet headers only if it has been

notified by the centralized detectors to do so, as explained next. Furthermore,

instead of reporting each listened packet header information separately, each good

node will report the listened packet header information in a batch mode, that is,

each report consists of many listened packet header information.

For the centralized detector, its job is to perform injecting traffic attack detec-

tion by applying similar detection rules as described in Section 4.2.3. The major

difference lies in that when the centralized detector performs injecting traffic at-

tack detection, the procedure are two steps. In the first step, the detector will

check whether a node has injected two packets with the same sequence number or

whether a sequence number is larger than specified upper-bound based only on the

collected partial packet header information, that is, without checking the packet

header signatures. If any of the two conditions has been satisfied, the detector

then will request those nodes who report such information to submit full packet

headers. That is, the centralized detector needs concrete evidence to charge the

attacker.

Now we use an example to illustrate the modified detection procedure. Assume

that node a has reported a sequence number seq1 and route R1 associated to traffic

pair (s, d), and node b has reported a sequence number seq2 and route R2 associated

to traffic pair (s, d). After the centralized detector has received these reports, it

will find that seq1 = seq2 but R1 6= R2. Then the detector has reason to suspect

that s has launched injecting traffic attacks. When this happens, the detector will

ask node a and b to report the full packet headers next time such that it can collect

concrete evidence to charge s.

From the above description we can see that although the attacker detection
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is performed in a centralized, the monitoring is still fully distributed. Now we

analyze the detection performance of the modified defense system. It is easy to see

that either simple IDPA or long-route IDPA can be easily detected. Meanwhile,

for the multi-route IDPA, requiring packets sent via different route to use different

sequence number has not gain from the attacker’s point of view, and allowing

packets sent via different route to use same sequence number will be detected

immediately when omnidirectional transmission technique is used. Now we focus

on the scenario that the attackers allow packets sent via different route to use

same sequence number will be detected immediately, and directional transmission

technique is used to avoid being detected.

Given that an attacker s picks n node-disjoint routes to simultaneously inject

packets and packets on different routes will share the same set of sequence num-

bers, as long as at least two nodes on the selected routes are good, it is easy to

check that with zero probability that s can avoid being detected. In other words,

attackers have no chance to launch IPDA without being detected. Comparing to

the fully distributed defense system described in Section 4.2, the storage overhead

of the modified defense system can be dramatically reduced, but some extra com-

munication overhead is introduced due to that each node needs to report to the

centralized detector. However, since the size of each report is very small comparing

to the data packet, the extra communication overhead is negligible. For example,

if the average packet size is 1000 bytes, and the report size is 20 bytes, then the

increased overall traffic is only 2%.

Until now we have assumed that each good node will keep listening all the

packet transmission in its neighborhood. Next we show how to further decrease

the overhead by letting nodes selectively listen packet transmissions, with negligible
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degradation of the detection performance. Specifically, each node can selectively

listen its neighbors’ transmission with a certain probability p, which we called

probabilistic monitoring. That is, a packet transmission event happens in a good

node’s neighborhood, with only probability p this node will monitor this transmis-

sion and report the observation to the centralized detector. Now when an attacker

has injected n ≥ 2 packets with the same sequence number via n node-disjoint

routes, with no more than probability p(n) = (1 − p)n + p(1 − p)n−1 the attacker

can avoid being detected. Furthermore, after the attacker has injected k packets,

the probability that it will not be detected will be decreased to p(n)k, which goes to

0 with the increase of k. By applying probabilistic monitoring, the communication

overhead can be further decreased by 1− p, while the detection performance only

suffers negligible degradation.

One possible drawback of such centralized detection mechanism is that the

detector itself can also become attackers’ target. Besides increasing the protection

level, one can also increase the number of centralized detectors. For example, if

there are 2 detectors in the network, even one has been compromised, the other

still work well. In this case, for each node, it can either submit report to both

detectors, or each time randomly pick one to submit, where the later is equivalent

to reducing p by half.

4.5 Simulation Studies

In the simulations, 100 good nodes and various number of malicious nodes are

randomly deployed inside a rectangular area of 1500m*1500m, and the maximum

transmission range for each node is 300 m. As mentioned before, random waypoint

mobility model is used, with the average pause time being 300s, and vmax = 10m/s.
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In the simulations, 50 good nodes are selected as the packet generators, and

each will randomly pick a good node to send packets, therefore the total number

of SD pairs are 50. For each malicious node who launches injecting traffic attacks,

it will randomly pick another malicious node who also launches injecting traffic

attacks as the destination to inject packets. For each malicious node who launches

routing disruption attacks, it will not inject traffic to the network. All SD pairs

(good or malicious) are set to be legitimate, and for each pair, packets are generated

according to a Poisson process with a pre-specified traffic rate known by all nodes,

where the average packet inter-arrival time is 1 second. For malicious nodes who

launch injecting traffic attacks, they will increase the average packet injection rate

by 10 times. Also, all data packets have the same size of 1024 bytes.

In our simulations, each configuration has been run 20 independent rounds us-

ing different random seeds, and the result are averaged over all the 20 rounds. For

each round, the simulation time is set to be 5000 seconds. When we calculate the

energy efficiency, only transmission energy consumption has been considered, one

reason is that transmission energy consumption plays a major role in overall energy

consumption, and another reason is that receiving energy consumption may vary

dramatically over different communication systems due to their different imple-

mentations. However, both data and route request packets have been considered.

We assume the transmission energy needed per data packet is normalized to be 1.

We first investigate the tradeoff between limiting the route request rate and

system performance. Although the performance also depends on other factors

such as the mobility pattern, the number of nodes in the network, the average

number of hops per route, etc., to better illustrate the tradeoff between limiting

the route request rate and system performance, the other parameters are set to be
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Figure 4.5: Limiting route request rate vs. system performance

fixed. However, similar results can also be obtained by changing these parameters.

Fig. 4.5 illustrates the tradeoff between limiting the route request rate and

network performance. In this set of simulations, all malicious nodes will only

inject route request packets and will not inject any data packets or launch routing

disruption attacks. We assume that all good nodes have the same minimum route

request forwarding interval denoted by Tmin, but all malicious nodes will set their

route request rate to be 1 per second. From Fig. 4.5(a) we can see that with the

increase of Tmin from 1 to 80 seconds, the energy efficiency of good nodes also

increases, and keeps almost unchanged from 80 to 160 seconds. The reason is that

when Tmin is small, attackers can waste good nodes’ energy through injecting a

lot of route request packets to request others to forward. Fig. 4.5(b) shows that

with the increase of Tmin from 1 second to 20 seconds, the end-to-end throughput

of good nodes keeps almost unchanged, while with the increase of Tmin from 80

seconds to 160 seconds, the end-to-end throughput of good nodes drops almost

linearly. These results also motivate us to pick Tmin to be 40 seconds in the

following simulations.
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Figure 4.6: Effects of IDPA under different configurations

Fig. 4.6 shows the simulation results under various types of IDPA. In Fig. 4.6,

“IDPA under no defense” denotes the case that attackers launched simple IDPA

and the underlying system has not launched any defending mechanism; “general

IDPA strategy” denotes the case that attackers launch IDPA but the mechanisms

described in Section 4.2 have been launched, where both multiple-route IDPA and

long-route IDPA have been simulated; “optimal IDPA strategy” denotes the case

that attackers will use only one route to inject data packets which conforms both

to the maximum hop number Tmaxhop = 10 and to the legitimate maximum packet

injection rate and the mechanisms described in Section 4.2 have been launched.

From Fig. 4.6(a) we can see that when there is no defending mechanisms for

IDPA, even simple IDPA can dramatically degrade the energy efficiency of good

nodes. When the defending mechanisms described in Section 4.2 are employed,

from attackers’ point of view, launching IDPA has no any gain in decreasing the en-

ergy efficiency of good nodes. However, if attackers apply the optimal IDPA strat-

egy, they can still degrade the energy efficiency of good nodes. From Fig. 4.6(b)

we can see that without employing necessary defending mechanisms, with the in-
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crease of the number of attackers, even simple IDPA can dramatically degrade the

end-to-end throughput of good nodes due to the congestion they caused. When

the defending mechanisms described in Section 4.2 are employed, launching IDPA

has almost no effects on the performance of good nodes’ end-to-end throughput.

4.6 Summary

In this chapter we have studied the possible injecting traffic attacks that can be

launched in mobile ad hoc networks, and proposed a set of mechanisms to de-

fend against such attacks. Both query flooding attacks and injecting general data

packets attacks have been investigated. Furthermore, for injecting general data

packets attacks, the situations that attackers may use some advanced transmission

techniques, such as directional antennas or beamforming, to avoid being detected

have also been studied. Two set of defense mechanisms have been proposed, one is

fully distributed, while the other is centralized with de-centralized implementation.

Our theoretical analysis has shown that when the proposed mechanisms are used,

the best strategy for attackers is not to launch injecting traffic attacks. Extensive

simulation studies have also agreed with our theoretical analysis.
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Chapter 5

Game Theoretic Analysis of

Security in Cooperative Ad Hoc

Networks

Although in Chapter 3 and Chapter 4 several mechanisms have been proposed

to defend cooperative ad hoc networks against various insider attacks, there still

exist some important issues which have not been fully addressed. A significant

one is the optimality measure of defense mechanisms. For example, what metrics

should be used to measure the optimality of the defense mechanism? Under certain

optimality metrics, what are the optimal defending strategies, especially when the

environment is noisy and the monitoring is not perfect? What strategies should

the attackers use to maximize the damage to the network, and consequently what

is the maximum possible damage that the attackers can cause? In this chapter

we will formally address the above issues. Specifically, we will try to derive the

optimal defending strategies as well as the maximum possible damage that can be

caused by insider attackers under noise and imperfect monitoring.
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This chapter is organized as follows. Section 5.1 describes the secure routing

and packet forwarding game model with incomplete type information. Section 5.2

presents the devised defending strategies by incorporating statistical attacker de-

tection mechanisms, as well as possible attacking strategies. The optimality of the

devised strategies is analyzed in Section 5.3. Simulation results are presented in

Section 5.4. Section 5.5 summarizes this chapter.

5.1 Game Model

In this chapter we jointly consider routing and packet forwarding in cooperative

ad hoc networks, and model the interactions between good nodes and attackers

as games, referred to as secure routing and packet forwarding games. We adopt

Nash equilibrium as a basic optimality metric. In order to fully address the above

issues, we focus on the following scenario: initially good nodes do not know who

are attackers while attackers can know who are good nodes. This scenario can be

regarded as the worst-case scenario from the defenders’ point of view, that is, if a

strategy can work well under this scenario, they can work well under any scenarios.

We consider cooperative ad hoc networks deployed in adversarial environments.

According to their objectives, nodes in such networks can be classified into two

types: good and malicious. The objective of good nodes is to optimize the overall

system performance, while the objective of malicious nodes is to maximize the

damage that they can cause to the system. In such networks, each node may

generate (or collect) some data scheduled to be delivered to certain destinations,

and the data rate from each node is determined by the common system goal, which

is usually application-specific.

In this chapter we will still focus on insider attacks. Since we focus on packet

77



forwarding, we will mainly consider the following two representative attack models:

dropping packets and injecting traffic. By dropping other nodes’ packets, all the

resources spent to transmit these packets are wasted, and the network’s perfor-

mance is degraded. Attackers can also inject an overwhelming amount of packets

into the network: once the others have forwarded these packets but cannot get

payback, those resources spent to forward these packets are wasted. Meanwhile,

the attackers are allowed to collude to increase their attacking capability.

As we have known in Chapter 4, in cooperative ad hoc networks, without know-

ing any information about node’s legitimate data generation rate, the detection of

injecting traffic attacks will become extremely hard (or impossible). Fortunately,

since cooperative ad hoc networks are designed to fulfill certain common goals, it

holds in general that a node’s legitimate data generation rate can be known or

estimated by some other nodes in the network. For example, in ad hoc sensor net-

works designed to do environment surveillance, each node needs to send collected

information to the centralized data collector, and the amount of data that each

node can send is usually pre-determined by the system goal, and can be known

or estimated by some other legitimate nodes. Similar as in Chapter 4, we assume

that for each node s in the network, the number of packets that it will generate

by time t is Ts(t), which is usually different for different node1. In general, the

exact value of Ts(t) may not be known by other nodes in the network. In this

chapter we assume that the upper-bound of Ts(t), denoted by fs(t), can be known

or estimated by some nodes in the network.

To formally analyze the security in cooperative ad hoc networks, we model

1In general, the number of packets that each node s will generate by time t can be modeled

as a random variable, and Ts(t) can be regarded as a specific realization.
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the dynamic interactions between good nodes and attackers as a secure routing

and packet forwarding game with incomplete type information and imperfect

observation:

• Players: The set of players is denoted by N , which is the set of legitimate

nodes in the network.

• Types: Each player i ∈ N has a type θi ∈ Θ where Θ = {good, malicious}.
Initially, each attacker knows any other player’s type, while each good player

assumes all nodes are good. That is, good nodes have incomplete information

of the others’ type. Let Ng denote the set of good players and Nm = N −Ng

the set of attackers.

• Strategy space:

1. Route participation stage: For each player, after receiving a message

requesting it to be on a certain route, it can either accept this request,

denoted by A, or not accept this request, denoted by NA.

2. Route selection stage: For each player who has a packet to send,

after discovering a valid route2, its decision can be either request/use

this route to send the packet, denoted by R, or not request/use this

route to send the packet, denoted by NR.

3. Packet forwarding stage: For each relay node, once it has received a

packet requesting it to forward, its decision can be either forward this

packet, denoted by F, or drop this packet, denoted by D.

2A valid route means that all nodes on this route have agreed to be on this route and each

node on this route lies inside the transmission range of its previous player on this route.

79



• Cost: For any player i ∈ N , transmitting a packet, either for itself or for

the others, will incur cost ci.

• Gain: For each good player i ∈ Ng, if a packet originated from it can be

successfully delivered to its destination, it can get gain gi.

• Imperfect execution: Due to noise, with probability pe each decision F

can be mistakenly executed as D.

• Imperfect observation: With probability pm each forwarding outcome

can be observed as dropping by the source (i.e., miss probability), and with

probability pf each dropping outcome can be observed as forwarding by the

source (i.e., false positive probability). Meanwhile, when a node has injected

a packet, with probability ps it can avoid being detected by those who know

its legitimate traffic injection rate.

• Utility: For each player i ∈ N , let Si(t) denote the number of i’s pack-

ets that have been scheduled to send and have successfully arrived at their

destinations by time t, let Fi(j, t) denote the number of packets that i has

forwarded for player j ∈ N by time t, and let Wi(j, t) denote the total times

of wasted packet transmissions that i has caused to j by time t due to i

dropping those packets that have been transmitted by j. Let tf denote the

lifetime of this network. Then we can model the players’ utility (payoff)

functions as follows:

1. Good players: Since all good players belong to the same authority

and pursue the common goals, they will share the same utility function
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as follows:

Ug(tf ) =

∑
i∈Ng

(
Si(tf )gi − Fi(tf )ci

)
∑

i∈Ng
Ti(tf )

, (5.1)

where

Fi(t) =
∑
j∈N

Fi(j, t). (5.2)

2. Malicious players: Since malicious players are allowed to collude, we

assume they will also share the same utility function, defined as follows:

Um(tf ) =

∑
i∈Nm

(∑
j∈Ng

(Wi(j, tf ) + Fj(i, tf ))cj − αFi(tf )ci

)

tf
. (5.3)

Here parameter α is introduced to determine the relative importance

of attackers’ cost comparing to good players’ cost. That is, from the

attackers’ point of view, it is worth spending cost c to cause the damage

worth c′ to good players as long as α < c′
c
.

The objective of good players is to maximize Ug, while the objective of

attackers is to maximize Um. If the game will be played for an infinite

duration, then their utility functions will become Ug = limt→∞ Ug(t) and

Um = limt→∞ Um(t), respectively.

Remark 1: On the right-hand side of (5.1), the numerator denotes the net

profit (i.e., total gain minus total cost) that the good nodes obtained, and the

denominator denotes the total number of packets that good nodes need to send.

The utility function (5.1) represents the average net profit that good nodes can

obtain per packet that needs to be delivered. Since good nodes do not have any

prior knowledge of the other nodes’ types, each good node may not know its exact

payoff by time t, which introduce extra difficulty for optimal strategy design.

Remark 2: In (5.3), Wi(j, t)cj represents the total damage (or wasted energy)

that i has caused to j by time t due to i launching dropping packets attacks,
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Fj(i, t)cj represents the total damage that i has caused to j by time t due to i

launching injecting traffic attacks, and Fi(t)ci represents the total cost incurred to

i by launching both injecting traffic and dropping packets attacks by time t. In

summary, the numerator of the right-hand side of (5.3) represents the net damage

that the attackers caused to the good nodes. Since this value may increase mono-

tonically, it is normalized by dividing the network lifetime tf . Now this utility

function represents the average net damage that the attackers cause to the good

nodes per time unit. From (5.3) we can see that in this game setting the attackers’

goal is to waste the good nodes’ energy as much as possible. Alteratively, attackers

can also have other types of goals, such as minimizing the good nodes’ payoff. In

Section 5.3 we will show that the performance of the proposed defending strategy

is not sensitive to the attackers’ specific goal, and in most situations maximizing

(5.3) has the same effect as minimizing the good nodes’ payoff under the proposed

defending strategies.

Remark 3: The above game can be divided into many subgames as explained

below. Once a player wants to send a packet to a certain destination, a subgame

will be initiated which consists of three stages: in the first stage, the source will

request some players to be on a certain route to the destination; in the second

stage, the source will decide whether it should use this route to send the packet;

in the third stage, each relay will decide whether it should help the source to

forward this packet once receiving it. We refer to each subgame as a single routing

and packet forwarding subgame. It is worth noting that a subgame may terminate

immediately after finishing the first or the second stage.

To simplify our illustration, we assume that gi = g for all i ∈ Ng and ci = c

for all i ∈ N . Like many other routing protocols for ad hoc networks, in the
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above game, the maximum number of hops per route will be upper-bounded by

Lmax, which is a pre-determined system parameter. Without loss of generality, we

assume that (1− pe)
Lmaxg > Lmaxc, otherwise the expected gain may be less than

the expected cost. Since in ad hoc networks energy is usually the most precious

resource, we can directly relate the cost to energy. The physical meaning of gain g

may vary according to specific applications. However, as to be shown in Section 5.3,

as long as g is reasonably large, it will affect the strategy design.

According to the above game model, in each single routing and packet for-

warding subgame, for the initiator of this subgame, its strategy space is {R, NR},
while for each relay node, its strategy space is {(A, F), (A, D), (NA, F), (NA,

D)}. Here (A, F) means that a relay node agrees to be on a certain route in the

route participation stage and will forward the packet from the source in the packet

forwarding stage, (A, D) means that a relay node agrees to be on a certain route

in the route participation stage but will drop the packet from the source in the

packet forwarding stage, (NA, F) means that a relay node does not agree to be on a

certain route but will forward the packet from the source in the packet forwarding

stage, and (NA, D) means that a relay node does not agree to be on a certain

route and will drop the packet from the source in the packet forwarding stage.

In the above game we have assumed that some necessary monitoring mecha-

nisms will be launched to detect possible packet dropping. We have also assumed

that when a node transmits a packet, its neighbors can know who is the source

of this packet and who is currently transmitting this packet. However, we do not

assume any perfect monitoring, and each node makes its decision only based on

local private and imperfect observation. In general, pf , pm, and ps are determined

by the underlying monitoring mechanism. We assume that pe, pf and pm can be
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Figure 5.1: A single routing and packet forwarding subgame.

known or estimated by each node, but ps may not be known by those detectors.

5.2 Defense Strategies with Statistical Attacker

Detection

We first briefly study a simple subgame with complete type information and perfect

observation: P1 requests P2 to forward a packet to P3 through the route “P1 →
P2 → P3”, and P2 has agreed to be on this route, as illustrated in Fig. 5.1. Since the

type information is complete, all players know each other’s type. This is a two-stage

extensive game with P1 moving first. If P1’s action is NR, then the game will be

terminated immediately, otherwise P2 will take its action accordingly. The payoff

profiles for this game under different scenarios are shown in Fig. 5.2, where the first

value in each payoff profile corresponds to P1’s payoff and the second corresponds

to P2’s payoff. Based on the types of P1 and P2, there are four different scenarios:

• Scenario 1: P1 is good and P2 is bad. Then the only Nash equilibrium is

(NR, D) with payoff profile (0, 0).

• Scenario 2: P1 is bad and P2 is good. Then the only Nash equilibrium is

(NR, D) with payoff profile (0, 0).

• Scenario 3: Both players are good. In this scenario, if g > 2c, the only Nash

equilibrium is (R, F) with payoff profile (g − 2c, g − 2c); if g < 2c, the only
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Nash equilibrium is (NR, F) with payoff profile (0, 0); while if g = 2c, there

are two Nash equilibria (NR, F) and (R, F), both have the same payoff profile

(0, 0).

• Scenario 4: Both players are bad. Then the only Nash equilibrium is (NR,

D) with payoff profile (0, 0).

Based on the above analysis we can conclude that in a two-hop subgame with

complete type information:

1. A good node should neither forward any packet for attackers nor request any

attackers to forward packets. Meanwhile, good nodes should always forward

packets for other good nodes provided g > 2c.

2. A malicious node should not forward any packet and should not request other

nodes to forward packets.

This can be easily generalized to the multi-hop scenario, that is, no good nodes

should work with malicious nodes.

However, defending against insider attacks in realistic scenarios is much more

challenging due to the following reasons. First, good nodes cannot know who are

attackers a priori. Second, owing to noise, decision execution may not be perfect.

Third, monitoring errors will be very common because of the fully distributed

nature and limited available resources. Consequently, the attackers can easily take

advantage of such information asymmetry and imperfectness to cause more damage

and to avoid being detected.

To handle incomplete type information, certain attacker detection mechanisms

should be applied. In general, one can base on what being observed to detect

malicious behavior. For example, if a node has agreed to forward a packet but
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Figure 5.2: The payoff profiles under different scenarios.

later drops it, other nodes (either its neighbor or the source of the packet) who

has observed this inconsistency (i.e., agreeing to forward but dropping) can mark

this node as malicious. If there is no decision execution error and the observation

is perfect, such method can detect all intentional packet dropping.

However, noise always exists and the monitoring is impossible to be perfect.

Under such realistic circumstances, detecting malicious behavior will become ex-

tremely hard due to that an observed misbehavior may either be caused by inten-

tion, or by unintentional execution error, or simply due to observation error. Now

a node should not be marked as malicious just simply because it has been observed

dropping some packets. Accordingly, the attackers can take advantage of noise and

observation errors to cause more damage without being detected.
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5.2.1 Statistical Dropping Packet Attack Detection

To combat insider attacks under noise and imperfect observation, we first study

what should be normal observation when no attackers are present. In this case,

when a node has made a decision to forward a packet (i.e., decision F), the probabil-

ity pF that the outcome observed by the source is also forwarding can be calculated

as follows:

pF = (1− pe)(1− pf ) + pepm. (5.4)

Let Ri(j, t) denote the number of times that node j has agreed to forward for

node i by time t, and F̃j(i, t) denote the number of times that i has observed that j

has forwarded a packet for it by time t. Based on the Central Limit Theorem [49],

for any x ∈ R+ we can have

lim
Ri(j,t)→∞

Prob

(
F̃j(i, t)−Ri(j, t) · pF√
Ri(j, t) · (1− pF ) · pF

≥ −x

)
= Φ(x), (5.5)

where

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt. (5.6)

In other words, when Ri(j, t) is reasonably large, F̃j(i, t) − Ri(j, t)pF can be ap-

proximately modeled as a Gaussian random variable with mean 0 and variance

Ri(j, t)pF (1− pF ).

Let isDPAi(j) denote i’s belief about whether j has launched dropping packets

attack, where isDPAi(j) = 1 indicates that i believes j has launched dropping

packets attack, while isDPAi(j) = 0 indicates that i believes j has not launched

dropping packets attack. Let Bth be a reasonably large constant (e.g., 200). Then

the following hypothesis testing rule can be used by i to judge whether j has
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maliciously dropped its packets:

isDPAi(j) =





1 if F̃j(i, t) < Ri(j, t)pF − x
√

Ri(j, t)pF (1− pF ) and Ri(j, t) > Bth

0 otherwise.

(5.7)

If (5.7) is used to detect dropping packets attack, the false alarm ratio would be

no more than 1 − Φ(x). It is worth mentioning that even for a small positive x,

the value of Φ(x) can still approach to 1 (e.g, Φ(5) > 0.999).

5.2.2 Statistical Injecting Traffic Attack Detection

In Section 5.2.1 we focus on dropping packets attacks. Attackers can also try to

inject an overwhelming amount of traffic to waste the good nodes’ resources. Let

isITAi(j) denote i’s belief about whether j has launched injecting traffic attack,

where isITAi(j) = 1 indicates that i believes j has launched injecting traffic

attack, while isITAi(j) = 0 indicates that i believes j has not launched injecting

traffic attack. Let T̃j(t) denote the number of packets that have been injected by

j and have been observed by those nodes who know j’s legitimate traffic injection

rate. Then a simple detection rule can be as follows:

isITAi(j) =





1 if T̃j(t) > fj(t)

0 otherwise.
(5.8)

Under this detection rule, the maximum number of packets that attacker j can

inject without being detected will be no more than fj(t)/(1− ps). This detection

rule is very conservative since only those observed packet injection events are used.

If ps can also be known by good nodes, we can modify (5.8) to further limit the

number of packets that j can inject without being marked as malicious, such as

changing the threshold from fj(t) to
fj(t)

1−ps
. Since ps is usually not known and may
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change across different nodes, in this chapter when performing injecting traffic

attack detection, we will not incorporate ps into the detection rule.

The detection rule (5.8) can work well only when no retransmission is allowed.

Next we show how to detect injecting traffic attack when retransmission is allowed

upon unsuccessful delivery. We first make a simple assumption that all selected

routes have the same number of hops, denoted by L, and let q = (1 − pe)
L.

Then for each packet, the total number of tries needed to successfully deliver

this packet to its destination can be modeled as a geometric random variable

with mean 1
q

and variance 1−q
q2 . For any node j ∈ N , if ps = 0 and j has never

intentionally retransmitted a packet that has been successfully delivered to its

destination, according to the Central Limit Theorem, for any x ∈ R+ we should

have

lim
T̂j(t)→∞

Prob

(
T̃j(t)− Tj(t)/q√
Tj(t)(1− q)/q2

≤ x

)
= Φ(x). (5.9)

In other words, when T̃j(t) is reasonably large, T̃j(t) − Tj(t)/q can also be ap-

proximately modeled as a Gaussian random variable with mean 0 and variance

Tj(t)(1− q)/q2. Then a modified detection rule can be as follows:

isITAi(j) =





1 if T̃j(t) >
fj(t)

q
+

x
√

fj(t)(1−q)

q
and T̃j(t) > Bth

0 otherwise.
(5.10)

Similarly, when the above detection rule is used, the false alarm ratio would be

no more than 1 − Φ(x). In this case, the number of packets that attacker j can

inject without being marked as malicious is upper-bounded by
fj(t)+x

√
fj(t)(1−q)

q(1−ps)
.

Comparing to the case that no retransmission is allowed, when retransmission is

allowed, attackers can inject more packets without being detected, though good

nodes can also enjoy higher throughput.

In general the number of hops per selected route varies according to the loca-
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tions of the source and destination and the network topology. Let L̄min denote the

average number of hops per selected route. When calculating q used in (5.10), an

alternative way is to let q = (1−pe)
L̄min . However, this may lead to higher false pos-

itive probability since some nodes may experience longer routes due to their loca-

tions. In this chapter we adopt a more conservative way by letting q = (1−pe)
Lmax .

As a consequence, even when ps = 0, the resulted false positive probability will

be far less than 1−Φ(x), with the penalty that the attackers can also inject more

packets without being detected. For example, for Lmax = 10, L̄min = 4, pe = 0.02,

the extra increase would be about 12.9% (i.e., (1− pe)
L̄min−Lmax − 1). Accordingly,

the good nodes’ payoff will also be decreased.

5.2.3 Secure Routing and Packet Forwarding Strategy

Based on the above analysis, we can arrive at the following strategy to secure

routing and packet forwarding in cooperative ad hoc networks under noise and

imperfect monitoring:

Secure Routing and Packet Forwarding Strategy: In the secure routing and

packet forwarding game under noise and imperfect monitoring, initially each good

node will assume all other nodes are good. For each single routing and packet

forwarding subgame, assuming that P0 is good and is the source who wants to

send a packet to Pn at time t, and a route “P0 → P1 → · · · → Pn” has been

discovered by P0. After P0 has sent requests to all the relays on this route asking

them to participate, for each good node on this route the following strategies should

be taken in different stages:

1. In the route participation stage: A good relay Pi takes action A if and only

if no nodes on this route have been marked as malicious and n ≤ Lmax;
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otherwise, it takes NA.

2. In the route selection stage: P0 will take action R if and only if all the

following conditions can be satisfied: a) the packet is valid (i.e., it is scheduled

to be sent by P0), b) n ≤ Lmax, c) no nodes on this route have been marked

as malicious by P0, d) all relays have agreed to forward packets in the route

participation stage, and e) this route has the minimum number of hops among

all good routes to Pn known by P0; otherwise, P0 should take action NR.

3. In the packet forwarding stage: For each relay Pi, it will take action F if

and only if it has agreed to be on this route in the route participation stage;

otherwise, it should take action D.

Let x be a positive constant. For any node j, it will be marked as malicious by node

i if it has been detected by any following rules: (5.7), (5.8) if retransmission is not

allowed, and (5.10) if retransmission is allowed, where in (5.10) q = (1− pe)
Lmax.

Meanwhile, node j will also be marked as malicious if it has requested to send a

packet through a route with the number of hops greater than Lmax.

In the above defense strategy, each good node needs to know or estimate the

following parameters: pe, pf , pm, and Lmax. Meanwhile, it also needs to set the

two constants that are used in (5.7) and (5.10): Bth and x. Lmax is a system-

level parameter and is known by all nodes in the network. The packet dropping

probability pe can be either trained off-line, or estimated online by each node

through evaluating its own packet dropping ratio. In general different node may

experience different pe at different time or location. Under such circumstances,

to reduce the false positive when performing attacker detection using (5.7) and

(5.10), a node may set pe to be a little bit larger than the one experienced by itself.

The two observation error related parameters pf and pm can be provided by the
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underlying monitoring mechanism. Similarly, different node may also experience

different pf and pm at different situations. Therefore, when a node uses (5.7) to

perform attacker detection, to limit the false positive, it may use the upper-bounds

of pf and pm provided by the underlying monitoring mechanisms. The effects of

these parameters will be further studied in later sections.

5.2.4 Attacking Strategy

Since this chapter focuses on insider attackers, it is reasonable to believe that

attackers can know the defending strategies employed by the system. This can

be regarded as the worst-case scenario from the defenders’ point of view. In other

words, if the proposed defending strategy can work well in this scenario, it can also

work well in any scenarios. This subsection studies what strategies the attackers

should use to maximize their utility (or the damage to the network) when the

proposed secure routing and packet forwarding strategy is used by the good nodes.

We first study dropping packets attack. According to the proposed secure

routing and packet forwarding strategy, once a node i has been marked as malicious

by another node j, i will not be able to cause damage to j again. Therefore, an

attacker should avoid being detected in order to continuously cause damage to the

good nodes. One simple strategy is to always apply the strategy (A, D). However,

when applying this strategy, the maximum number of good nodes’ packets that an

attacker can drop without being detected will be no more than |Ng| · Bth, while

the penalty is that it will be detected as malicious and cannot cause damage to

the good nodes any more.

Intuitively, attackers can selectively drop packets to avoid being detected and

still cause continuous damage to good nodes. According to the proposed secure
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routing and packet forwarding strategy, the number of a good node i’s packets that

an attacker j can drop without being detected is upper-bounded by npe+
x
√

n
1+pm−pf

3,

where n is the number of packets that j has agreed to forward for i. In other

words, j has to forward at least n(1 − pe) − x
√

n
1+pm−pf

packets for i in order to

avoid being marked as malicious. However, recall that even there are no attackers,

in average n(1 − pe) packets will be dropped due to noise. That is, the extra

number of i’s packets that j can selectively drop without being detected is upper-

bounded by x
√

n
1+pm−pf

, while the cost needed to forward packets for j is at least

n(1− pe)c− x
√

n
1+pm−pf

c. Since we have limn→∞
x
√

n
1+pm−pf

n(1−pe)
= 0, selectively dropping i’s

packets can bring almost no gain to j if the game will be played for long enough

time.

According to the secure routing and packet forwarding strategy, a good node

will not start performing dropping packet attack detection before having enough

interactions with another node (e.g., Bth). Therefore, the following dropping packet

attack strategy can be used by an attacker j when acting as relay nodes: for each

good node i, it can drop the first Bth − 1 i’s packets by playing (A, D), then start

playing (NA, D) forever. With this strategy, the damage that j can cause to i is

upper-bounded by Bthc without introducing any cost to j. It is easy to see that

the relative damage (normalized by time) Bthc
tf

decreases monotonically with the

increase of the network lifetime tf .

Until now we have assumed that all nodes will experience the same pe, pf , and

pm. However, such assumption may not hold in general. For example, attackers

may be able to decrease pf and/or increase pm experienced by it. Let p′f and p′m

3It is ready to check that (npe + x
√

n
1+pm−pf

)pm + (n(1 − pe) − x
√

n
1+pm−pf

)pf = npF − x
√

n <

npF − x
√

npF (1− pF ).
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denote the actual false positive probability and miss probability experienced by an

attacker j. When j tries to drop i’s packets, in order to avoid being detected, the

actual packet drop ratio p′e that j will apply to drop i’s packet should satisfy the

following condition:

(1− p′e)(1− p′f ) + p′ep
′
m > pF − x

√
npF (1− pF )

n
, (5.11)

where n is the number of packets that j has agreed to forward for i. It is easy to

check that to satisfy (5.11) for all possible n, the maximum packet dropping ratio

p′e that j can apply is upper-bounded by

p′e ≤
pe(1− pf − pm) + (pf − p′f )

1− p′f − p′m
(5.12)

From (5.12) we can see that increasing the miss probability p′m and/or decreasing

the false positive probability experienced by j can also increase p′e, and conse-

quently increase the damage to i. Let Lavg denote the average number of wasted

packet transmissions caused by j when it drops i’s packets, according to the payoff

definition (5.3), as long as p′e−pe

1−pe
≤ αLavg, launching dropping packet attack with

p′e can introduce no gain to j. However, if p′e−pe

1−pe
> αLavg, j should launch drop-

ping packet attacks by selectively dropping the good nodes’ packets with dropping

probability calculated based on (5.12).

Now we study injecting traffic attack. According to the secure routing and

packet forwarding strategy, to avoid being marked as launching injecting traffic

attack, an attacker j should be sure that T̃j(t) ≤ fj(t). However, j may not know

the exact value of T̃j(t), and needs to estimate T̃j(t) by itself. Recall that for each

packet injected by j, with probability ps it can avoid being detected. It is readily

to show that T̃j(t)− Fj(j, t)(1− ps) can be approximately modeled as a Gaussian

random variable with mean 0 and variance Fj(j, t)ps(1− ps), where Fj(j, t) is the

total number of packets injected by j until time t.
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Based on the above analysis, when no retransmission is allowed, a good injecting

traffic strategy is as follows: j should try to limit the number of injected packets

Fj(j, t) to satisfy the following condition:

Fj(j, t)(1− ps) + y
√

Fj(j, t)ps(1− ps) < fj(t), (5.13)

where y is a large positive constant. By using this strategy, the probability that j

will be detected is upper-bounded by 1−Φ(y). When retransmission is allowed, ac-

cording to the secure routing and packet forwarding strategy, the condition should

be changed as follows:

Fj(j, t)(1− ps) + y
√

Fj(j, t)ps(1− ps) <
fj(t) + x

√
fj(t)(1− q)

q
, (5.14)

where y is a large positive constant and x and q are defined in the secure routing

and packet forwarding strategy.

In summary, we can arrive at the following attacking strategy, referred to as

optimal attacking strategy:

1. Dropping packet attack: For any attacker j, if the maximum possible p′e

calculated using (5.12) is larger than pe and p′e−pe

1−pe
≤ αLavg, it should try

to selectively drop the good nodes’ packets with probability p′e; otherwise, it

should apply the following strategy: for any good node i, j should try to drop

the first Bth − 1 i’s packets by playing (A, D), then start playing (NA, D)

forever when acting as relay node for i.

2. Injecting traffic attack: For any attacker j, if no retransmission is al-

lowed, it should try to inject traffic by following (5.13); otherwise, it should

try to inject traffic by following (5.14). Meanwhile, when j has decided to

inject a packet, it should pick a route with the following properties: a) the
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number of hops is no more than Lmax, b) all relays are good nodes, c) among

all the routes known by j which satisfy (a) and (b), this route has the maxi-

mum number of hops.

5.3 Optimality Analysis

In this section we analyze the optimality of the proposed strategy profile, where all

good nodes follow the strategy described in Section 5.2.3 and all attackers follow

the strategy described in Section 5.2.4. We will focus on the worst-case scenario

from the good nodes’ point of view: when a malicious node wants to send a packet

to another node, it can always find a route with Lmax hops and all relay nodes

being good. This also is the best-case scenario from the attackers’ point of view.

We focus on the scenario that all nodes experience the same pe, pf , and pm. The

scenario that different node will experience different pe, pf , and pm will be discussed

at the end of this section.

Theorem 5.3.1 In the secure routing and packet forwarding game in noiseless

environment with perfect observation (i.e., pe = pf = pm = ps = 0), the proposed

strategy profile with Bth = 1 form a Nash equilibrium.

Proof To show that the proposed strategy profile forms a Nash equilibrium, we

only need to show that no player can increase its payoff by unilaterally changing

its own strategy:

• P0’s actions when it is good: According to the secure routing and packet

forwarding strategy, P0 will take action R if and only if 1) the packet to

be sent is valid, 2) n ≤ Lmax, 3) no nodes on this route have been marked

as malicious by P0, 4) all relay nodes have agreed to be on this route, and
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5) this route has the minimum cost among all good routes to Pn known by

P0. First, if P0 takes action R when the packet to be sent is not valid, the

good nodes’ payoff cannot be increased, or may even be decreased. Second,

if P0 takes action R when n > Lmax, P0 will be marked as malicious by

other good nodes and cannot send any packets again, which will decrease

the good nodes’ payoff. Third, if P0 takes action R when some nodes have

been marked as malicious by P0 or some nodes do not agree to be the route,

then the packet will be dropped by a certain relay node, and consequently

all cost spent to transmit this packet will be wasted, and the good nodes’

payoff will be decreased. Fourth, if P0 takes action R when the selected route

does not have the minimum cost among all good routes to Pn known by P0,

then comparing to the situation that the good route with the minimum cost

is used, some extra cost will be wasted if this route is used instead, which

will decrease the good nodes’ payoff. Finally, if all the above conditions are

satisfied but P0 takes action NR, the good nodes’ payoff will not increase

too, since not sending the packet or sending the packet using non-minimum

cost route can bring no gain or can only bring less gain.

• P0’s decision when it is malicious: According to the optimal attacking

strategy, P0 will take action R if and only if 1) FP0(P0, t) < fP0(t), 2) n =

Lmax, 3) all relay nodes are good, and 4) all relay nodes have agreed to be on

this route. First, if P0 takes action R when FP0(P0, t) ≥ fP0(t) or n > Lmax,

P0 will be marked as malicious by good nodes and cannot inject any packets

again, which will surely decrease the attackers’ payoff. Second, if P0 takes

action R when n < Lmax or some relay nodes are malicious or some relay

nodes do not agree to be on this route, since P0 can always find a route with
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Lmax hops and with all relay nodes being good, using a suboptimal route

surely cannot increase P0’s attack efficiency. Third, if all those conditions

are satisfied but P0 takes action NR, since the maximum possible damage

that can be caused by each packet injecting is (Lmax − 1)c, the attackers’

payoff cannot be further increased either.

• Pi’s decision (0 < i < n) when it is good: According to the secure routing

and packet forwarding strategy, Pi will take action (A, F) if all the other

nodes on this route have not been marked as malicious by it and n ≤ Lmax;

otherwise, it will take action (NR, D). When no nodes on this route have

been marked as malicious by it and n ≤ Lmax, since refusing to be on this

route may cause the source to select a route with higher cost and dropping

packet will waste other good nodes’ cost, both will cause Pi’ payoff to be

decreased. When some nodes on this route have been marked as malicious

by Pi or n > Lmax, if Pi agrees to be on this route or does not drop the

packet, since the packet will finally be dropped by malicious node, all effort

that has been spent by good nodes in this subgame will be wasted, which

surely cannot increase Pi’s payoff either.

• Pi’s decision (0 < i < n) when it is malicious: According to the optimal

attacking strategy, Pi will always take action (NA, D). We first consider

the situation that P0 is good. If Pi takes action (A,D), it will be detected

as malicious immediately and cannot cause damage to P0 any more, which

surely cannot increase the attackers’ payoff. If Pi takes action (A,F ), this

can only contribute to good nodes by helping good nodes forward packets,

and cannot increase the attackers’ payoff. Meanwhile, taking action (NA, F )

surely cannot cause damage to the good nodes, since good nodes will not use
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Pi to forward packets. Now let’s consider the situation that the initiator P0

is malicious. It is also easy to check that taking action (NA, D) is always

a best strategy from the malicious nodes’ point of view since P0 can always

find a better route, that is, a route with Lmax hops and with all relay nodes

being good.

Based on the above analysis we can see that no player can increase its payoff

by unilaterally changing its own strategy.

Now we analyze nodes’ possible payoff under the proposed strategy profile.

Let favg
i =

fi(tf )

tf
when tf is finite, and favg

i = limt→∞
fi(t)

t
when tf is infinite.

According to the secure routing and packet forwarding strategy, a good node will

not work with any node that has been marked as malicious by itself. First, as we

have shown in Section 5.2.4, playing (A, D) cannot increase the attackers’ payoff

provided tf is infinite. Second, it is easy to see that playing (NA, F) and (A, F)

cannot increase the attackers’ payoff either, since when an attacker plays (NA, F),

no good nodes will request it to forward packets, while when an attacker plays

(A, F), it can only make contribution to the good nodes. Third, when an attacker

tries to inject packets, similar to the analysis in the proof of Theorem 5.3.1, it

should always use the route with all relay nodes being good and having agreed

to be on the route. Meanwhile, from an attacker’s point of view, injecting more

packets than specified will make it to be marked as malicious and cannot cause any

more damage to the good nodes, and consequently decrease its payoff. Therefore,

when no retransmission is allowed, based on (5.3), the attackers’ payoff will be
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upper-bounded by

Um ≤ lim
tf→∞

1

tf

∑
i∈Nm

(
fi(tf )

1− ps

(Lmax − 1− α)c + |Ng|BthLavgc

)

=
∑
i∈Nm

favg
i

1− ps

(Lmax − 1− α)c. (5.15)

Here
fi(tf )

1−ps
is the number of packets that attacker i can inject to the network by

time tf without being marked as malicious, (Lmax − 1)c is the maximum possible

damage that can injected packet can cause to good nodes, αc is the cost incurred

to attackers by forwarding a packet, and |Ng|BthLavgc is the damage that j can

caused by launching dropping packet attack.

When retransmission is allowed upon unsuccessful delivery, from the attackers’

point of view, the only difference is that they can inject more packets without

being detected. Now the attackers’ payoff will be upper-bounded by

Um ≤ lim
tf→∞

1

tf

∑
i∈Nm

(
fi(tf )

(1− ps)q
+

x
√

fi(tf )(1− q)

q

)
(Lmax − 1− α)c

+ lim
tf→∞

|Nm||Ng|BthLavgc

tf

=
∑
i∈Nm

favg
i

(1− ps)q
(Lmax − 1− α)c (5.16)

Now we analyze the good nodes’ payoff. Recall that L̄min denotes the aver-

age number of hops among those routes selected by good nodes. We first con-

sider the situation that the environment is noisy and no retransmission is al-

lowed. In this case, some good nodes’ packets will be dropped due to noise, and

limt→∞
Si(t)
Ti(t)

= (1− pe)
L̄min . According to (5.1), for each i ∈ Ng, Fi(t) comes from

two parts: forwarding packets for the good nodes and forwarding packets for the at-

tackers. The total number of packets that the good nodes have forwarded for them-

selves is
∑

i∈Ng
Ti(t)L̄min by time t, and the total number of packets that the good
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nodes have forwarded for the attackers is no more than
∑

i∈Nm

fi(t)
(1−ps)

(Lmax − 1).

Meanwhile, for any given positive value x adopted in the secure routing and packet

forwarding strategy, the overall false positive probability will be upper-bounded

by 1−Φ(x), that is, at most 1−Φ(x) percentage of good nodes will be mistakenly

marked as malicious. Let T avg
i =

Ti(tf )

tf
when tf is finite and T avg

i = limt→∞
Ti(t)

t

when tf is infinite. Then the good nodes’ payoff will be lower-bounded by

Ug ≥ lim
t→∞

∑
i∈Ng

(Si(t)g − Ti(t)L̄minc)−
∑

j∈Nm

fj(t)

(1−ps)
(Lmax − 1)c∑

i∈Ng
Ti(t)

= Φ(x)g(1− pe)
L̄min −

(
L̄min +

∑
j∈Nm

favg
j · (Lmax − 1)

(1− ps)
∑

j∈Ng
T avg

i

)
c. (5.17)

When the environment is noiseless or when the retransmission is allowed,

all good nodes’ packets can be successfully delivered to their destinations with

limt→∞
Si(t)
Ti(t)

= 1 for i ∈ Ng. Meanwhile, the total number of packets that the good

nodes have forwarded for themselves by time t is no more than
∑

i∈Ng

Ti(t)

(1−pe)L̄min
L̄min,

and the total number of packets that the good nodes have forwarded for the at-

tackers is no more than
∑

i∈Nm

fi(t)
q(1−ps)

(Lmax−1). Thus in this case the good nodes’

payoff can be lower-bounded by

Ug ≥ Φ(x)g −
(

L̄min

(1− pe)L̄min
+

∑
j∈Nm

favg
j · (Lmax − 1)

q(1− ps)
∑

j∈Ng
T avg

i

)
c. (5.18)

On the other hand, when the proposed optimal attacking strategy is used by

attackers, from the good nodes’ point of view, when no retransmission is allowed,

the maximum possible payoff can also be upper-bounded by

Ug ≤ g(1− pe)
L̄min −

(
L̄min +

∑
j∈Nm

favg
j · (Lmax − 1)

(1− ps)
∑

j∈Ng
T avg

i

)
c. (5.19)

While when retransmission is allowed, the maximum possible payoff can also be

upper-bounded by

Ug ≤ g −
(

L̄min

(1− pe)L̄min
+

∑
j∈Nm

favg
j · (Lmax − 1)

q(1− ps)
∑

j∈Ng
T avg

i

)
c. (5.20)
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From the above payoff analysis we can see that the good nodes’ payoff can be

lower-bounded by certain value, no matter what strategies the attackers use and

what kind of goals the attackers have. In other words, the attackers’ goal has

little effect on good nodes’ payoff when the proposed secure routing and packet

forwarding strategy is used by good nodes. From the above payoff analysis we can

also see that as long as the gain g is reasonably large, it will not play an important

role in the strategy design.

Theorem 5.3.2 In the infinite duration secure routing and packet forwarding

game under noise and imperfect observation, the proposed secure routing and packet

forwarding strategy is asymptotically optimal from the good nodes’ point of view in

the sense that for any ε > 0, we can always find a x∗ > 0 such that no other

equilibrium strategies can further increase the good nodes’ payoff by more than ε

as long as the attackers also play optimally.

Proof We first consider the situation that no retransmission is allowed. Based on

the above analysis we can see that from the attackers’ point of view, to maximize

their payoff, the optimal attacking strategy is to inject no more packets to the net-

work than they are allowed and will not forward any packet for the good nodes. In

this case the good nodes’ maximum possible payoff is defined in (5.19). According

to (5.17), the difference between the actual payoff and maximum possible payoff is

(1− Φ(x))(1− pe)
L̄ming. Since Φ(x) → 1 as x →∞, for any ε > 0, we can always

find a constant x∗ such that the actual payoff is within ε of the maximum possible

payoff. Similarly, we can also prove this under the situation that retransmission is

allowed.

Theorem 5.3.3 In the infinite duration secure routing and packet forwarding
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game, the proposed strategy profile is strongly Pareto optimal4.

Proof To show the proposed strategy profile is strongly Pareto optimal, we only

need to show that no other strategy profiles can further increase some players’

payoff without decreasing any other player’s payoff.

We first show that the good nodes’ payoff cannot be further increased without

decreasing the attackers’ payoff. According to (5.17), to further increase the good

nodes’ payoff, one can either decrease L̄min, or decrease favg
j . First, since the

minimum-hop routes have been used, L̄min cannot be further decreased. Second,

according to (5.3) and (5.15), decreasing favg
j always decreases the attackers’ payoff.

Next we show that the attackers’ payoff cannot be further increased without

decreasing the good nodes’ payoff. According to (5.3), to increase the attackers’

payoff, one can either try to increase
∑

i∈Nm,j∈Ng
Wi(j, t) and

∑
i∈Nm,j∈Ng

Fj(i, t),

or try to decrease
∑

i∈Nm
Fi(t). First,

∑
i∈Nm,j∈Ng

Fj(i, t) comes completely from

injecting traffic attacks, which has been maximized and cannot be further in-

creased. Since
∑

i∈Nm,j∈Ng
Wi(j, t) comes from launching dropping packet attacks,

increasing
∑

i∈Nm,j∈Ng
Wi(j, t) will also decrease the good players’ payoff. Now we

consider
∑

i∈Nm
Fi(t). According to the above packet forwarding strategy, attacker

i will not forward packets for others, so Fi(t) comes totally from transmitting pack-

ets for itself. Therefore, Fi(t) cannot be further decreased without decreasing the

attackers’ payoff.

4A strategy profile is said to be Pareto optimal if there is no other strategy profile which

can simultaneously increase all players’ payoff; a strategy profile is said to be strongly Pareto

optimal if there is no other strategy profile which can increase at least one player’ payoff without

decreasing any other players’ payoff [64].
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Until now we have focused on the scenario that pe, pf , and pm keep being the

same for all nodes at all times. However, as we have mentioned, this may not hold

in general. Next we study the consequence when different nodes may experience

different pe, pf , and pm. First, from the good nodes’ point of view, such variation

may increase false positive probability when performing attacker detection. For

example, for a node experiencing lower packet dropping ratio, when it uses this

ratio to perform dropping packet attacker detection, with much higher probability

those nodes experiencing higher packet dropping ratio can be mistakenly marked

as malicious (e.g., higher than 1− Φ(x)). As mentioned in Section 5.2.3, to avoid

high false positive probability, a good node may need to set a higher pe than the

one experienced by itself when performing attacker detection. Meanwhile, a good

node may also need to increase Bth and x to handle possible bursty packet dropping

effect, which is normal in wireless networks due to fading. Similarly, when nodes

experience different pf and pm, a good node may need to use the upper-bounds

of pf and pm to avoid high false positive probability when performing attacker

detection. As a penalty, these variations can be taken advantage of by attackers

to inject more packets and drop more packets without being marked as malicious,

which consequently leads to the decrease of good nodes’ performance. However,

our simulation studies indicate that even in such realistic scenarios, the proposed

secure routing and packet forwarding strategy can still work very well.

5.4 Simulation Studies

We have conducted a series of simulations to evaluate the performance of the pro-

posed strategies in both static and mobile ad hoc networks. In each ad hoc network,

nodes are randomly deployed inside a rectangular area of 1000m × 1000m. For
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Table 5.1: Mobility patterns

Pattern 1: vmax = 10m/s, vmin = 1m/s, pause time = 500 s

Pattern 2: vmax = 15m/s, vmin = 5m/s, pause time = 300 s

Pattern 3: vmax = 15m/s, vmin = 5m/s, pause time = 100 s

Pattern 4: vmax = 30m/s, vmin = 10m/s, pause time = 100 s

mobile ad hoc networks, nodes move randomly according to the random waypoint

model. The following physical layer model is used: two nodes can directly com-

municate with each other only if they are in each other’s transmission range, but

it can be easily extended to more realistic model where the error probability is a

function of distance. Based on the above models, the static ad hoc networks can be

regarded as the noiseless case, while the mobile ad hoc networks can be regarded

as the noisy case where the decision execution error (i.e., the decision is F but the

outcome is D) is only caused by link breakage. For each node, the transmission

power is fixed, and the maximum transmission range is 200m.

In the simulations, each good node will randomly pick another good node as the

destination. Similarly, each attacker will also randomly pick another attacker as

the destination. In both cases, packets are scheduled to be sent to this destination

according to a constant rate. The total number of good nodes is set to be 100

and the total number of attackers varies from 0 to 40. For each good or malicious

node, the average packet inter-arrival time is 1 second, that is, Ti(t) = btc for any

time t and any node i ∈ N . Further, each good node i ∈ Ng will set fi(t) = btc+2

for any other node i ∈ N . All data packets have the same size.

Since the link breakage ratio pe plays an important role in the strategy design,

we first study the characteristics of link breakages in mobile ad hoc networks

under different mobility patterns. In this set of simulations only good nodes will
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Figure 5.3: The average link breakage ratio in mobile ad hoc networks
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Figure 5.4: The evolution of pe in mobile ad hoc networks

be considered. For each node, the average link breakage ratio experienced by it is

calculated as the ratio between the total number of link breakages it experienced

as the transmitter and the total number of packet transmissions it has tried as the

transmitter. The total simulation time is 30000s. Fig. 5.3 shows the link breakage

ratios experienced by different nodes under four different mobility patterns listed in

Table 5.1. First, from these results we can see that the average link breakage ratio

will change under different mobility patterns. Second, under the same mobility

pattern, the average link breakage ratio experienced by each node is almost the

same.

Fig. 5.4(a)-(c) show the evolution of the average link breakage ratios over time
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when mobility pattern 4 is used. In this set of simulations, 2 nodes are randomly

selected among the 100 nodes in the network. Fig. 5.4(a) shows the link breakage

ratio averaged over every 100 seconds, Fig. 5.4(b) shows the link breakage ratio

averaged over every 1000 seconds, and Fig. 5.4(c) shows the accumulated average

link breakage ratio. From these results we can see that the link breakage ratio

experienced by each node may vary dramatically in a short period, but will become

stable in a long period. These results suggest that when performing attacker

detection, if tf is not large enough, pe should be set higher than the long-term

average to avoid high false positive probability, while if tf is large or goes to

infinity, the average link breakage ratio can be used when performing attacker

detection, with a reasonably large Bth.

Now we study the performance of the proposed strategies in different scenarios.

We use “noiseless scenario” to denote static ad hoc networks, and use “noisy

scenario” to denote mobile ad hoc networks. In both cases, all good nodes follow

the secure routing and packet forwarding strategy described in Section 5.2.3, and all

(insider) attackers follow the optimal attacking strategy described in Section 5.2.4

with the only modification being that no attacker will intentionally drop packets.

The total simulation time tf is set to be 10000 seconds, and all results are averaged

over 20 independent rounds. The following parameters are used: g = 20, c = 1,

α = 1, Lmax = 10, pf = 0.05, pm = 0.05, ps = 0.05. The acceptable false alarm

ratio is set to be 0.1%. For mobile ad hoc networks, the mobility pattern 4 listed

in Table 5.1 is used. Since tf is not very large, pe is set to be 3%, which is obtained

through off-line training. For static ad hoc networks, we focus on the case that the

attackers can always find routes with Lmax hops to inject packets. For mobile ad

hoc networks, four scenarios are considered, as listed in Table 5.2, and DSR [47] is
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Table 5.2: Noisy scenarios

Scenario 1: Retransmission is allowed, and attackers can always find a Lmax-

hop route with all relays good.

Scenario 2: No retransmission is allowed, and attackers can always find a

Lmax-hop route with all relays good.

Scenario 3: Retransmission is allowed, and attackers may not find a Lmax-hop

route with all relays good.

Scenario 4: No retransmission is allowed, and attackers may not find a Lmax-

hop route with all relays good.

used as the underlying routing protocol to perform route discovery. The simulation

results are illustrated in Fig. 5.5.

Fig. 5.5(a) compares the good nodes’ payoff under different scenarios. First,

we can see that when no attackers are present, the noiseless scenario has the

highest payoff, and the noisy scenario 2 & 4 (no retransmission is allowed upon

unsuccessful packet delivery) have the lowest payoff. The reason is that the good

nodes’ payoff is determined not only by their transmission cost, but also by the

packet delivery ratio. Under noisy environments, when no retransmission is allowed

upon unsuccessful packet delivery, the packet delivery ratio will also be decreased,

as illustrated in Fig. 5.5(a), where in this case the packet delivery ratio is only

about 89% (illustrated in Fig. 5.5(c)). Second, we can see that the allowance

of retransmission upon unsuccessful packet delivery can increase the good nodes’

payoff in these scenarios (noisy scenario 1 vs. noisy scenario 3, and noisy scenario

2 vs. noisy scenario 4). However, with the increase of the number of attackers,

the performance gap between the two scenarios (with or without retransmission)

will also decrease (noisy scenario 1 vs. noisy scenario 2, and noisy scenario 3 vs.
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Figure 5.5: Payoff comparison when no attackers will drop packets

noisy scenario 4). Third, in general, noise will decrease the good nodes’ payoff,

however, the noisy scenario 3 can achieve higher payoff than the noiseless scenario

when the attacker number is no less than 30. The reason is that in the noiseless

scenario, attackers can always find Lmax-hop routes, while in the noisy scenario

3, the average hop number per route selected by the attackers is much less than

Lmax, and the caused damage is less than in noiseless scenario.

Fig. 5.5(b) demonstrates the attackers’ payoff under different scenarios. First,

as shown in the case of noisy scenario 3 & 4, when the attackers cannot always use

Lmax-hop routes to inject packets, their payoff will be decreased a lot comparing to

the cases that they can, as shown in the case of noisy scenario 1 & 2. Second, the

allowance of retransmission upon unsuccessful packet delivery can also increase

the attackers’ payoff, since now more packets can be injected by the attackers.

Third, since the attackers’ packets may also be dropped under the noisy scenar-

109



ios, without allowing retransmission, the attackers’ payoff will also be decreased

comparing to the noiseless scenario, as shown by the noisy scenario 2. However,

when retransmission is allowed, comparing to the noiseless scenario, the attackers’

payoff can still be increased even under the noisy scenarios, as illustrated by the

noisy scenario 1.

Finally, Fig. 5.5(d) illustrates the good nodes’ payoff under different g values,

where now only the noisy scenario 3 & 4 are considered. First, from these results

we can see that with the increase of the number of attackers, the performance gap

between these two scenarios will also decrease. The reason is that the attackers

can take advantage of retransmission to cause more damage to the good nodes.

Second, with the decrease of g, the performance gap between these two scenarios

will also decrease. For example, when g = 10 and the number of attackers is 40,

there is almost no difference. In summary, the gain introduced by the allowance of

retransmission becomes less and less with the increase of the number of attackers

or with the decrease of g. However, it is worth mentioning that g does not change

the underlying strategy design as long as it is reasonably large.

Thus far we have only considered the situations that no attackers will intention-

ally drop packets. Next we study the situation when the attackers will also try to

drop the good nodes’ packets. In this set of simulations, three attacking strategies

will be studied: in “attacking strategy 1”, no attackers will intentionally drop the

good nodes’ packets. In “attacking strategy 2”, each attacker will only drop the

first B′
th packets for any good node that has requested it to forward, then will stop

participating route discoveries initiated by that good node, where dropping B′
th

packets will not be detected as malicious. In these simulations, we set B′
th = 20.

In “attacking strategy 3”, each attacker will always keep participating the route
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Figure 5.6: Payoff comparison when some attackers will drop packets

discoveries initiated by the good nodes and will drop the good nodes’ packets in

such a way that it will not be detected as malicious, which can be regarded as

selective dropping.

Fig. 5.6(a) illustrates the good nodes’ payoff under different attacks. First,

comparing to the attacking strategy 1, the attacking strategy 3 even increases the

good nodes’ payoff, though the attackers can drop some good nodes’ packets. The

reason is that when the attacking strategy 3 is used, the attackers also need to keep

forwarding packets for the good nodes, which will increase the number of nodes

that the good nodes can use and reduce the value of L̄min. Since the number of

packets that the attackers can drop without being detected as malicious is very

limited, the extra damage that they can cause is also very limited, and the good

nodes’ payoff will be increased consequently. Second, comparing to the attacking

strategy 1, the attacking strategy 2 can decrease the good nodes’ payoff a little bit

due to the extra number of packets that they have dropped. However, since the

number of packets that the attackers can drop is always bounded, with the increase

of time, the effect of such packet dropping becomes less and less noticeable.
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Fig. 5.6(b) illustrates the attackers’ payoff. First, attacking strategy 2 can in-

crease the attackers’ payoff comparing to attacking strategy 1. The reason is that

the attackers can drop some extra packets without being detected when attacking

strategy 2 is used. However, attacking strategy 3 can dramatically decrease the

attackers’ payoff comparing to attacking strategy 1, the reason is that forward-

ing packets for the good nodes will also incur a lot of cost, while the number of

packets that they can drop without being detected as malicious is very limited. In

summary, from the attackers’ point of view, when the network lifetime is finite,

attacking strategy 2 should be used, while its advantage over attacking strategy 1

is very limited, and will decrease with the increase of network lifetime.

5.5 Summary

In this chapter we have formally investigated how to secure cooperative ad hoc

networks against insider attacks under realistic scenarios. We model the dynamic

interactions between good nodes and attackers in such networks as securing routing

and packet forwarding game. The optimal defense strategies have been devised,

which are optimal in the sense that no other strategies can further increase the

good nodes’ payoff under attacks. The maximum possible damage that can be

caused by the attackers have also been analyzed. By focusing on the worst-case

scenario from the good nodes’ point of view, that is, the good nodes have no prior

knowledge of the other nodes’ types while the insider attackers can know who are

good nodes, the devised strategies can work well under any scenarios. Extensive

simulations have also been conducted, which demonstrate that the proposed de-

fending strategies can effectively secure cooperative ad hoc networks under noise

and imperfect monitoring.
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Chapter 6

Attack-Resistant Cooperation

Stimulation in Autonomous Ad

Hoc Networks

In Chapter 3, Chapter 4, and Chapter 5 we have mainly focused on designing

defense mechanisms to secure cooperative ad hoc networks. From now on we will

focus on designing attack-resistant cooperation strategies for autonomous ad hoc

networks where nodes belong to different authorities and pursue different goals.

In this chapter we will present a reputation-based self-organized system for au-

tonomous ad hoc networks such that cooperation among selfish nodes can be

effectively stimulated even under attacks. This chapter is organized as follows.

Section 6.1 describes the system model and formulates the problem. Section 6.2

describes the proposed ARCS system. Section 6.3 presents the performance anal-

ysis of the system under various attacks. Simulation studies are presented in

Section 6.4. Finally Section 6.5 summarizes the contribution of this chapter.
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6.1 System Model

We consider autonomous ad hoc networks where nodes belong to different au-

thorities and have different goals. We assume that each node is equipped with a

battery with limited power supply, and may act as a service provider: packets are

scheduled to be generated and delivered to certain destinations with each packet

having a specific delay constraint. If a packet can be successfully delivered to its

destination within the specified delay constraint, the source of the packet will get

some payoff, otherwise, it will be penalized.

According to their objectives, the nodes in such networks can be classified into

two types: selfish and malicious. The objective of selfish nodes is to maximize the

payoff they can get using their limited resources, and the objective of malicious

nodes is to maximize the damage that they can cause to the network. Since energy

is usually the most stringent and valuable resource for battery-supplied nodes in

ad hoc networks, we restrict the resource constraint to the energy. However, the

proposed schemes are also applicable to other types of resource constraints. For

each node in the network, the energy consumption may come from many aspects,

such as processing, transmitting, and receiving packets. In this chapter, we focus

on the energy consumed in communication-related activities. We focus on the

situation that all nodes in the network are legitimate, no matter selfish or malicious.

Before formulating the problem, we first introduce some notations to be used,

as listed in Table 6.1. We assume that all data packets have the same size, and the

transmitting power is the same for all nodes. We use “packet delivery transaction”

to denote sending a packet from its source to its destination. We say a transaction

is “successful” if the packet has successfully reached its destination within its delay

constraint; otherwise, the transaction is “unsuccessful”.

114



Table 6.1: Notations used in the problem formulation

E The energy needed to transmit and receive a data packet and a receipt.

ES,max S’s total available energy when it enters the network.

αS The payoff that source S gets for each successfully delivered data packet.

βS The penalty that source S receives for each unsuccessfully delivered data

packet.

ES The amount of energy that S has spent until now.

NS,succ # successful data packet deliveries until now with S being the source.

NS,fail # unsuccessful data packet deliveries until now with S being the source.

ES,waste The energy that has been wasted until now due to S’s its malicious behavior.

ES,contribute The energy that S has spent until now on successfully transmitting packets for

others.

For each node S, if it is selfish, its total profit Profit(S) is defined as follows:

Profit(S) = αSNS,succ − βSNS,fail. (6.1)

Then the objective of each selfish nodes S can be formulated as follows:

max Profit(S) s.t. ES ≤ ES,max. (6.2)

If S is malicious, then the total damage DS that S has caused to other selfish

nodes until the current moment is calculated as

DS = ES,waste − ES,contribute. (6.3)

Since in the current system model malicious nodes are allowed to collude, in this

chapter we only formulate the overall objective of malicious nodes, which is as

follows:

max
∑

S is malicious

DS. (6.4)
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Table 6.2: Records kept by node S

Credit(A,S) The energy that A has spent until now on successfully transmitting pack-

ets for S.

Debit(A, S) The energy that S has spent until now on successfully transmitting pack-

ets for A.

Wby(A,S) The wasted energy that A has caused to S until now.

Wto(A,S) The wasted energy that S has caused to A until now.

LBwith(A,S) The wasted energy caused to S until now due to the link breakages

between A and S.

Blacklist(S) The set of nodes that S believes are malicious and S does not want to

work together with.

Blacklist(A,S) The subset of A’s blacklist known by S until now.

6.2 Description of ARCS System

This section describes the proposed ARCS system for autonomous ad hoc networks.

In the ARCS system, each node S keeps a set of records indicating the interactions

with other nodes, as listed in Table 6.2. In a nutshell, when a node has a packet

scheduled to be sent, it first checks whether this packet should be sent and which

route should be used. Once an intermediate node on the selected route receives a

packet forwarding request, it will check whether it should forward the packet. Once

a node has successfully forwarded a packet on behalf of another node, it will request

a receipt from its next node on the route and submit this receipt to the source of the

packet to claim credit. After a packet delivery transaction finishes, all participating

nodes will update their own records to reflect the changed relationships with other

nodes and to detect possible malicious behavior. For each selfish node S, all the

records listed in Table 6.2 will be initiated to be 0 when S first enters the network.
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6.2.1 Cooperation Degree

In [28], Dawkins illustrates that reciprocal altruism is beneficial for every ecological

system when favors are granted simultaneously, and gives an example to explain the

survival chances of birds grooming parasites off each other’s head which they cannot

clean themselves. In that example, Dawkins divides the birds into three categories:

suckers, which always help; cheats, which ask other birds groom parasites off their

heads but never help others; and grudgers, which start out being helpful to every

bird but refuse to help those birds that do not return the favor. The simulation

studies have shown that both cheats and suckers extinct finally, and only grudgers

win over time. Such selfish behavior and cooperation are also developed at length

in [10,11].

In order to best utilize their limited resources, selfish nodes in autonomous ad

hoc networks should also act like the grudgers. In the ARCS system, each selfish

node S keeps track of the balance B(A, S) with any other node A known by S,

which is defined as:

B(A, S) = (Debit(A, S)−Wto(A, S))− (Credit(A, S)−Wby(A, S)). (6.5)

That is, B(A, S) is the difference between what S has contributed to A and what

A has contributed to S in S’s point of view. If B(A, S) is a positive value, it can be

viewed as the relative damage that A has caused to S; otherwise, it is the relative

help that S has received from A.

Besides keeping track of the balance, each node S will also set a threshold

Bthreshold(A, S) for each known node A in the network, which we called cooperation

degree. A necessary condition for S to help A, e.g., forwarding packet for A, is

B(A, S) < Bthreshold(A, S). (6.6)
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Setting Bthreshold(A, S) to be ∞ means that S will always help A no matter what

A has done, as the suckers act in the example. Setting Bthreshold(A, S) to be −∞
means that S will never help A, as the cheats act in the example. In the ARCS

system, each selfish node will set Bthreshold(A, S) to be a relatively small positive

value, which means that initially S is helpful to A, and will keep being helpful to

A unless the relative damage that A has caused to S exceeds Bthreshold(A, S), as

the grudgers act in the example where they set the threshold to be 1 for any other

bird. By specifying positive cooperation degrees, cooperation among selfish nodes

can be enforced, while by letting the cooperation degrees to be relatively small,

the possible damage caused by malicious nodes can be bounded.

6.2.2 Route Selection

In the ARCS system, source routing is used, that is, when sending a packet, the

source lists in packet header the complete sequence of nodes through which the

packet is to traverse. Due to insufficient balance, malicious behavior and possible

node mobility, not all packet delivery transactions can succeed. When a node has

a packet scheduled to be sent, it needs to decide whether it should start the packet

delivery transaction and which route should be used.

In the ARCS system, each route is specified an expiring time indicating that

after that time the route will become invalid, which is determined by the inter-

mediate nodes during the route discovery procedure. Assume that S has a packet

scheduled to be sent to D, route R = “R0R1 . . . RM” is a valid route known by S

with R0 = S, RM = D, and M being the number of hops. Let Pdrop(Ri, S) denote

the probability that node Ri will drop S’s packet, and let Pdelivery(R, S) denote the

probability that a packet can be successfully delivered from S to D through route

118



R at the current moment. S then calculates Pdelivery(R, S) as following:

Pdelivery(R, S) =





0 (∃Ri ∈ R) B(Ri, S) < −Bmax(S,Ri)

0 (∃Ri, Rj ∈ R) Ri ∈ Blacklist(Rj, S)

∏M−1
i=1 (1− Pdrop(Ri, S)) otherwise

(6.7)

That is, a packet delivery transaction has no chance to succeed unless S has enough

balance to request help from all intermediate nodes on the route and no node has

been marked as malicious by any other node on the route. Once a valid route R

with non-zero Pdelivery(R, S) is used to send a packet by S, the expected energy

consumption can be calculated as:

Eavg(R, S) = EMPdelivery(R, S) + Efail(R, S)
M−1∑
n=1

nE

(
n−1∏

k=1

(1− Pdrop(Rk, S))

)
Pdrop(Rn, S),

(6.8)

and the expected profit of S is

Profit(R, S) = αSPdelivery(R, S)− βS(1− Pdelivery(R, S)). (6.9)

Let Q(R,S) be the expected profit per unit energy when S uses R to send a

packet to D at the current moment, referred to as the expected energy efficiency.

that is,

Q(R, S) =
Profit(R, S)

Eavg(R,S)
. (6.10)

Then in the ARCS system, which route should be selected is decided as follows:

Route Selection Decision: Among all routes R known by S which can reach D,

route R∗ will be selected if and only if Pdelivery(R
∗, S) > 0 and Q(R∗, S) ≥ Q(R,S)

for any other R ∈ R.

The above decision is optimal in the sense that no other known routes can

provide better expected energy efficiency than route R∗. Since the accurate value

of Pdrop(Ri, S) is usually not known, in the ARCS system, Pdrop(Ri, S) is estimated
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as the ratio between the number of S’s failed transactions caused by Ri and S’s

total transactions passing Ri.

After the route with the highest expected energy efficiency has been found by

the sender S, suppose it is route R∗, in the next step S should decide whether it

should use R∗ to start a data packet delivery transaction. If the route quality is

too low, simply dropping the packet without trying may be a better choice. Let

Qavg(S) be S’s average energy efficiency over the past:

Qavg(S) =
αSNS,succ − βSNS,fail

ES

. (6.11)

Then in the ARCS system, the following decision rule is used:

Packet Delivery Decision: S will use route R∗ to start a data packet delivery

transaction if and only if the following condition holds:

Profit(R
∗, S) ≥ Qavg(S)Eavg(R

∗, S)− βS. (6.12)

The left hand side of (6.12) is the expected profit when S uses R∗ to start a

packet delivery transaction, and the right hand side of (6.12) is the predicted

profit by simply dropping the packet without trying, where βS is the penalty due

to dropping a packet and Qavg(S)Eavg(R
∗, S) is the gain that S predicts to get

with energy Eavg(R
∗, S) based on its past performance. If Qavg(S) is stationary

over time, the above decision is optimal in the sense that the total profits can be

maximized under the energy constraint.

6.2.3 Data Packet Delivery Protocol

In the ARCS system, a data packet delivery consists of two stages: forwarding

data packet stage and submitting receipts stage. In the first stage, the data packet

is delivered from its source to its destination, while in the second stage, each
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Table 6.3: Notations used in the data packet delivery protocols

signS(m) S generates a signature based on the message m.

verifyS(m, s) Other nodes verify whether s is the signature generated by node S based

on the message m.

v ← m Assign the value of m to the variable v.

MD() A message digest function, such as SHA-1 [1].

seqS(S,D) The sequence number of the current packet being processed with S being

the source and D being the destination.

participating node on the route will submit a receipt to the source to claim credit.

Table 6.3 lists some notations to be used.

Forwarding Data Packet Stage: Suppose that node S is to send a packet

with payload m and sequence number seqS(S, D) to destination D through the

route R. The sender S first computes a signature s = signS(MD(m), R, seqS(S,D)).

Next, S transmits the packet (m,R, seqS(S, D), s) to the next node on the route, in-

creases seqS(S, D) by 1, and waits for receipts to be returned by the following nodes

on route R. Once a selfish node A has received the packet (m,R, seqS(S, D), s),

A first checks whether it is the destination of the packet. If it is, after necessary

verifications, A returns a receipt to its previous node on the route to confirm the

successful delivery; otherwise, A checks whether the packet should be forwarded.

A is willing to forward the packet if and only if all the following conditions are sat-

isfied: 1) A is on the route R; 2) seqS(S,D) > seqA(S, D), where seqA(S, D) is the

sequence number of the last packet that A has forwarded with S being source and

D being the destination; 3) the signature is valid; 4) B(S, A) < Bthreshold(S,A); 5)

no node on route R has been marked as malicious by node A.

Once A has successfully forwarded the packet (m,R, seqS(S,D), s) to the next

node on the route, it will specify a time to wait for a receipt being returned by
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Protocol 1 Forwarding data packet stage
. A is the current node, S is the sender, D is the destination. (m,R, seqS(S,D), s) is the

received data packet from A’s previous node if A 6= S; otherwise, (m,R, seqS(S,D), s)

is the data packet generated by A.

if (A = S) then

S forwards (m,R, seqS(S, D), s) to next node, increases seqS(S, D) by 1, and waits

for receipts to be returned.

else if ((A = D) and (verifyS((m,R, seqS(S, D)), s) = true) and (seqS(S, D) >

seqA(S, D))) then

A assigns the value of seqS(S, D) to seqA(S, D), and returns a receipt to its previous

node.

else

if ((A /∈ R) or (verifyS((m,R, seqS(S, D)), s) 6= true) or (seqS(S, D) ≤ seqA(S,D))

or (∃Ri ∈ R, Ri ∈ Blacklist(A))) then

A simply drops this packet.

else if ((B(S, A) > Bthreshold(S,A)) or (the link to A’s next node is broken)) then

A drops the packet, and returns a receipt to its previous node which also includes

the dropping reason.

else

A assigns the value of seqS(S,D) to seqA(S,D), forwards (m,R, seq(S, D), s) to

its next node, and waits for a receipt to be returned by the next node.

end if

end if
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the next node before that time to confirm the successful transmission, which A

will use to claim credit from S. In the ARCS system, a selfish node sets its waiting

time to be the value of Tlink multiplied by the number of hops following this node,

where Tlink is a relatively small interval to account for the necessary processing and

waiting time (e.g., time needed for channel contention) per hop. Since in general

the waiting time is small enough, we can assume that if a node can return a receipt

to its previous node in time, the two nodes will still keep connected. The protocol

execution of each participating selfish node in this stage is described in Protocol 1.

Submitting Receipts Stage: In autonomous ad hoc networks, nodes may

not be willing to forward packets on behalf of other nodes. So after a node (e.g.,

A) has forwarded a packet (m,R, seqS(S, D), s) for another node (e.g., S), A will

try to claim corresponding credit from S, which A can use later to request S to

return the favor. To claim credit from S, A needs to submit necessary evidence to

convince S that it has successfully forwarded packets for S. In the ARCS system, in

order for A to show that it has successfully forwarded a packet for S, A only needs

to submit a valid receipt generated by any node following A on the route (e.g., B)

indicating that B has successfully received the packet. One possible format of such

a receipt is

{MD(m), R, seqS(S, D), B, signB(MD(m), R, seqS(S,D), B)}.

That is, the receipt consists of the message {MD(m), R, seqS(S,D), B} and the

signature generated by node B based on this message. For each selfish node, if

it has dropped the packet or cannot get a receipt from its next node in time, or

the received receipt is invalid, it will generate a receipt by itself and return it to

its previous node; otherwise, it will simply send the received receipt back to its

previous node on the route. The protocol execution of each participating selfish
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node in this stage is described in Protocol 2.

Protocol 2 Submitting receipt stage
. A is the current node, (MD(m), R, seqS(S,D), B, s) is the successfully received packet to be

processed.

if ((A = D) or (no valid receipts have been returned by the next node after waiting enough

time)) then

s ← signA(MD(m), R, seqS(S,D), A).

Send the receipt {MD(m), R, seqS(S, D), A, s} to A’s previous node on R.

else

receipt = {MD(m), R, seqS(S, D), B, s}, which is the returned receipt from the next node

on the route.

if (verifyB((MD(m), R, seqS(S,D), B), s) = true)) then

Send receipt to A’s previous node on R.

else

s ← signA(MD(m), R, seqS(S, D), A).

Send the receipt {MD(m), R, seqS(S, D), A, s} to A’s previous node on R.

end if

end if

6.2.4 Update Records

In the ARCS system, after a packet delivery transaction has finished, no matter

whether it is successful or not, each participating node will update its records

to keep track of the changing relationships with other nodes and to detect pos-

sible malicious behavior. Next we use Fig. 6.1 to illustrate the records updating

procedure, where S is this initiator of the transaction, D is the destination, and

R = “S . . . AMB . . . D” is the associated route.

For sender S, according to different situations, it updates its records as follows:

124



BMAS D

source destination

n hops m hops

Figure 6.1: Update records

• Case 1: S has received a valid receipt signed by D which means that this

transaction has succeeded. Then for each intermediate node X, S updates

Credit(X, S) as follows:

Credit(X, S) = Credit(X, S) + E. (6.13)

• Case 2: S has successfully sent a packet to its next node, but cannot receive

any receipt in time. In this case, let X be S’s next node, S then updates its

records as follows:

Wby(X, S) = Wby(X, S) + E, (6.14)

Blacklist(S) = Blacklist(S)
⋃
{X}. (6.15)

That is, refusing to return a receipt will be regarded as malicious behavior.

• Case 3: If S has received a valid receipt which is not signed by D, but signed

by an intermediate node (e.g., M), which means that either M has dropped

the packet or a returned receipt has been dropped by a certain node following

M (including M) on the route in the submitting receipt stage. In this case,

for each intermediate node X between S and M, S still updates Credit(X, S)

using (6.13). Since node M’s transmission cannot be verified by S, S has

enough evidence to suspect that the packet is dropped by M. To reflect this

suspect, S updates Wby(M,S) as follows:

Wby(M,S) = Wby(M,S) + nE. (6.16)
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where nE accounts for the amount of energy that has been wasted in this

transaction with n being the number of hops between S and M.

If a transaction fails, S also keeps a record of (MD(m), R, seqS(S, D), s) for this

transaction as well as a copy of the returned receipt if there exists.

For each intermediate node (e.g., node M in Fig. 6.1) that has participated in

the transaction, if it is selfish, it updates its records as follows:

• Case 1: M has successfully sent the packet to node B, and has got a receipt

from B to confirm the transmission. In this case, M only needs to update

Debit(S, M) as follow:

Debit(S, M) = Debit(S, M) + E. (6.17)

• Case 2: M has successfully sent the packet to node B, but cannot get a valid

receipt from B. In this case, M updates its records as follows:

Wto(S,M) = Wto(S, M) + nE, (6.18)

Wby(B,M) = Wby(B,M) + (n + 1)E, (6.19)

Blacklist(M) = Blacklist(M)
⋃
{B}. (6.20)

• Case 3: M has dropped the packet due to link breakage between M and

B. Although this packet dropping is not M’s fault, since M cannot prove it

to S, M will take the responsibility. However, since this link breakage may

be caused by S who has selected a bad route, or caused by B who tries to

emulate link breakage to attack M, M should also record this link breakage.

In this case, M updates its records as follows:

Wto(S,M) = Wto(S, M) + nE, (6.21)
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LBwith(B, M) = LBwith(B, M) + nE, (6.22)

LBwith(S,M) = LBwith(S, M) + nE. (6.23)

In the ARCS system, each selfish node (e.g., M) will also set a threshold

LBthreshold(S, M) with any other node (e.g., S) to indicate the damage that

M can tolerate which is caused due to the link breakages happened between

M and S. In this case, if LBwith(B,M) exceeds LBthreshold(B, M), B will be

put into M’s blacklist. Similarly, if LBwith(S, M) exceeds LBthreshold(S,M),

S will be put into M’s blacklist.

• Case 4: M has dropped the packet due to the reason that the condition in

(6.6) is not satisfied or some nodes on R are in M’s blacklist. In this case M

does not need to update its records.

After finishing updating its records, M will also keep a copy of the submitted receipt

for possible future usage, such as resolving inconsistent records update problem,

as will be described in Section 6.2.6. From the above update procedure we can see

that a selfish node should always return a receipt to confirm a successful packet

reception, since refusing to return receipt is regarded as malicious behavior and

cannot provide any gain.

6.2.5 Secure Route Discovery

In the ARCS system, DSR [47] is used as the underlying routing protocol to per-

form route discovery, which is an on-demand source routing protocol. However,

without security consideration, the routing protocol can easily become an attack-

ing target. For example, malicious nodes can inject an overwhelming amount of

route request packets. In the ARCS system, besides necessary identity authenti-
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cation, the following security enhancements have also been incorporated into the

route discovery protocol:

1. When node S initiates a route discovery, it also appends its blacklist in the

request packet. After an intermediate node A has received the request packet,

it will update its own record Blacklist(S,A) using the received blacklist.

2. When an intermediate node A receives a route request packet which orig-

inates from S and A is not this request’s destination, A first checks the

following conditions: 1) A has never seen this request before; 2) A is not

in S’s blacklist; 3) B(S, A) < Bthreshold(S,A); 4) no nodes that have been

appended to the request packet are in A’s blacklist; 5) A has not forwarded

any request for S in the last Tinterval(S, A) interval, where Tinterval(S,A) is

the minimum interval specified by A to indicate that A will forward at most

one route request for S in each Tinterval(S, A) interval. A will broadcast the

request if and only if all of the above conditions can be satisfied, otherwise,

A will discard the request.

3. During a discovered route is being returned to the requester S, each in-

termediate node A on the route appends the following information to the

returned route: the subset of its blacklist that is not known by S, the value

of Bthreshold(S, A) if not known by S, the value of Debit(S,A), and node A’s

expected staying time at the current position. After S has received the

route, for each node A on the discovered route, it updates the corresponding

blacklist Blacklist(A, S), updates the value of Bthreshold(S, A), determines the

expiring time of this route which can be approximated as the expected mini-

mum staying time among all nodes on the route, and checks the consistency

between Debit(S,A) and Credit(A, S).
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6.2.6 Resolve Inconsistent Records Update

In some situations, after a node (e.g., A) has successfully forwarded a packet for

another node (e.g., S) and has sent a receipt back to S, the value of Credit(A, S)

may not be increased immediately by S due to some intermediate node dropping

the receipt returned by A. In this case, the value of Debit(S, A) will be larger

than the value of Credit(A, S), which we referred to as inconsistent records update.

As a consequence, S may refuse to forward packets for A even the actual value

of B(A, S) is still less than Bthreshold(A, S), or S may continue requesting A to

forward packets for it when the true value of B(S, A) has exceeded Bthreshold(S, A).

Next we describe how the inconsistent records update problem is resolved.

In the route discovery stage, after route R has been returned to S, S will check

whether there exists inconsistency. If S finds that a node A on route R has reported

a larger value of Debit(S, A) than the value of Credit(A, S), when calculating route

quality, S should use the value of Debit(S,A) to temporarily substitute the value

of Credit(A, S). In the packet delivery stage, when route R is picked by S to send

packets, for each intermediate node A on route R, the value of Credit(A, S) will

also be appended to the payload of the data packet.

When A receives an appended value of Credit(A, S) from S, and finds Credit(A, S) <

Debit(S, A), A will submit those receipts that target on S but have not been con-

firmed by S to claim corresponding credits, where we say a receipt received by A at

time t1 and targeting on S has been confirmed if there existed at least one moment

t2 > t1 before now at which A and S have agreed that Credit(A, S) = Debit(S, A).

Once S has received an unconfirmed receipt returned by A, S will check whether

there is a failed transaction record associated to this receipt. If no such record ex-

ists, either the receipt is faked, or the corresponding credit has been issued to A. If
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there exists such a record, let B be the node who has signed the receipt associated

to this transaction record, that is, all nodes between S and B have been credited

by S. Let C be the node who has signed the receipt submitted by A. If B is in front

of C on the route, S should use the new receipt singed by C to replace the previous

receipt signed by B, and for each intermediate node X between B and C on the

route, S should update Credit(X, S) using (6.13), also, if C is not the destination

of the associated packet, S should update Wby(C, S) using (6.16).

6.2.7 Parameter Selection

In the ARCS system, for each selfish node S, it needs to specify three types of

thresholds regarding to any other node A in the network: the cooperation degree

Bthreshold(A, S), the maximum tolerable damage due to link breakage LBthreshold(A, S)

and the minimum route request forwarding interval Tinterval(A, S), which are de-

termined in the following way.

For each known node A, S initially sets Tinterval(A, S) to be a moderate value,

such as a value equal to its own average pause time. During staying in the net-

work, S will keep estimating a good route discovery frequency for itself, and will

set Tinterval(A, S) to be the inverse of its own route discovery frequency. Similarly,

S initially sets all link breakage thresholds using a (relatively small) constant value

LBinit, and keeps estimating its own average link breakage ratio over time, assum-

ing PS,LB. For each node A, let Ntrans(A, S) be the total number of transactions

that simultaneously revolve S and A with A either being S’s next node or being

the initiator of the transactions, then S may set

LBthreshold(A, S) = LhopPS,LBNtrans(A, S)E + LBinit, (6.24)

where Lhop is the average number of hops per route.
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For Bthreshold(A, S), if favors can be granted simultaneously, a small value (for

example 1, as grudgers do in the ecological example) can work perfectly. However,

in many situations favors cannot be granted immediately. For example, after S

has helped A several times, S may not get similar amount of help from A due

to that S does not need help from A currently or A has moved. Many factors

can affect the selection of Bthreshold(A, S), among them some are unknown to S,

such as other nodes’ traffic patterns and behaviors, and some are unpredictable,

such as mobility, which make selecting an optimal value for Bthreshold(A, S) hard

or impossible. However, our simulation studies in Section 6.4 have shown that in

most situations a relatively small constant value can achieve good tradeoff between

energy efficiency and robustness to attacks.

6.3 Analysis of the ARCS System Under Attacks

In this section we analyze the performance of the ARCS system under the follow-

ing types of attacks: dropping packet, emulating link breakage, injecting traffic,

collusion and slander. Since the attacks of preventing good routes from being dis-

covered are mainly used to increase attackers’ chance of being on the discovered

routes, they can be regarded as part of dropping packets or emulating link break-

age attacks, and will not be analyzed separately. Similarly, modifying or delaying

packets attacks can also be regarded as specific types of dropping packets attacks,

and will not be analyzed separately. The results show that the damage that can

be caused by malicious nodes is bounded, and the system is collusion-resistant.

Dropping Packet Attacks: In the ARCS system, malicious nodes can waste

other nodes’ energy by dropping their packets, which can happen either in the

forwarding data packet stage or in the submitting receipts stage. We use Fig. 6.2
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Figure 6.2: Dropping Packets Attacks

as an example to study the possible dropping packet attacks that can be launched

by malicious node M. Based on in which stage M drops packets and whether M

will return receipts, there are four possible attacking scenarios:

• Scenario 1: M drops a packet in the forwarding data packet stage, but creates

a receipt to send back to A to confirm successful receiving from A. In this

scenario, after S gets the receipt, S will increase Wby(M, S) by nE, which

equals to the total amount of energy that has been wasted by M. That is, in

this scenario, the damage caused by M has been recorded by S and needs to

be compensated by M later if M still wants to get help from S.

• Scenario 2: M drops a packet in the forwarding data packet stage, and refuses

to return a receipt to A. In this scenario, although A will be mistakenly

charged by S which increases Wby(A, S) by (n − 1)E, A will mark M as

malicious and will stop working with M further. That is, M can never get

help from A and cause damage to A in the future.

• Scenario 3: M drops the receipt returned by B, but creates a receipt to

send back to A. In this scenario, M will be charged nE by S, but the nodes

after M who have successfully forwarded the packet will not be credited by

S immediately. That is, by taking some charge (here nE), M can cause

inconsistent records update. However, as described in Section 6.2.6, this

inconsistency can be easily resolved and will not cause further damage. That
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is, M can only cause temporary records inconsistency with the extra payment

of (n + 1)E.

• Scenario 4: M drops the receipt returned by B, and refuses to return a receipt

to A. This scenario is similar to scenario 3 with the only difference being that

in this scenario A will be mistakenly charged by S, but M will be marked as

malicious by A and cannot do any further damage to A in the future.

From the above analysis we can see that when a malicious node M launches

dropping packet attacks, either it will be marked as malicious by some nodes, or

the damage caused by it will be recorded by other nodes. Since for each node A, the

maximum possible damage that can be caused by M is bounded by Bthreshold(M, A),

the total damage that M can cause is also bounded.

Emulating Link Breakage Attacks: Malicious nodes can also launch emu-

lating link breakage attacks to waste other nodes’ energy. For example, in Fig. 6.2,

when node A has received a request from S to forward a packet to M, M can just

keep silent to let A believe that the link between A and M is broken. By emulating

link breakage, M can cause a transaction to fail and waste other nodes’ energy.

In the ARCS system, each selfish node handles the possible emulating link

breakage attacks as follows: For each known node M, S keeps a record LBwith(M, S)

to remember the damage that has been caused due to link breakage between M

and S, and if LBwith(M, S) exceeds the threshold LBthreshold(M, S), S will mark M

as malicious and will never work with M again. That is, the damage that can be

caused to S by malicious node M who launched emulating link breakage attacks is

bounded by LBthreshold(M,S).

Injecting Traffic Attacks: Besides dropping packets, attackers can also inject

an excessive amount of traffic to overload the network and to consume other nodes’
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valuable energy. Two types of packets can be injected: general data packets and

route request packets. In the ARCS system, according to the route discovery

protocol, the number of route request packets that can be injected by each node

is bounded by 1 in each time interval Tinterval. For general data packets, since

an intermediate node A will stop forwarding packets for node M if B(M, A) >

Bthreshold(M, A), the maximum damage that can be caused to node A by node M

launching injecting general data traffic attacks is bounded by Bthreshold(M, A). In

summary, by launching injecting traffic attacks, the maximum damage that can

be caused by a malicious node M to node A is bounded.

Collusion Attacks: In order to increase their attacking capability, malicious

nodes may choose to collude. Next we show that in the ARCS system colluding

among malicious nodes cannot cause more damage to the network than working

alone, that is, the ARCS system is collusion-resistant. First, it is easy to see

that two nodes collude to launch injecting extra traffic attacks cannot increase the

damage due to the existence of balance threshold (cooperation degree), and two

nodes colluding to launch emulating link breakage attacks makes no sense, since

each link breakage event has only two participants. Next we consider two malicious

nodes colluding to launch dropping packets attacks.

Given a packet delivery transaction, we first consider the case that the two

colluding nodes are neighbor of each other. For example, as in Fig. 6.2, assume

that M and B collude. When M drops the packet, M can still get (or generate

by itself, since M may know B’s private key) the receipt showing that M has suc-

cessfully forwarded the packet. However, this cannot increase their total attacking

capability, since B needs to take the charge for the damage caused by this packet

dropping. That is, in this case M is released from the charge by sacrificing B.

134



BMAS

source

D

destination

C

drop receipt drop data packet

n hops m hops

Figure 6.3: Collusion Attacks

If two colluding nodes are not neighbor of each other, the only way that they can

collude is that one node drops the data packet in the forwarding data packet stage,

and the other node drops the receipt in the submitting receipt stage, as shown in

Fig. 6.3, where node C drops the data packet and node M drops the receipt. By

colluding in this way, if C has returned a receipt to its previous node, C will not be

charged by S temporarily, and all the nodes between M and C cannot get credits

from S immediately. For node M, if M will return a receipt to A, S will increase

Wby(M, S) by nE, and if M refuses to return a receipt to A, M will be marked as

malicious by A. That is, in this case, temporary inconsistent records update can

be caused, but the colluding nodes will be overcharged by nE. However, according

to Section 6.2.6, the inconsistency can be easily resolved.

Slander Attacks: In ARCS, each selfish node may propagate its blacklist to

the network, which may give attackers chances to slander others. Next we show

that instead of causing damage, such attacks can even benefit selfish nodes in

some situations. Suppose that a malicious node M propagates information to the

network to say that node X is malicious. For any selfish node S, this information

will only be used in the situation where S wants to calculate a certain route’s

successful packet delivery probability according to (6.7) and X lies on this route.

In this situation, the successful packet delivery probability of this route will always

be calculated as 0 according to (6.7), and this route will not be used by S, which

is just one goal of secure route discovery: preventing attackers from being on the
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route. In all other situations, such information will not affect S’s decision.

In summary, given that in the ARCS system there are L selfish nodes {S1, . . . , SL}
and K malicious nodes {M1, . . . , MK}. Let Bthreshold(Mk, Sl), LBthreshold(Mk, Sl)

and Tinterval(Mk, Sl) be the cooperation degree, the link breakage threshold, and

the minimum route request forwarding interval that Slset for Mk, respectively. Let

TSl
be node Sl’s staying time in the system, and let Erequest (which is far less than

E) be the consumed energy per route request forwarding. Based on the above

analysis, we can see that the total damage Damage that can be caused by all the

malicious nodes is bounded by

Damage ≤
K∑

k=1

L∑

l=1

(Bthreshold(Mk, Sl) + LBthreshold(Mk, Sl) +
TSl

∗ Erequest

Tinterval(Mk, Sl)
)

(6.25)

That is, the damage that can be caused by malicious nodes is bounded, which is

determined by the specified thresholds.

6.4 Simulation Studies

In our simulations 100 good nodes and various number of attackers are randomly

deployed inside a rectangular area of 1000m × 1000m. Each node moves randomly

according to the random waypoint model with vmax = 10m/s and the average Pause

time being 100 seconds. The physical layer assumes a fixed transmission range

model, where two nodes can directly communicate with each other successfully

only if they are in each other’s transmission range. The MAC layer protocol

simulates the IEEE 802.11 Distributed Coordination Function (DCF) with a four-

way handshaking mechanism [44]. The maximum transmission Range for each

node is fixed to be 250m.
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In the simulations, each selfish node acts as a service provider which randomly

picks another selfish node as the receiver and packets are scheduled to be generated

according to a Poisson process. Similarly, each malicious node also randomly picks

another malicious node as the receiver to send packets. The total number of mali-

cious nodes varies from 0 to 50. Among those malicious nodes, 1/3 launch dropping

packets attacks which drop all packets passing through them whose sources are not

malicious, 1/3 launch emulating link breakage attacks which emulate link break-

age once receiving packet forwarding request from selfish nodes, and 1/3 launch

injecting traffic attacks. For each selfish or malicious node that does not launch

injecting traffic attacks, the average packet inter-arrival time is 2 seconds, while for

malicious nodes launching injecting traffic attacks, the average packet inter-arrival

time is 0.1 second. In the simulations, all data packets have the same size.

Based on selfish nodes’ forwarding decision, three types of systems have been

implemented in the simulations: the proposed ARCS system, which we called

“ARCS”; the ARCS system without balance constraint (i.e., cooperation degree

is set to be infinity for all selfish nodes), which we called “ARCS-NBC”; and a

fully-cooperative system, which we called “FULL-COOP”. In “ARCS”, all selfish

nodes behave in the way as described in Section 6.2. In “ARCS-NBC”, the same

strategies as in “ARCS” have been used to detect launching dropping packets

attacks and emulating link breakage attacks, but now (6.6) is not a necessary

condition to forward packets for other nodes, and a selfish node will unconditionally

forward packets for those nodes which have not been marked as malicious by it.

In “FULL-COOP”, all selfish nodes will unconditionally forward packets for other

nodes, and no malicious nodes detection and punishment mechanisms have been

used. In all three systems, the same route discovery procedure is used as described
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in Section 6.2.5.

We use {S1, . . . , SL} to denote the L selfish nodes and use {M1, . . . , MK} to

denote the K malicious nodes in the network. In this section the following perfor-

mance metrics are used:

• Energy efficiency of selfish nodes, which is the total profits gained by all

selfish nodes divided by the total energy spent by all selfish nodes until the

current moment.

• Average damage received per selfish node: which is the total damage received

by all selfish nodes until the current moment divided by the total number of

selfish nodes, that is,

Davg =
1

L

L∑
i=1

(
L∑

l=1

B(Sl, Si) +
K∑

k=1

B(Mk, Si)

)
. (6.26)

• Balance variation of selfish nodes, which is the standard deviation of selfish

nodes’ overall balance with the assumption that
∑L

l=1 B(Sl) = 0, that is,

Variation =

√√√√ 1

L

L∑

l=1

B(Sl) ∗B(Sl). (6.27)

By assuming
∑L

l=1 B(Sl) = 0, this definition has incorporated the effects

caused by malicious nodes, which will make
∑L

l=1 B(Sl) deviate from 0. This

definition also reflects the fairness for selfish nodes, where Variation = 0 implies

absolute fairness, and the increase of Variation implies the increase of possible

unfairness for selfish nodes.

In our simulations, each configuration has been run 10 independent rounds

using different random seeds, and the result are averaged over all the rounds. In

the simulations, we set αS = 1, βS = 0.5, and Tinterval to be 100 seconds for each
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Figure 6.5: Performance comparison among the three systems

selfish node S, which is equal to the average pause time. The running time for each

round is 5000 seconds. For each selfish node, the link breakage ratio is estimated

through its own experience, which is the ratio between the total number of link

breakages it has experienced with itself being the transmitter and the total number

of transmissions it has tried. Fig. 6.4 shows the estimated values of link breakage

ratio by each node, which shows that all nodes have almost the same link breakage

ratio (here 2%).

Fig. 6.5 shows the performance comparison among the three systems: ARCS,

ARCS-NBC, and FULL-COOP, where in ARCS, Bthreshold is set to be 60E, and

the value of LBthreshold is set according to (6.24) with LBinit = 20E. The exper-

iments based on other values of Bthreshold have also been conducted which shows
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that 60E can achieve good tradeoff between performance and possible damage

(demonstrated in Fig. 6.7). From the selfish nodes’ energy efficiency comparisons

(Fig. 6.5(a)) we can see that ARCS has much higher efficiency than ARCS-NBC

and FULL-COOP when there exist malicious nodes. When only selfish nodes ex-

ist, ARCS-NBC and FULL-COOP have the same efficiency, since they work in the

same way, and both have slightly higher efficiency than ARCS with the payment

of higher balance variation of selfish nodes, which is shown in Fig. 6.5(b). The

balance variation comparison shows that ARCS has much lower balance variation

than the other two systems, and almost keeps unchanged with the increase of the

number of malicious nodes, while for the other two systems, the balance variation

increases linearly and dramatically with the increase of the number of malicious

nodes. This comparison also implies the lower unfairness for selfish nodes in the

ARCS system. The average damage comparison (Fig. 6.5(c)) shows that in ARCS

the damage that can be caused by malicious nodes is much lower than in other two

systems, and increases very slowly with the increase of malicious nodes number.

From the results shown in Fig. 6.5(a), Fig. 6.5(b), and Fig. 6.5(c) we can

also see that although ARCS-NBC has gained a lot of improvement over FULL-

COOP by introducing mechanisms to detect dropping packet and emulating link
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breakage attacks, its performance is still much worse than ARCS. The reason is that

ARCS-NBC cannot detect and punish those malicious nodes which launch injecting

traffic attacks, so a large portion of energy has been wasted to forward packets

for those nodes. Fig. 6.6 illustrates different effects of injecting traffic attacks

in the three systems, where the vertical axis shows the percentage of damage

caused by injecting traffic attacks to the network. From these results we can

see that in ARCS, only about 40% percentage of damage is caused by injecting

traffic attacks, in FULL-COOP this percentage increases to around 80%, while

in ARCS-NBC the percentage increases to more than 90%, although the overall

damage caused by all malicious nodes to the selfish nodes in ARCS-NBC is less

than that in FULL-COOP. In another words, in Fig. 6.5(c), the gap between

the results corresponding to “ARCS” and the results corresponding to “ARCS-

NBC” is caused by injecting traffic attacks, while the gap between the results

corresponding to “ARCS-NBC” and the results corresponding to “FULL-COOP”

is caused by dropping packets/emulating link breakage attacks. These results

explain why ARCS-NBC has much worse performance than ARCS, and clearly

show that how necessary it is to introduce mechanisms to defend against such

injecting traffic attacks.

Next we evaluate the ARCS system under different cooperation degree config-

urations, where all other parameters keep unchanged. Fig. 6.7 shows the perfor-

mance of the ARCS system by varying cooperation degree from 10E to 160E. From

Fig. 6.7(a) we can see that when the cooperation degree is 40E or more, the energy

efficiency becomes almost identical. However, Fig. 6.7(b) and Fig. 6.7(c) show that

with the increase of cooperation degree, both the balance variation of selfish nodes

and the average received damage per selfish node increase. This can be explained
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using Fig. 6.8, which shows that with the increase of cooperation degree, the per-

centage of damage that is caused by injecting traffic attacks also increases. That

is, the higher the cooperation degree, the more vulnerable to injecting traffic at-

tacks. These results suggest that a relative small cooperation degree (for example

40E) is enough to achieve good performance for selfish nodes, such as high energy

efficiency, low unfairness and small damage.

6.5 Summary

In this chapter we have investigated the issues of cooperation stimulation and

security in autonomous ad hoc networks, and proposed an Attack-Resistant Coop-

eration Stimulation (ARCS) system to stimulate cooperation among selfish nodes

and defend against various attacks launched by malicious nodes. In the ARCS

system, each node can adaptively adjust their own strategies according to the

changing environments. The analysis has shown that in the ARCS system, the

damage that can be caused by malicious nodes is bounded, and the cooperation

among selfish nodes is enforced through introducing a positive cooperation degree.

At the same time, the ARCS system maintains good fairness among selfish nodes.

The simulation results have also agreed with the analysis. Another key property

of the ARCS system is that it is fully distributive, completely self-organizing, and

does not require any tamper-proof hardware or central management points.
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Chapter 7

Game Theoretic Analysis of

Secure Cooperation in

Autonomous Ad Hoc Networks

In Chapter 6 we have proposed an attack-resistant resistant cooperation stimula-

tion system for autonomous ad hoc networks. However, the proposed schemes are

still heuristics. In this chapter we will formally address the security and coopera-

tion in autonomous ad hoc networks under a game theoretic framework.

Although this work also falls into the category of reputation-based cooperation

stimulation for autonomous ad hoc networks in a game theoretic framework, there

are several major differences which distinguish our work from the existing work,

such as [6, 26, 31, 59, 78, 80]. First, since ad hoc networks are usually deployed in

hostile environments, in this work not only selfish behavior, but also malicious

behavior has been considered. Malicious behavior has been overlooked in existing

work, but can cause severe trouble without necessary countermeasures. Second,

in this work the issues of cooperation and security have been studied under more
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realistic scenarios, e.g., the communication medium is error-prone. The analysis

shows that almost all the existing cooperation schemes will break down under such

scenarios. Third, unlike some existing work which assumes that nodes will honestly

report their private information (e.g., [78]), in this work the possible cheating

behavior has been fully exploited, and cheat-proof strategies have been devised.

Fourth, instead of only using Nash equilibrium, in this work other optimality

criteria, such as cheat-proofing and fairness, have also been considered.

This chapter is organized as follows. Section 7.1 focuses on a simple yet illumi-

nating two-player packet forwarding game and investigates the optimal cooperation

strategies. Section 7.2 identifies the underlying reasons why stimulating coopera-

tion under such scenarios is difficult and describes the secure routing and packet

forwarding game. In Section 7.3, a set of reputation-based attack-resistant coop-

eration stimulation strategies are devised. The analysis of the proposed strategies

are provided in Section 7.4 and Section 7.5. Extensive simulations have been

conducted to evaluate the effectiveness of the proposed strategies under various

scenarios, and the results are demonstrated in Section 7.6. Finally, Section 7.7

summarizes this chapter.

7.1 Two-node Packet Forwarding Game

We first study a simple yet illuminating two-node multi-stage packet forwarding

game, which is modeled as follows. There are two players (nodes) in this game,

denoted by N = {1, 2}. Each player needs its opponent to forward a certain

number of packets in each stage. To simplify the illustration, we assume that all

packets have the same size. For each player i, the cost to forward a packet is ci, and

the gain it can get for any packet that its opponent has forwarded for it is gi. Here

145



the cost can be the consumed energy and the gain is usually application-specific.

Let Bi be the number of packets that player i will request its opponent to forward

at each stage. The values of Bi, ci, and gi will be reported by both players to

each other, either honestly or dishonestly, before the game is started. It is also

reasonable to assume that gi ≥ ci, and there exists a cmax with ci ≤ cmax.

Let Ai = {0, 1, . . . , B3−i} denote the set of actions that player i can take in

each stage, where ai ∈ Ai denotes that player i will forward ai packets for its

opponent in this stage. We refer to an action profile a = (a1, a2) as an outcome

and denote the set A1×A2 of outcomes by A. Then in each stage players’ payoffs

are calculated as follows provided the action profile a being taken:

u1(a) = a2 × g1 − a1 × c1, u2(a) = a1 × g2 − a2 × c2. (7.1)

That is, the payoff of a player is the difference between the total gain it obtained

with the help of its opponent and the total cost it spent to help its opponent. We

refer to u(a) = (u1(a), u2(a)) as the payoff profile associated with the action profile

a. According to the backward induction principle [64], if this game will only be

played for fixed finite times, the only Nash equilibrium (NE) is a∗ = (0, 0), no

matter whether the two players move simultaneously or not. That is, if the game

will only be played for one time, no node will help its opponent. The same result

also holds for the case when the stage game will be played for only finite times and

the game termination time is known by both players.

Next we show that cooperation can still be achieved if the game will be played

for infinite times, or for finite times but no player knows the exact game termination

time. Let G denote the repeated version of the above one-stage packet forwarding

game. Let si denote player i’s behavior strategy, and let s = (s1, s2) denote the
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strategy profile. Next we consider the following two utility functions:

Ui(s) = lim
T→∞

1

T

T∑
t=0

ui(s), (7.2)

Ui(s, δ) = (1− δ)
∞∑

t=0

δtui(s) (7.3)

Utility function (7.2) can be used when the game will be played for infinite times.

The discounted version (7.3) can be used when the game will be played for finite

times, but no one knows the exact termination time. Here the discount factor

δ (with 0 < δ < 1) characterizes each player’s expected playing time. Since in

general the results obtained based on (7.2) can also be applied to the scenarios

when (7.3) is used as long as δ approaches to 1, in this section we will mainly focus

on (7.2).

Now we analyze the possible NE for the game G with utility function (7.2).

According to the Folk theorem [64], for every feasible and enforceable payoff profile,

there exists at least one NE to achieve it, where the set of feasible payoff profiles

for the above game is

V0 = convex hull{v
∣∣ ∃a ∈ A with u(a) = v}. (7.4)

and the set of enforceable payoff profiles, denoted by V1, is

V1 = {v
∣∣ v ∈ V0 and ∀i : vi ≥ vi, where vi = min

a−i∈A−i

max
ai∈Ai

ui(a−i, ai)}. (7.5)

Figure 7.1 depicts these sets for the game with B1 = 1 and B2 = 2, where the

vertical axis denotes player 1’s payoff and the horizontal axis denotes player 2’s

payoff. The payoff profiles inside the convex hull of {(0, 0), (g1,−c2), (g1−2c1, 2g2−
c2), (−2c1, 2g2)} (including the boundaries) are the set of feasible payoff profiles

V0, the set of payoff profiles inside the shading area (including the boundaries)

are the set of feasible and enforceable payoff profiles V1. We can easily check
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Figure 7.1: Feasible and enforceable payoff profiles

that as long as g1g2 > c1c2, there exist an infinite number of NE. To simplify

our illustration, in this chapter we will use x = (x1, x2) to denote the set of NE

strategies corresponding to the enforceable payoff profile (x2g1−x1c1, x1g2−x2c2).

7.1.1 Equilibrium Refinement

Based on the above analysis we can see that the infinitely repeated game G may

have an infinite number of NE. However, not all the obtained NE payoff profiles are

simultaneously acceptable to both players. For example, the payoff profile (0, 0)

will not be acceptable from both players’ point of view if they are rational. Further,

the existence of multiple NE payoff also requires nodes to make an agreement on

which NE strategy should be used, which also introduces extra trouble. Next

we show how to perform equilibrium refinement, that is, how to introduce new

optimality criteria to eliminate those NE solutions which are less rational, less

robust, or less likely.

When performing equilibrium refinement, the following optimality criteria will

be considered: Pareto optimality, subgame perfection, proportional fairness, and

absolute fairness. In the literature, Pareto optimality and fairness have been used

to refine the equilibrium in [78], and subgame perfection has been considered to
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remove empty threats in [80].

Subgame Perfection: Our first step towards refining the NE solutions is to

rule out those empty threats. This motivates the equilibrium refinement based on

more credible punishments known as subgame perfect equilibrium, which eliminates

those equilibria in which the players’ threats are empty. According to the perfect

Folk theorem [64], every strictly enforceable payoff profile v ∈ V2 is a subgame

perfect equilibrium payoff profile of the game G, where

V2 = {v ∣∣ v ∈ V0 and ∀i : vi > vi, where vi = min
a−i∈A−i

max
ai∈Ai

ui(a−i, ai)}. (7.6)

That is, after applying the criterion of subgame perfection, only a small set of NE

are removed.

Pareto Optimality: Our second step towards refining the set of NE solutions

is to apply the criterion of Pareto optimality1. It is easy to check that only those

payoff profiles lying on the boundary of the set V0 could be Pareto optimal. Let

V3 denote the subset of feasible payoff profiles which are also Pareto optimal.

For the case depicted in Figure 7.1, V3 is the set of payoff profiles which lie on

the segment between (g1,−c2) and (g1−2c1, 2g2− c2) and on the segment between

(g1−2c1, 2g2−c2) and (−2c1, 2g2). After applying the criterion of Pareto optimality,

although a large portion of NE have been removed from the feasible set, there still

exist an infinite number of NE. Let V4 = V3 ∩ V2.

Proportional Fairness: Next we try to further refine the solution set based

on the criterion of proportional fairness. Here a payoff profile is proportionally fair

if U1(s)U2(s) can be maximized, which can be achieved by maximizing u1(s)u2(s)

1Given a payoff profile v ∈ V0, v is said to be Pareto optimal if there is no v′ ∈ V0 for which

v′i > vi for all i ∈ N ; v is said to be strongly Pareto optimal if there is no v′ ∈ V0 for which

v′i ≥ vi for all i ∈ N and v′i > vi for some i ∈ N [64].
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in each stage. Then we can reduce the solution set to a unique point as follows:

x∗ =





(
c2
g2

+
g1
c1

2
B1, B1) if B1

B2
< 2

c2
g2

+
g1
c1

(B2, B1) if 2
c2
g2

+
g1
c1

≤ B1

B2
≤

c1
g1

+
g2
c2

2

(B2,
c1
g1

+
g2
c2

2
B2) if B1

B2
>

c1
g1

+
g2
c2

2

(7.7)

Absolute Fairness: In many situations, absolute fairness is also an important

criterion. We first consider absolute fairness in payoff, which refers to that the

payoff of these two players should be equal. By combining the criterion of Pareto

optimality, the optimal strategy profile should be

x∗ =





(g1+c2
g2+c1

B1, B1) if B1

B2
≤ g2+c1

g1+c2
,

(B2,
g2+c1
g1+c2

B2) if B1

B2
≥ g2+c1

g1+c2
.

(7.8)

Another similar criterion is absolute fairness in cost, which refers to that the cost

spent by these two players for each other should be equal. By combining the

criterion of Pareto optimality, the optimal strategy profile should be

x∗ =





( c2
c1

B1, B1) if B1

B2
≤ c1

c2
,

(B2,
c1
c2

B2) if B1

B2
≥ c1

c2
,

(7.9)

7.1.2 Cheat-proof Nash Equilibrium Strategies

It is worth noting that the above unique solutions (7.7), (7.8) and (7.9) require

players to reveal their private information to their opponents. While due to players’

selfishness, it’s unrealistic to expect them to honestly reveal their private informa-

tion. Further, to maximize their own payoffs, selfish players may tend to cheat

whenever they believe cheating can increase their payoffs. In this chapter, we refer

to a NE as cheat-proof if no player can further increase its payoff by revealing false

private information to its opponents.
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Figure 7.2: Player 1 falsely reports the value of π1

Now we study whether the obtained unique solutions are cheat-proof. We first

study the solution (7.7). Let πi = ci/gi denote player i’s cost-gain (CG) ratio. We

first analyze whether player i can increase its payoff by reporting a false CG ratio

given that player 2 will honestly report its CG value. That is, we fix the value of

π2, let π1 be player 1’s true value, and let π′1 be the value that player 1 will falsely

report with π′1 > π1. Let τ1 = 2
π2+ 1

π1

, τ2 =
π1+ 1

π2

2
, τ ′1 = 2

π2+ 1
π′1

, τ ′2 =
π′1+ 1

π2

2
. It is

easy to check that τ1 < τ ′1 and τ2 < τ ′2. Recall that Bi is the maximum number

of packets that player i will request its opponent to forward for it in each stage.

Let (x1, x2) denote the number of packets in average they will forward for each

other in each stage according to the solution (7.7) given that the true values of B1

and B2 are known by both players. The relationship between x2/x1 and B1/B2

under different situations is illustrated in Fig. 7.2(a) and Fig. 7.2(b). In these

two figures, the dashed curve corresponds to the relationship between x2/x1 and

B1/B2 given that player 1 honestly reports its CG value, which is π1; while the

solid curve corresponds to the relationship between x2/x1 and B1/B2 given that

player 1 falsely report its CG value, which is π′1.

From the results illustrated in Fig. 7.2 we can see that by falsely reporting a
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higher CG ratio, in most situations player 1 can increase the ratio of x2/x1. Next

we study the effect of falsely reporting a high CG ratio on player 1’s payoff. We

first consider the situation that τ ′1 ≤ τ2, which is illustrated in Fig. 7.2(a). In this

case the whole feasible space can be partitioned into 5 subareas along the feasible

range of B1/B2:

• For any value of B1/B2 inside range I, the solution corresponding to π1 is

(
π2+ 1

π1

2
B1, B1), and the solution corresponding to π′1 is (

π2+ 1
π′1

2
B1, B1). Since

π′1 > π1, by falsely reporting a higher CG ratio player 1 can forward less

packets for player 2 than it should, consequently increasing its own payoff.

• For any value of B1/B2 inside range II, the solution corresponding to π1

is (B2, B1), and the solution corresponding to π′1 is (
π2+ 1

π′1
2

B1, B1). Since

B2 >
π2+ 1

π′1
2

B1, by falsely reporting a higher CG ratio player 1 can forward

less packets for player 2 than it should, consequently increasing its own payoff.

• For any value of B1/B2 inside range III, the solution corresponding to π1 is

(B2, B1), and the solution corresponding to π′1 is also (B2, B1). That is, in

this situation by changing the value of π1 to π′1, player 1’s payoff will not

change.

• For any value of B1/B2 inside range IV, the solution corresponding to π1

is (B2,
π1+ 1

π2

2
B2), and the solution corresponding to π′1 is (B2, B1). Since

B1 >
π1+ 1

π2

2
B2, by falsely reporting a higher CG ratio player 1 can request

player 2 to forward more packets for it than player 2 should, consequently

increasing its own payoff.

• For any value of B1/B2 inside range V, the solution corresponding to π1 is

(B2,
π1+ 1

π2

2
B2), and the solution corresponding to π′1 is (B2,

π′1+ 1
π2

2
B2). Since
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Figure 7.3: Player 1 falsely reports its cost

π′1+ 1
π2

2
B2 >

π1+ 1
π2

2
B2, by falsely reporting a higher CG ratio player 1 can

request player 2 to forward more packets for it than player 2 should, and

consequently increases its own payoff.

Similar results can also be obtained for the case that τ ′1 > τ2, where now player 1

can increase its own payoff over all possible values of B1/B2 by falsely reporting a

higher π1 value given that π2 is fixed. In summary, by falsely reporting a higher

π1 value, in most situations player 1 can increase its payoff, and in no situations

player 1’s payoff will be decreased. Further, the higher player 1 reports the value

of CG ratio, the more benefit player 1 can get. Similarly, player 2 can also increase

its benefit by falsely reporting a higher CG ratio.

Next we consider the solution (7.8). Now let τ = g2+c1
g1+c2

, and τ ′ =
g2+c′1
g1+c2

, where

c1 < c′1. Fig. 7.3(a) illustrates the relationship between x2/x1 and B1/B2 for the

two different reported cost values c1 and c′1, where g1, g2 and c2 are fixed. Similar

as in Fig. 7.2, the dashed curve corresponds to the case that player 1 reports a

true cost value, while the solid curve corresponds to the case that player 1 reports

a false cost value. From Fig. 7.3(a) we can see that by falsely reporting a higher
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cost value, in all situations player 1 can increase the ratio of x2/x1. Next we

study the effect of falsely reporting a higher cost on player 1’s payoff. As shown in

Fig. 7.3(a), the whole space can be partitioned into 3 subareas along the feasible

range of B1/B2:

• For any value of B1/B2 inside range I, the solution corresponding to c1 is

(B1/τ, B1), and the solution corresponding to c′1 is (B1/τ
′, B1). Since τ ′ > τ ,

by falsely reporting a higher cost player 1 can forward less packets for player

2 than it should, then increase its own payoff.

• For any value of B1/B2 inside range II, the solution corresponding to c1 is

(B2, τB2), and the solution corresponding to c′1 is (B1/τ
′, B1). Since B1/τ

′ <

B2 and B1 > τB2, by falsely reporting a higher cost, player 1 can forward

less packets for player 2 than it should and request player 2 to forward more

packets for it than player 2 should, then increase its own payoff.

• For any value of B1/B2 inside range III, the solution corresponding to c1 is

(B2, τB2), and the solution corresponding to c′1 is (B2, τ
′B2). Since τ ′ > τ , by

falsely reporting a higher cost, player 1 can always request player 2 to forward

more packets for it than player 2 should do, and consequently increase its

own payoff.

In summary, by falsely reporting a higher c1 value, in all situations player 1 can

increase its payoff given that c2 and g2 are fixed. Further, the higher player 1

reports the value of c1, the more benefit player 1 can get. Applying similar analysis

it is also easy to show that by falsely reporting a lower g1 value, in all situations

player 1 can increase its payoff given that c2 and g2 are fixed. Similarly, player 2

can also increase its benefit by falsely reporting a higher c2 or a lower g2 given that
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g1 and c1 are fixed.

Now we consider the solution (7.9). Fig. 7.3(b) illustrates the relationship

between x2/x1 and B1/B2 for the two different reported cost values c1 and c′1 with

c′1 > c1 and c2 fixed. From Fig. 7.3(b) we can see that by falsely reporting a

higher c1 value, in all situations player 1 can increase the ratio of x2/x1. Applying

similar analysis as before, we can conclude that given c2 fixed, by falsely reporting

a higher c1 value, player 1 can always increase its payoff. Further, the higher player

1 reports the value of c1, the more benefit player 1 can get. Similarly, player 2 can

also increase its payoff by falsely reporting a higher c2 value given c1 fixed.

Based on the above analysis, it is surprising to see that none of them is cheat-

proof. Since all these unique solutions are strongly Pareto optimal, the increase of

its opponent’s payoff will lead to the decrease of its own payoff. Therefore players

have no incentive to honestly report their private information. On the contrary,

they will cheat whenever cheating can increase their payoff.

What is the consequence if both players will cheat? Let’s first examine the

solution (7.7). In this case, based on the above analysis, both players will report a

ci/gi value as high as possible. Since we have assumed gi ≥ ci and ci ≤ cmax, both

player will set gi = ci = cmax, and the solution (7.7) will become the following

form:

x∗ = (min(B1, B2), min(B1, B2)). (7.10)

After applying similar analysis for the solutions (7.8) and (7.9), it is surprising

to see, but easy to understand, that both will also converge to the form (7.10).

Accordingly, the corresponding payoff profile is

v∗ = ((g1 − c1) min{B1, B2}, (g2 − c2) min{B1, B2}) . (7.11)

Besides gi and ci, players can also report false Bi information. However, it is
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easy to check that a rational player should always report a true Bi value. Next we

use player 1 as an example to show this. If B1 ≤ B2, reporting a higher B1 can only

increase the number of packets it should forward for player 2, which introduces no

gain to it, while by reporting a lower B1, although it can decrease the number of

packets forwarded for player 2, the number of its own packets forwarded by player 2

will also be decreased and cannot introduce gain to it too due to g1 ≥ c1. Similarly,

if B1 > B2, reporting a higher B1 will not affect the solution, while reporting a

lower B1 may also reduce the number of packets that player 2 will forward for it,

which introduces no gain as long as g1 ≥ c1. Therefore, player 1 should not report

a false B1 value. The same analysis also applies to player 2.

In summary, when cheating behavior is considered, all the above unique solu-

tions converge to the same form as in (7.10) with payoff being (7.11), that is, in

the two-player packet forwarding game, in order to maximize its own payoff and be

resistant to possible cheating behavior, a player should not forward more packets

than its opponent does for it. A simple NE strategy to achieve the payoff profile

(7.11) is as follows:

Two-node cheat-proof packet forwarding strategy: For each player i ∈ N ,

in each stage it should forward min(B1, B2) packets for its opponent unless there

was a previous stage in which its opponent has forwarded less than min(B1, B2)

packets for it, in which case it will stop forwarding packets for its opponent for-

ever.

7.1.3 Remarks

The strategies proposed in [78, 80] may look similar to the one described above.

In [78] Srinivasan et al. studied the cooperation in ad hoc networks by focusing on
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the energy-efficient aspects of cooperation, where in their solution the nodes are

classified into different energy classes and the behavior of each node depends on

the energy classes of the participants of each connection. They have demonstrated

that if two nodes belong to the same class, they should apply the same packet

forwarding ratio. However, they require nodes to honestly report their classes, and

a node can easily cheat to increase its own performance, such as the approach

mentioned in [31] (section VIII). Meanwhile, using normalized throughput alone

as the performance metric may not be a good choice in general, as to be explained

in the section 7.5.3.

In [80], Urpi et al. claimed that it is not possible to force a node to forward

more packets than it sends on average (Lemma 6.2), and then concluded that

cooperation can be enforced in a mobile ad hoc network, provided that enough

members of the network agree on it, and if no node has to forward more traffic

that it generates (Theorem 6.3). However, the above analysis has shown that a

strategy profile can still be enforceable even this may require a node to forward

more packets than it sends on average, as illustrated in solutions (7.7), (7.8) and

(7.9). Second, in mobile ad hoc network, due to the multihop nature, in general

the number of packets a node forwards should be much more than the number of

packets it generates. Accordingly, their strategy cannot enforce cooperation at all

in most scenarios.

One major contribution of our analysis lies in that we have exploited all the

possible NE strategies, demonstrated why some strategies are not good, why they

cannot be acceptable by the players, and why the solution (7.10) is the only one

that should be adopted. In other words, we have provided more insight and physical

meaning for the solution (7.10).
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The works presented in [7,100] are also related to ours in the sense that cheating

behavior has also been considered. They have proposed auction-based schemes to

stimulate packet forwarding participation, where by using VCG-based second price

auctioning these schemes force selfish nodes to honestly report their true private

information (such as cost) to maximize their profit. However, in their schemes, a

trusted third-party auctioneer is required per route selection and central banking

services are needed to handle billing information, which usually cannot be satisfied

in mobile ad hoc network. In our work, we focus on the scenario that neither trusted

third-party auctioneer nor central banking service is available.

7.2 Secure Routing and Packet Forwarding Game

Now we investigate how to stimulate cooperation among selfish nodes in au-

tonomous mobile ad hoc networks under realistic scenarios, by also taking into

consideration possible malicious behavior. We consider an autonomous mobile ad

hoc networks with a finite population of users, denoted by N . We do not assume

the availability of any tamper-proof hardware or central banking service, there-

fore the scheme should be completely reputation-based. We focus on the situation

that each user will stay in the network for a relatively long time, such as those

students in a campus. But we do not require them to keep connected all time,

and we allow users to leave and join the network if necessary. The goal is not to

enforce all the users to act in a fully cooperative fashion at all time, which has

been shown in [31, 100] to be not achievable in most situations. Instead, the goal

is to stimulate cooperation among nodes as much as possible through playing re-

ciprocal altruism, and at the same time take into consideration possible cheating

and malicious behavior as well as fairness concern.
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We assume that each user has a unique registered and verifiable identity (e.g.,

a public/private key pair), which is issued by some central authority and will

be used to perform necessary access control and authentication. Each node may

send information to the others or request information from the others. We focus

on the information-push model, where it is the source’s duty to guarantee the

successful delivery of packets to their destinations. But the obtained results can

be easily extended to the information-pull model. We assume that for each user

i ∈ N , forwarding a packet will incur cost ci, and letting a packet be successfully

delivered to its destination can bring it gain gi. Here the cost corresponds to

the efforts spent by i, such as energy, and the gain is usually user-specific and/or

application-specific.

Before devising cooperation stimulation strategies for autonomous mobile ad

hoc networks, we first pose some challenges that we may meet. First, most previ-

ous work addresses cooperation enforcement under a repeated game model, such

as [6, 31, 78, 80], which assume either random connection or fixed setup. However,

the repeated model rarely holds in autonomous mobile ad hoc networks due to

the topology change and variable request rate. In such networks, a source may

request different nodes to forward packets at differen time and may act as a relay

for different sources. Meanwhile, the request rates of each node to other nodes

are usually variable, which can be caused either by its inherent variable traffic

generation rate, or by mobility. A direct consequence of non-repeated model is

that favors cannot be simultaneous granted. In [28], Dawkins demonstrated that

reciprocal altruism is beneficial for every ecological system when favors are granted

simultaneously. However, when favors cannot be granted simultaneously, altruism

may not guarantee satisfactory future payback, especially when the future is un-
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predictable. This makes cooperation stimulation in autonomous mobile ad hoc

networks an extremely challenging task.

Second, in wireless networks, noise is inevitable and can cause severe trouble.

For two-player cheat-proof packet forwarding strategy, if some packets are dropped

due to noise, the game will be terminated immediately, and the performance will

be degraded dramatically. This will also happen in most existing cooperation

enforcement schemes, such as [31,78]. In these schemes, noise can easily lead to the

collapse of the whole network, where finally all nodes will act non-cooperatively.

Distinguishing the misbehavior caused by noise from those caused by malicious

intention is a challenging task.

Third, since nodes can only base on what they have observed to make their

decisions, imperfect monitoring can always be taken advantage of by greedy or

malicious nodes to increase their performance. For example, when the miss detect

ratio is high, a node can always drop other nodes’ packets but still claim that it has

forwarded. None of the existing approaches are designed with the consideration of

noise and imperfect monitoring, which greatly limits their potential applications

in realistic scenarios.

Fourth, since autonomous mobile ad hoc networks are usually deployed in ad-

versarial environments, some nodes may even be malicious. If there exist only

selfish nodes, stimulating cooperation will be much easier according to the follow-

ing logic as demonstrated in [31]: misbehavior can result in the decrease of service

quality experienced by some other nodes, which may consequently decrease the

quality of service provided by them; this quality degradation will then be propa-

gated back to the misbehaving nodes. Therefore selfish nodes have no incentive

to intentionally behave maliciously in order to enjoy high quality of service. How-
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ever, this is not true when some nodes are malicious. Since the attackers’ goal is to

decrease the network performance, such quality degradation is exactly what they

want to see. This makes cooperation stimulation in hostile environments extremely

challenging. Unfortunately, malicious behaviors have been heavily overlooked when

designing cooperation stimulation strategies.

In order to formally analyze cooperation and security in such networks, similar

as in Chapter 5, we also model the interactions among nodes as secure routing

and packet forwarding game:

• Players: A finite set of network users, denoted by N .

• Types: Each player i ∈ N has a type θi ∈ Θ where Θ = {selfish, malicious}.
Let Ns denote the set of selfish players and Nm = N−Ns the set of attackers.

Meanwhile, no play knows the others’ types a priori.

• Strategy space:

1. Route participation stage: For each player, after receiving a request

asking it to be on a certain route, it can either accept or refuse this

request.

2. Route selection stage: For each player who has a packet to send,

after discovering a valid route, it can either use or not use this route to

send the packet.

3. Packet forwarding stage: For each relay, once it has received a packet

requiring it to forward, its decision can be either forward or drop this

packet.

• Cost: For any player i, transmitting a packet, either for itself or for the

others, will incur cost ci.
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• Gain: For each selfish player i, it can get gain gi for any successfully delivered

packet originating from it.

• Utility: For each player i, let Ti(t) denote the number of packets that i

needs to send by time t, let Si(t) denote the number of packets that have

successfully reached their destinations by time t with i being the source, let

Fi(j, t) denote the number of packets that i has forwarded for j by time t,

and let Fi(t) =
∑

j∈N Fi(j, t). Let Wi(j, t) denote the total number of useless

packet transmissions that i has caused to j by time t due to i dropping those

packets transmitted by j. Let tf be the lifetime of this network. Then we

model the players’ utility as follows:

1. For any selfish player i, its objective is to maximize

U s
i (tf ) =

Si(tf )gi − Fi(tf )ci

Ti(tf )
. (7.12)

2. For any attacker j, its objective is to maximize

Um
j (tf ) =

1
tf

∑

i∈N

(Wj(i, tf ) + Fi(j, tf )) ci − αFj(tf )cj . (7.13)

Here α is introduced to determine the relative importance of attackers’ cost

comparing to other nodes’ cost. That is, it is worth spending cost c to cause

damage c′ to other nodes only if α < c′
c
. If the game will be played for an infi-

nite duration, their utilities will become limtf→∞ U s
i (tf ) and limtf→∞ Um

j (tf ),

respectively.

On the right-hand side of (7.12), the numerator denotes the net profit (i.e.,

total gain minus total cost) that the selfish node i obtained, and the denominator

denotes the total number of packets that i needs to send. This utility represents

the average net profit that i can obtain per packet. We can see that maximizing
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(7.12) is equivalent to maximizing the total number of successfully delivered packets

subject to the total cost constraint. If ci = 0, this equals to maximizing the

throughput.

The summation in the right-hand side of (7.13) represents the net damage

caused to the other nodes by j. Since in general this value may increase monoton-

ically, we normalize it using the network lifetime tf . Now this utility represents

the average net damage that j caused to the other nodes per time unit. From

(7.13) we can see that in this game setting the attackers’ goal is to waste the other

nodes’ cost (or energy) as much as possible. Other possible alternatives, such as

minimizing the others’ payoff, will also be discussed later.

7.3 Attack-Resistant Cooperation Stimulation

Before devising attack-resistent cooperation stimulation strategies, we first study

how to handle possible malicious behavior. We focus on two classes of attacks:

drop packet attack and inject traffic attack. Next we show how to detect drop

packet attack under noise and imperfect monitoring.

Let Ri(j, t) denote the number of packets that j has agreed to forward for i by

time t, and let Hi(j, t) denote the times that i has observed j forwarding a packet

for it. If j has never intentionally drop i’s packets, given pe, pf and pm, for a large

Ri(j, t), we should have

poRi(j, t) ≤ Hi(j, t) ≤ (1− pe + pepm)Ri(j, t), (7.14)

with po = (1− pe)(1− pf ). Then a simple detection rule can be as follows: node i

will mark node j as intentionally dropping packets if the following holds

Hi(j, t) < Ri(j, t)po −∆(Ri(j, t), pe, pf , pm), (7.15)
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where ∆(n, pe, pf , pm) is a function of pe, pf , pm, and n. In general, there is a

tradeoff when selecting ∆(n, pe, pf , pm). A large ∆(n, pe, pf , pm) may incur high

miss detect ratio, while a small ∆(n, pe, pf , pm) may result in high false alarm

ratio.

Next we show how to choose a good ∆(n, pe, pf , pm). If the packet dropping

due to noise can be modeled as an i.i.d. random process with drop probability pe,

and the observation errors are also i.i.d. random processes, and all are independent

of each other, then according to the central limit theorem [49], for any x ∈ R, we

have

lim
Ri(j,t)→∞

Prob

(
Hi(j, t)−Ri(j, t)po√

Ri(j, t)po(1− po)
≥ x

)
≥ 1− Φ(x), (7.16)

where

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt. (7.17)

Then we can let

∆(n, pe, pf , pm) = x
√

npo(1− po). (7.18)

In this case, the false alarm ratio will be no more than 1 − Φ(x) when Ri(j, t)

is large. Since in general Φ(x) can still approach 1 even for a small positive x,

∆(n, pe, pf , pm) will be a very small value comparing to npo for a large n. How-

ever, in general neither packet dropping nor observation error is i.i.d. Under such

circumstances, if the above detection rule is used, the false alarm ratio will usually

be larger than 1 − Φ(x). To handle non-i.i.d. scenario, one way is to increase

∆(n, pe, pf , pm), such as increasing x.

Let β denote i’s confidence on its detection decision, which lies in the range of

[0,1], with 0 indicating that i has not marked j as malicious and with 1 indicating

that i is sure that j is malicious. Then we can have β = Φ(x) for the i.i.d. scenarios

and β < Φ(x) for the non-i.i.d. scenarios. In the following of this chapter we will
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use ∆(n, pe, pf , pm, β) to denote the detection threshold with detection confidence

β.

Once node i has marked node j as intentionally dropping packets, one possible

rule is that it should not work with j again. However, such rule has a drawback

that if j has been mistakenly marked as malicious, it can never recover, since i

will not give it any chance. To overcome this drawback, we modify this decision

rule such that j will be given chance to recover, which will be described in the

following.

Next we present attack-resistant cooperation stimulation strategies. The strate-

gies for non-malicious players involve decision making in the following three stages:

route participation stage, route selection stage, and packet forwarding stage.

Route participation stage We first study what decision a selfish node i

should make when it receives a route participation request from node j. First, if

i has detected j as malicious with confidence β, with probability 1 − β it should

immediately refuse this request. Second, even if j has not been marked as malicious

by i, i should accept this request only if it believes that it can get help from j later.

However, whether i can get help from j depends on a lot of uncertain factors, such

as i’s and j’s future requests, the changing network topology, j’s strategy, and

so on. For example, if i will never need j’s help, or if i knows that this is the

last packet j will send, i will have no incentive to help j. However, due to the

unpredictability of future and favors not being granted simultaneously, stimulating

i to act cooperatively is difficult.

In this chapter we focus on the scenario that nodes will stay in the network for a

relatively long time. We consider the following strategy: a node may first forward

some packets for other nodes without getting instantaneous payback. However,
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in order to be robust to possible malicious behavior (e.g., inject traffic attack)

or greedy behavior (e.g., request more but return less), a node should not be

too generous. Before formalizing the above strategy, we first introduce a simple

procedure: let β be i’s confidence on whether j is malicious, i then randomly picks

a value r between 0 and 1, and will give j another chance if r < 1 − β. We

refer to this procedure as recovery check procedure. Let F̃j(i, t) be i’s estimate of

Fj(i, t). Then the above strategy can be translated as follows: i will accept j’s

route participation request only if j has passed recovery check and the following

holds:

Fi(j, t)− F̃j(i, t) < Dmax
i (j, t) (7.19)

We refer to Fi(j, t)− F̃j(i, t) as i’s estimated balance with j, and refer to Dmax
i (j, t)

as cooperation level. Here Dmax
i (j, t) is a threshold set by i for two purposes: 1)

stimulating cooperation between i and j, and 2) limiting the possible damage that

j can cause to i. Setting Dmax
i (j, t) to be ∞ means that i will always help j,

setting Dmax
i (j, t) to be −∞ means that i will never help j. By letting Dmax

i (j, t)

to be positive, i agrees to forward some extra packets for j without getting instant

payback. Meanwhile, unlike acting fully cooperatively, the extra number of packets

that i will forward for j will be no more than Dmax
i (j, t), which can limit that

possible damage when j plays non-cooperatively. This is analogous to a credit

card system where Dmax
i (j, t) can be regarded as the credit line that i sets for j at

time t. Like credit card company adjusts your credit line, Dmax
i (j, t) can also be

adjusted by i over time. In this sense, we can also refer to Dmax
i (j, t) as the credit

line that i sets for j.

It is easy to see that an optimal setting of credit lines is crucial to effective

cooperation stimulation in noisy and hostile environments. Next we use nodes i
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and j as example to illustrate how to set good credit lines. If the request rates

between i and j are constant, then setting the credit line to be 1 will be optimal

in the sense that no request will be refused when two nodes have the same request

rate. However, due to mobility and nodes’ inherent variable traffic generation

rates, the request rates between i and j are usually not constant. In this case, if

the credit lines are set to be too small, some requests will be refused even when

the average request rates between them are equal. Let fi(j, t) denote the number

of times that i needs j to help forward packets by time t. If we set the credit lines

as follows:

Dmax
i (j) = max

t
{1, fi(j, t)− fj(i, t)}, Dmax

j (i) = max
t
{1, fj(i, t)− fi(j, t)}, (7.20)

then except the first several requests, no other requests will be refused when the

average request rates between them are equal. If the average request rates between

them are not equal, assuming that limt→∞
fi(j,t)
fj(i,t)

> 1, then no matter how large

Dmax
i (j) is, a certain portion of i’s requests will have to be refused. This makes

sense: to maintain ceratin fairness, j has no incentive to forward more packets for i.

This also suggests that arbitrarily increasing credit lines cannot always increase the

number of accepted requests. It is worth pointing out that (7.20) requires fi(j, t)

and fj(i, t) to be known by i and j. However, such prior knowledge is usually not

available since each node may not know a priori the others’ request rates as well

as its request rates to the others. Extensive simulations haven been conducted to

study the effect of cooperation level, and the results suggest that when all nodes

almost have equal request rates, a relatively small cooperation level can work well.

In order for the above strategy to work well, node i needs to have a good

estimate of Fj(i, t) for any other node j and needs to select a good cooperation

level. We first study how to get a good estimate of Fj(i, t). If i can have accurate
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knowledge of monitoring errors experienced by j, denoted by p̃f and p̃m, then we

should have

Fj(i, t)((1− pe)(1− p̃f ) + pep̃m) ' Hi(j, t). (7.21)

Then a good estimate of Fj(i, t) can be

F̃j(i, t) =
Hi(j, t)

(1− pe)(1− p̃f ) + pep̃m

(7.22)

However, in general i cannot accurately estimate p̃f and p̃m. In such scenarios, a

more conservative estimate can be

F̃j(i, t) =
Hi(j, t)

(1− pe)(1− pf )
. (7.23)

Consequently, j can take advantage of such inaccuracy to forward less packets for

i, or ask i to forward more packets for it, which will be further investigated in later

sections.

It has been shown in [31] that topology will also play a critical role in enforcing

cooperation for fixed ad hoc networks, and in most situations cooperation cannot

be enforced. For example, a node in a bad location may never be able to get help

from other nodes due to that no one will need it to forward packets. In this work

we focus on mobile ad hoc networks. In such networks, a node in a bad location

at a certain time may move to a better location later, or vice versa. This suggests

that when a node receives a packet forwarding request from another node, it should

not refuse this request only simply because the requester cannot help it currently,

since the requester may be able to help later. That is, mobility can help alleviate

the effect of topology dependence.

Route selection stage: Next we study the strategy in the route selection stage.

Once a set of routes have been discovered by node i with all relays on these routes

having agreed to forward packets for it, the following strategy will be taken by i:
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first, i will not further consider this route if any relay cannot pass recovery check;

second, among all those routes with all nodes having passed recovery check, i will

pick the one with the minimum number of hops.

Packet forwarding stage: Now we consider the strategy in the packet forwarding

stage. For any selfish node, once it has agreed to forward a packet for a certain

node, it should not intentionally drop this packet unless the following can hold:

(1− pe)(1− p̃f ) + pep̃m ≤ p̃m. (7.24)

That is, p̃f + p̃m ≥ 1, where p̃f and p̃m are the actual false alarm ratio and miss

detect ratio experienced by the node. If (7.24) holds, this means that the chance

that it will be marked as malicious even after dropping all the packets will still

be no more than forwarding all packets due to the high monitoring inaccuracy.

However, if (7.24) cannot hold, intentionally dropping packets will not be a good

strategy if it still need others’ help, since such dropping may cause it to be detected

as malicious and consequently cannot get help from other nodes in the future.

Let β(i, j) denote i’s confidence on whether j is malicious. By combining

the attacker detection strategy and the routing and packet forwarding strategies

described above, we devise the following attack-resistant cooperation stimulation

strategy:

Attack-Resistant Cooperation Stimulation Strategy: For each single

routing and packet forwarding subgame, assuming that P1 is the initiator who wants

to send a packet to Pn at time t, and a route “P1 → P2 → · · · → Pn” has

been discovered by P1. After P1 has sent requests to all the relays on this route

asking them to participate, for each non-malicious player on this route the following

strategies should be taken:

1. In the route participation stage: For any relay Pi, it will accept this re-
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quest if and only if P1 can pass recovery check and FPi
(P1, t) − F̃P1(Pi, t) <

Dmax
Pi

(P1, t); otherwise, it should refuse.

2. In the route selection stage: P1 will use this route if and only if all relays

on this routes have passed recovery check and this route has the minimum

number of hops among all those routes with all relays having passed recovery

check; otherwise, P1 should not use this route.

3. In the packet forwarding stage: For any relay Pi, it will forward this packet

if and only if it has agreed to be on this route and (7.24) does not hold;

otherwise, it should drop.

4. Attacker detection: Let β be an acceptable false alarm ratio from P1’s point

of view. Then it will mark a relay Pj as malicious if (7.15) holds with i = P1,

j = Pi. Consequently, P1 updates β(P1, Pj) using β.

7.4 Strategy Analysis under Noise yet Perfect

Monitoring

We first analyze the optimality of the proposed strategies under noise but perfect

monitoring. We first consider an infinite lifetime situation with Ti(t) → ∞ as

t →∞. The finite lifetime situation will be discussed later. We assume that credit

lines are set in such a way that 1) for any node i,

lim
t→∞

Dmax
i (j, t)

Ti(t)
= 0, (7.25)

and 2) for any pair of nodes i and j, when limt→∞
fi(j,t)
fj(i,t)

≤ 1, at most a finite

number of i’s requests will be refused by j.
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Lemma 7.4.1 For any selfish node i ∈ N in the secure routing and packet for-

warding game with no attackers, once i has received a route participation request

from any other node j ∈ N , if the attack-resistant cooperation strategy is used by

player j, then accepting the request is always an optimal decision from the point of

view of player i.

Proof From player i’s point of view, refusing the request may cause it to lack

enough balance to request player j to forward packets for it in the future (i.e.,

Dj(i, t) > Dmax
j (i, t)), while agreeing to forward the packet will not introduce any

performance loss due to the assumption (7.25). Therefore, accepting the request

is an optimal decision.

Lemma 7.4.2 In the secure routing and packet forwarding game where some packet

forwarding decisions may not be perfectly executed, from the point of view of any

player j ∈ N , if the multi-node attack-resistant and cheat-proof cooperation strat-

egy is followed by all the other nodes, in the packet forwarding stage intentionally

dropping a packet that it has agreed to forward cannot bring it any gain.

Proof When a player j ∈ N intentionally drops a packet that it has agreed to

forward for any other player i ∈ N , it cannot get any gain except saving the cost

to transmit this packet. However, since player i follows the multi-node attack-

resistant and cheat-proof cooperation strategy, that is, it will always try to main-

tain limt→∞
Fi(j,t)
Fj(i,t)

≥ 1, by dropping this packet, player j also loses a chance to

request player i to forward a packet for it. To get the chance back, player j has

to forward another packet for player i. Therefore, intentionally dropping a packet

cannot bring any gain to player j.

Theorem 7.4.3 In the secure routing and packet forwarding game with no attack-
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ers, the strategy profile that all players follow the multi-node attack-resistant and

cheat-proof cooperation strategy forms a subgame perfect equilibrium, is cheat-proof,

and achieves absolute fairness in cost if ci = c for all i ∈ N . If 0 < limt→∞
Ti(t)
Tj(t)

<

∞ for any i, j ∈ N , this strategy profile is also strongly Pareto optimal.

Proof We first prove that this strategy profile forms a subgame perfect equi-

librium. Since this multi-player game can be decomposed into many two-player

subgames, we only need to consider the two-player subgame played by player i

and player j. Suppose that player j does not follow the above strategy, that is,

either it will refuse to forward packets for player i when it should, or will inten-

tionally drop packets that it has agreed to forward for player i, or it will forward

more packets than it should for player i, or it will use non-minimum cost routes to

send packets. First, from Lemma 7.4.1 and Lemma 7.4.2 we know that refusing to

forward packets for other players when it should or intentionally dropping packets

that it has agreed to forward will not introduce any performance gain. Second,

forwarding much more packets (i.e., more than Dmax
i (j, t)) than player j has for-

warded for it will not increase its own payoff too according to the assumption of

credit line selections. Third, using a non-minimum cost route to send packet will

decrease its expected gain. Based on the above analysis we can conclude that the

above strategy profile (the multi-player attack-resistant and cheat-proof cooper-

ation strategy) forms a Nash equilibrium. To check that the profile is subgame

perfect, note that in every subgame off the equilibrium path the strategies are

either to play non-cooperatively forever if player j has dropped a certain number

of packets that it has agreed to forward for player i, which is a Nash equilibrium,

or still to play the multi-player cheat-proof packet forwarding strategy, which is

also a Nash equilibrium.
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Since no private information has been involved, based on the analysis presented

in section 7.1, we can conclude that the proposed cooperation stimulation strategy

is cheat-proof.

Since we have Fi(j, t) − Fj(i, t) < Dmax
i (j, t) for any player i, j ∈ N and

limt→∞
Dmax

i (j,t)

Ti(t)
= 0, and we have assumed that ci = c for all i ∈ N , it always

holds that

lim
t→∞

∑
j∈N,j 6=i Fi(j, t)∑
j∈N,j 6=i Fj(i, t)

= 1. (7.26)

That is, this strategy can achieve absolute fairness in cost.

Now we show that the strategy profile is strongly Pareto optimal. From payoff

function (7.12) we can see that to increase its own payoff, a player i can either

try to increase Si(t) or decrease Fi(t). However, according to the above strategy,

minimum cost routes have been used, therefore Fi(t) cannot be further decreased

without affecting the others’ payoff. In order to increase its payoff, the only way

that player i can do is to increase limt→∞
Si(t)
Ti(t)

, which means that some other players

will have to forward more packets for player i. Since all Ti(t)’s are in the same

order, increasing player i’s payoff will definitely decrease other players’ payoff.

Therefore the above strategy profile is strongly Pareto optimal.

In the proof of Theorem 7.4.3 we have assumed that 1) Dmax
i (j, t) is large

enough such that forwarding Dmax
i (j, t) more packets than player j has forwarded

for it will not increase its own payoff, and 2) Dmax
i (j, t) is also small enough such

that limt→∞
Dmax

i (j,t)

Ti(t)
= 0. If Dmax

i (j, t) cannot satisfy the above two requirements,

the proposed strategy profile is not necessarily a Nash equilibrium. Finding a

Dmax
i (j, t) value to satisfy the first requirement is easy, while to satisfy both re-

quirements may be difficult or may even be impossible when nodes’ requests rates

and mobility patterns are not known a priori, which also explains why stimulating
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cooperation in real autonomous mobile ad hoc networks is extremely challenging.

However, our simulation results show that in many situations even an non-optimal

Dmax
i (j, t), such as a reasonably large constant, can still effectively stimulate co-

operation.

From the above analysis we can see that as long as gi is larger than certain

value, such as (1− pe)
Lmaxgi > Lmaxci where Lmax is system parameter to indicate

the maximum possible number of hops that a route is allowed to have, then varying

gi will not change the strategy design.

Until now we have mainly focused on the situation that the game will be played

for an infinite duration. In most situations, a node will only stay in the network for

a finite duration. In this case, for each player i, if Dmax
i (j) is too large, due to its

finite staying time, it may have helped its opponents much more than its opponents

have helped it, while if Dmax
i (j) is too small, it may suffer the problems of lacking

enough nodes to forward packets for it. How to select a good Dmax
i (j) remains as

a challenge. section 7.6 has studied the tradeoff between the value of Dmax
i (j) and

the performance through simulations, which shows that under given simulation

scenarios a relatively small Dmax
i (j) value will be good enough to achieve near-

optimal performance (compared with setting Dmax
i (j) to be ∞) and good fairness

(compared with absolute fairness in cost). Here it is also worth pointing out that

the optimality of the proposed strategies cannot be guaranteed in finite duration

scenarios.

Now we analyze the multi-node attack-resistant and cheat-proof cooperation

strategies in the presence of attackers. The following two widely used attack models

are considered: dropping packet attack and injecting traffic attack. To simplify

our illustration, we assume that ci = c and gi = g for all i ∈ N .
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We first study dropping packet attack. By dropping other nodes’ packets,

attackers can decrease the network throughput and waste other nodes’ limited

resources, such as energy. Recall that an attacker detection mechanism has been

applied in the proposed cooperation strategy, from an attacker’s point of view,

dropping all the packets passing it may not be a good strategy since this can be

easily detected and a detected attacker cannot cause damage any more. Intuitively,

in order to maximize the damage, attackers should selectively drop some portion

of packets to avoid being detected. According to the multi-node attack-resistant

and cheat-proof cooperation strategy, the maximum number of packets that an

attacker can drop without being detected is upper-bounded by npe+x
√

npe(1− pe)

where n is the times that it has agreed to forward. That is, it has to forward at

least n(1− pe)− x
√

npe(1− pe) packets. However, among those dropped packets,

n(1−pe) packets are due to noise, which will be there even no attackers are present.

Thus, the extra damage is upper-bounded by x
√

npe(1− pe)c, while the extra cost

is n(1− pe)c− x
√

npe(1− pe)c. Since for any constant value x ∈ R+ we have

lim
n→∞

x
√

npe(1− pe)

n(1− pe)
= 0, (7.27)

selectively dropping packets can bring no gain to the attackers. In other words,

if the game will be played for an infinite duration, dropping packet attack cannot

cause damage to selfish nodes.

Now we study injecting traffic attack. By injecting an overwhelming amount

of packets to the network, attackers can consume other nodes’ resources (e.g.,

energy) once they help the attackers forward these packets. Since for each selfish

node i ∈ Ns, we have Di(j, t) ≤ Dmax
i (j, t), the maximum number of packets that

an attacker j can request i to forward without paying back is upper-bounded by

Dmax
i (j, t). Therefore, the damage that can be caused by injecting traffic attack is
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bounded and limited, and will become negligible when limt→∞
Dmax

i (j,t)

Ti(t)
= 0 (e.g.,

Dmax
i (j, t) is a large constant).

Based on the above analysis we can also see that when the multi-node attack-

resistant and cheat-proof strategy is used by all selfish nodes, attackers can only

caused limited damage to the network. Further, the relative damage will go to 0

when the game will be played for an infinite duration. Since Ri(j, t) and Fj(i, t)

are in the same order, for any constant value x ∈ R+, we always have

lim
Ri(j,t)→∞

x
√

Ri(j, t)p(1− p)

Fj(i, t)
= 0. (7.28)

Therefore, except some false positive, selfish players’ overall payoff will not be

affected under attacks. Although false positive may cause a node not to be able to

get help from those who have been mistakenly detected as malicious or from those

whom it has mistakenly detected as malicious, this will not become a big issue since

the false positive probability can be made approach to 0 by using a large constant

x without decreasing the overall payoff. From the above analysis we can also see

that no matter what objectives the attackers have and what attacking strategy they

use, as long as selfish nodes employ the multi-node attack-resistant and cheat-proof

cooperation strategy, the selfish nodes’ performance can be guaranteed.

Based on the above analysis we can conclude that for the infinite duration case

an attacker j’s overall payoff is upper-bounded by

Um
j ≤ lim

t→∞

∑
i∈Ns

Dmax
i (j, t)

t
c, (7.29)

provided that all selfish nodes follow the multi-node attack-resistant and cheat-

proof cooperation strategy. This upper-bound can be achieved by the following

attacking strategy:

Optimal Attacking Strategy: In the secure routing and packet forwarding
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game, for any attacker j ∈ Nm, it should always refuse in the route participation

stage, should always pick the route including no attackers in the route selection

stage, and should not forward packets in the packet forwarding stage.

Following similar arguments as in the proof of Theorem 7.4.3, we can also

show that in the infinite duration secure routing and packet forwarding game,

the strategy profile where all selfish players follow the multi-node attack-resistant

and cheat-proof cooperation strategy and all attackers follow the above optimal

attacking strategy forms a subgame perfect equilibrium, is cheat-proof and strongly

Pareto optimal, and achieves absolute fairness in cost under some mild conditions.

When the game will only be played for a finite duration, the above attack-

ing strategy is not optimal any more. Now the attackers can try to drop some

nodes’ packets without being detected, since the statistical dropping packet at-

tacker detection will not be initiated unless having collected enough interactions

to avoid high false positive probability. In this case, selfish nodes’ performance

will be degraded a little bit. However, as long as the game will be played for a

reasonably long time, which is the focus of this chapter, the relative damage is still

insignificant.

7.5 Strategy Analysis Under Noise and Imper-

fect Monitoring

This section analyzes the performance of the devised strategies, identifies the con-

ditions under which they can or cannot work well and why, and quantifies the

maximum possible damage that the attackers can cause.
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7.5.1 Performance Analysis under No Attacks

We first consider the decisions made by the relays in the packet forwarding stage.

As long as (7.24) does not hold and the source i can get an accurate estimate

of Fj(i, t), from any selfish node’s point of view, the only gain after intentionally

dropping a packet is saving cost cj, while the penalty includes the increase of

probability being marked as malicious by i and the decrease of the number of

packets that i will forward for j in the future. Therefore j has no incentive to

intentionally dropping packets in such scenarios.

What is the consequence of inaccurate estimate of Fj(i, t)? Let’s assume that

p̃f and p̃m are the actual false alarm and miss detect ratios experienced by j, and

i does not know it. In this case, i may use (7.22) to estimate Fj(i, t), and we have

Fj(i, t)

F̃j(i, t)
' (1− pe)(1− pf )

(1− pe)(1− p̃f ) + pep̃m

. (7.30)

If p̃f < pf , then we have F̃j(i, t) > Fj(i, t), and consequently

lim
Fi(j,t)→∞

(
Fj(i, t)

Fi(j, t)

)
=

(1− pe)(1− pf )

(1− pe)(1− p̃f ) + pep̃m

. (7.31)

In other words, node j can take advantage of imperfect monitoring to increase

its performance by forwarding less packets for node i. However, if the underlying

monitoring mechanism can guarantee pf and pm to be small enough, the damage

caused to node i will be very limited. Further, if node i also experiences lower

false alarm ratio, the damage will be further reduced, since the above analysis

is also applicable to i. We can also check that if the false alarm ratio and miss

detect ratio experienced by node i and j are the same, then we can still have

limFi(j,t)→∞
(

Fj(i,t)

Fi(j,t)

)
= 1.

Next we consider the source’s decision in the route selection stage. If no relays

on the selected route have been marked as malicious by the source, it is easy to
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see that this is an optimal selection. What is the consequence if some relays have

been marked as malicious? First, with very small probability those nodes can

pass recovery check, so even they are malicious, the long-term average damage

is still negligible. Second, since these nodes may have been mistakenly marked

as malicious, such chance can allow them to recover their reputation, and may

consequently increase the source’s future payoff, since it may have more resources

to select and use.

Finally we analyze the relay’s decision in the route participation stage. The

optimality of the proposed strategy in this stage depends on a lot of uncertain

factors, such as the nodes’ future request pattern, the changing topology, the nodes’

future staying time, the selection of good cooperation level, etc. Since most of these

factors cannot be known a priori, the optimality of the proposed strategies cannot

be guaranteed. It is usually impossible to find an optimal strategy without being

able to accurately predict the future. However, our simulation results (Section 7.6)

show that when nodes’ request rates do not vary a lot, a relatively small cooperation

level can work very well.

If the future is predictable, or at least partially predictable, such as the network

will keep alive for a long time, all nodes staying in the network will keep generating

and sending packets, and any pair of nodes will meet and request each other’s help

again and again, then each node can set its cooperation level to be a very large

positive constant without affecting its overall performance (any extra constant

cost will not affect the overall payoff as long as limt→∞ Ti(t) = ∞). Then the

proposed strategies can form a Nash equilibrium, and are Pareto optimal, are

subgame perfect, and achieve absolute fairness (in cost), provided that each node i

can accurately estimate Fj(i, t) for any other node j and Dmax
i (j, t) is large enough
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to accommodate possible variable and bursty requests between them. The proof

is easy by following the above analysis, which is not put here due to space limit.

Unfortunately, such ideal scenarios may not exist in reality.

7.5.2 Attacking Strategy and Damage Analysis

Thus far we mainly focus on the scenarios that no nodes are malicious. Next we

analyze the possible damage that can be caused by the attackers. In an abstract

level, to damage the network, one can either drop other nodes’ packet, or inject

a lot of traffic to consume other nodes’ resources. We first consider drop packet

attack. According to the devised strategy, for attacker j, to avoid being marked

as malicious by node i, the highest packet drop ratio p′e that it can employ should

satisfy the following inequality to avoid being detected:

(1− pe)(1− pf ) ≤ (1− p′e)(1− p̃f ) + p′ep̃m, (7.32)

where p̃f and p̃m are the actual false alarm ratio and miss detect ratio experienced

by j. The best case from j’s point of view is that p̃f = 0 and p̃m = pm, then we

can have

p′e ≤
pe + (1− pe)pf

1− p̃m

(7.33)

Accordingly, the extra percentage of i’s packets that can be dropped by j is upper-

bounded by

p′e − pe ≤ pep̃m + (1− pe)pf

1− p̃m

(7.34)

From (7.34) we can see that as long as pe, pm, and pf are small, the extra damage

will be limited. Meanwhile, in order to continuously drop i’s packets, j also needs

to forward at least (1− p′e) percentage of packets for i, which may also incur a lot
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of cost to j. In other words, from an attacker’s point of view, as long as p′e − pe is

not large, dropping other nodes’ packets may not match its best interest by also

taking into consideration of its own cost.

However, if an attacker can successfully exploit the underlying monitoring to

avoid being detected, such as experiencing a high p̃m, then the extra number of

packets it can drop without being detected can increase dramatically. According

to (7.34), the extra damage will increase nonlinearly with the increase of p̃m. This

suggests that it is critical to have a robust monitoring scheme to ensure that the

monitoring error will not be too large. Actually, from (7.34) we can also see that

even for p̃m = 0.5, p′e − pe is still upper-bounded by pe + 2pf , which is still small

as long as pe and pf are small.

For inject traffic attack, since each selfish node i will maintain Fj(i, t) ∼ Fi(j, t),

for any node j, the extra number of packets that node j can request node i to

forward is always bounded. According to (7.31), the maximum possible ratio

between Fi(j, t) and Fj(i, t) is upper-bounded by
(1−pe)(1−p̃f )+pep̃m

(1−pe)(1−pf )
provided p̃f +

p̃m < 1. Meanwhile, if the underlying monitoring mechanism can ensure that pm

and pf are small, the ratio will be small. However, if j can successfully manage to

let p̃f + p̃m ≥ 1, such as making the miss detect ratio approach 1, it can always

request i to forward packet without returning any favor.

It is worth noting that under the proposed strategies, no matter what goal the

attackers may have, the selfish nodes’ payoff can always be guaranteed as long as

pe, pm and pf are small. Meanwhile, if α (defined in (7.13)) is small enough, from

an attacker’s point of view, maximizing (7.13) is almost equivalent to minimizing

the selfish nodes’ payoff. Otherwise, maximizing (7.13) may not cause as much

damage as minimizing the selfish nodes’ payoff, since in this case the attackers
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may not be willing to continuously drop packets without being detected due to the

reason that this also requires the attackers to forward a lot of packets for other

nodes and may not be their best interest.

7.5.3 Remarks

Compared with existing work, such as [6,26,31,59,78,80], we address cooperation

stimulation under very realistic scenarios: noisy environment, existence of (insider)

attackers, mobile nodes, variable traffic rate, etc. This makes the task extremely

challenging, and optimal solutions may not be always available. Meanwhile, our

goal is not to enforce all nodes to act fully cooperatively, but to stimulate cooper-

ation among nodes as much as possible.

One major difference between our scheme and the existing reputation-based

schemes is that in our scheme pairwise relationship have been maintained by nodes.

That is, each selfish node will keep track of the interactions with all other nodes

experienced by it. The drawback is that it requires per-node monitoring and results

in extra storage complexity. However, the advantage lies in that it can effectively

stimulate cooperation in noisy and hostile environments. Meanwhile, for each node

i, at any time it only needs to maintain the records Ri(j), isBadi(j), Fi(j), Fj(i)

for any other node j that i has interacted, so the maximum storage complexity is

upper-bounded by 4|N |. As long as |N | is not too large, for most mobile devices,

such as notebook and PDA, the storage requirement is insignificant.

In most existing work, such as in [6, 31, 78, 80], however, each node makes its

decision based solely on its own experienced quality of service, such as throughput.

Although the overhead is much lower than our scheme due to that only end-to-end

acknowledge is required and each node only needs to keep its own past state, they
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cannot effectively stimulate cooperation at all in noisy and hostile environments.

The logic to base only on its own experience quality of service is that they expect no

node will behave maliciously since misbehaviors will be propagated back later and

the quality of service experienced by the misbehaving nodes will also be decreased.

However, such logic cannot hold in noisy and hostile environments. First, attackers

will be willing to see such performance degradation, therefore they will try to

behave maliciously if possible. Second, even only noise can cause such misbehavior

propagation and performance degradation since noise can cause packet dropping.

Meanwhile, without per-node monitoring, attackers can always behave maliciously

and cause damage to the others without being detected.

In [31, 78], when a node makes its cooperation decision at each step, it only

bases on the normalized throughput that it has experienced. If only normalized

throughput is used, a greedy user can set a low forwarding ratio, but try to send a

lot of packets. Therefore, unless the others also try to send a lot of packets, from

the greedy node’s point of view, even after a large portion of its packets have been

dropped by other nodes, it can still enjoy a high throughput, although the normal-

ized throughput may be low. Meanwhile, as mentioned before, applying the same

forwarding ratio to all nodes is not fair to those who have acted cooperatively. To

resolve this problem, in our scheme, each node applies different packet forwarding

decision for different node based on its past interactions between them.

Besides reputation-based cooperation stimulation schemes, pricing-based schemes

have also been proposed in the literature, such as [7, 18, 19, 99, 100]. Comparing

to pricing-based schemes, the major drawback of reputation-based schemes is that

some nodes may not get enough help to send out all their packets. The most

underlying reasons are that favors cannot be returned immediately and future is
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not predictable. In other words, when a node is requested by another node to

forward packets, since it cannot get compensation immediately and it is not sure

whether the requester will return the favor later, it usually has no strong incentive

to accept the request. Pricing-based schemes do not suffer such problems since

a node can get immediate monetary payback after providing services. However,

pricing-based schemes require tamper-proof hardware or central banking service

to handle billing information, which is their major drawback. If such requirement

can be efficiently satisfied with low overhead, pricing-based schemes can be a bet-

ter choice than reputation-based schemes. Meanwhile, it is worth pointing out

that pricing-based schemes also suffer from noise and possible malicious behavior,

and the proposed statistical attacker detection mechanism is also applicable to

pricing-based scenarios.

In general, necessary monitoring is needed when stimulating cooperation among

nodes. For example, in [58], watchdog is proposed to detect whether some nodes

have dropped packets. In this chapter we assume that the underlying monitoring

mechanism can provide accurate per-node monitoring. Although this can be a

strong assumption in some scenarios, it can greatly simplify our analysis and at

the same time provide thoughtful insights. Meanwhile, this can be achieved by

some recently proposed monitoring mechanisms, such as those proposed in [91,93].

It is worth mentioning that in some situations perfect monitoring is either not

available or too expensive to afford. For example, the one proposed in [91] relies on

asymmetric cryptography, which may be too expensive to afford for some resource-

stringent mobile devices. The study of imperfect monitoring is beyond the scope

of this chapter, but will be investigated in our future work.

In our analysis we have assumed that the packet drop ratio pe is the same
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for all nodes at all time, which may not hold in general. If different nodes may

experience different pe, the nodes experiencing lower pe may experience high false

positive probabilities when performing the proposed attacker detection mechanism.

In this case, to decrease false positive probability, nodes need set the threshold to

be large enough, that is, using a larger x and pe in (7.15). Although this may

be taken advantage of by the attackers to cause more damage, as long as the gap

between the packet dropping ratios experienced by different nodes is not large,

which is usually the case, the extra damage is still limited.

It is also worth mentioning that the security of the proposed strategy also

relies on the existing secure protocols to achieve secure access control and secure

authentication, and to defend those attacks launched during route discovery, such

as those in [34–37,42,65,76,90,91,93,95,101]. In general, besides dropping packets

and injecting traffic, attackers can also have a variety of ways to attack the network,

such as jamming, slander, etc. In this chapter our focus is not to address all these

attacks, but to provide insight on stimulating cooperation in noisy and hostile

environments. To the best of our knowledge, we are the first one to formally

address this issue under such realistic scenarios.

7.6 Simulation Studies

In this section we conduct extensive simulations to evaluate the effectiveness of the

devised strategy and to identify when and why in some situations these strategies

cannot work well.

In our simulations, both static and mobile ad hoc networks have been studied,

with mobile ad hoc network being our focus. In these simulations, nodes are

randomly deployed inside a rectangular area of 1000m× 1000m, and each mobile
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node moves according to the random waypoint model, with vmin = 10m/s, vmax =

30m/s, and the average pause time 100s. The maximum transmission range is

250m.

In these simulations, each node randomly picks another node as the destination

to send packets. The total number of selfish nodes is 100. Both pm and pf are set

to be 5%, and β is set to be 0.1%. Each packet has a delay constraint, which is set

to be 10s. If a packet is dropped by some relay, no retransmission will be applied.

For each node i, we set gi = 1 and ci = 0.1. The nodes are indexed from 1 to N,

where N is the total number of nodes.

To conduct performance evaluation and comparison, the following are measured

for each selfish node in the simulations:

• Normalized throughput: this is the ratio between the total number of suc-

cessfully delivered packets and the total number of packets scheduled to be

sent.

• Probability of no route available: this is the percentage packets dropped due

to no valid route is available.

• Cost per successful packet delivery: this is the ratio between the total number

of forwarded packets (both for itself and for the others) and the total number

of successfully delivered packets originating from it.

• Balance this is the difference between the total number of packets that this

node forwarded for the others and the total number of packets that the others

forwarded for it.

According to (7.12) it is easy to see that a selfish node’s payoff can be easily

calculated based on its normalized throughput and the cost per successful packet
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Figure 7.4: Effects of mobility on cooperation stimulation

delivery.

7.6.1 Mobile Ad Hoc Networks vs. Static Ad Hoc Net-

works

We first study the effect of mobility on cooperation stimulation. In this set of

simulations, three types of networks are generated: mobile, partial mobile, and

static. In the partial mobile ad hoc network, the nodes with indices ranging from

1 to 50 are mobile, and the other half are static. All nodes employ the same traffic

pattern: the packet inter-arrival time follows exponential distribution with mean

being 2s. All nodes set their cooperation level to be 60. The simulation results are

illustrated in Fig. 7.4.

First, from the throughput comparison we can see that for the static case, ex-

cept several nodes, the majority of nodes (85%) experience extremely bad through-
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put. This is due to the reason that at most times they cannot find a route with

all relays willing to help it (shown in the second figure). For those several nodes

with high normalized throughput, the reason is that the destinations are in the

transmission range of the sources. These results suggest that the devised strate-

gies cannot be used in static ad hoc networks. Actually, in [31, 100] the authors

have demonstrated that in networks with fixed topology, cooperation enforcement

is impossible to achieve by relying solely on reputation. The most basic reason is

that the service that a node can provide is usually not needed by its neighbors,

therefore its neighbors have no incentive to help it.

From these results we can also see that when all nodes are mobile, the nor-

malized throughput can be fairly high. For example, except 4 nodes, all the other

nodes have normalized throughput being more than 80%. Even for those four

nodes, their normalized throughput is still more than 70%. We can also see that

for the majority of the nodes (96%), almost none of their packets are dropped due

to no available routes, that is, cooperation among nodes has been effectively stim-

ulated. Actually, the positive effect of mobility has also been noticed and studied

in many other works. For example, Luo et. al. have studied how mobility can

help improving lifetime in wireless networks and help improving the reliability of

wireless ad hoc networks [56], and Capkun et. al. have studied how mobility helps

security in ad hoc networks [24].

Now we study the partial mobile case. From the throughput comparison we

can see that for those mobile nodes, no one has normalized throughput less than

40%, and the majority (33 out of 50) have normalized throughput higher than

80%. However, for those static nodes, the situation is totally reversed: half of

them have normalized throughput less than 40%. This suggests that mobility can
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Figure 7.5: Effects of traffic pattern on cooperation stimulation

help stimulating cooperation. The underlying reason is that mobility can make the

service exchange more effectively. An analogy to this is the effect of businessman:

without them, we can only exchange service locally, the service we can get will

be very limited; while with the help of businessman, service can be exchanged

globally. From now on, we will mainly focus on mobile ad hoc networks with all

nodes being mobile.

7.6.2 Bursty Traffic Pattern vs. Non-bursty Traffic Pat-

tern

Next we investigate the effect of traffic pattern on cooperation stimulation. In

these simulations two traffic patterns are considered: bursty and non-bursty. In

bursty case, packets are generated in a bursty pattern with average bursty length

10, while in non-bursty pattern the packet arrival follows a Poisson process. In
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Figure 7.6: Effect of negative cooperation level on cooperation stimulation

both cases the average packet arrival rate is 0.5 packet/s. The simulation results

are illustrated in Fig. 7.5.

It is surprising to see that bursty case has slightly better normalized through-

put than non-bursty case. This can be explained using the unsuccessful forward

ratio experienced by each node (shown in the second figure): in bursty case, the

unsuccessful forward ratio experienced by each other is 1% lower than the non-

bursty case. This is because in non-bursty case, when a packet needs to be sent,

with a high probability the existing route may have broken since this route may

be discovered a long time ago, while in bursty case, though link breakages also

happen frequently, as long as the current route is good, almost all the packets can

be delivered successfully. However, if nodes with bursty-pattern have much higher

rates, or the burst length is much longer, the performance of bursty-case may be

decreased, as to be shown later.

7.6.3 Effect of Negative Cooperation Level

In this set of simulations some nodes set their cooperation level to be negative.

Specifically, the first ten nodes set Dmax to be -30, and all the others set Dmax to

be 60. The results are illustrated in Fig. 7.6. From these results we can see that
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the majority of nodes (6 out of ten) who set Dmax to be negative have normalized

throughput less than 65%. Meanwhile, they also cause some other nodes to expe-

rience lower normalized throughput (6 out of 90 have normalized throughput no

more than 70%). These results suggest that as long as a node wants to stay in the

network for a long time and needs to send packets continuously, they should not

set their cooperation level to be negative.

7.6.4 Effect of Cooperation Level on Cooperation Stimu-

lation

In this set of simulations, each node sets its traffic rate to be 0.5 packet/s following

Poisson arrival. In each simulation different Dmax value is used ranging from 10

to 240. The results are illustrated in Fig. 7.7. From the first figure we can see

that once Dmax ≥ 80, both the average normalized throughput and the average
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payoff experienced by selfish nodes do not increase further, which suggests that in

this case setting Dmax = 80 can almost approach the optimal solution in term of

normalized throughput. However, from the second figure we can see that with the

increase of Dmax ≥ 80, the balance variation experienced by nodes also increase,

which leads to high unfairness. That explains why we have set Dmax = 60 in our

simulations: a good tradeoff between payoff and fairness.

7.6.5 Effect of Inhomogeneous Request Rates

In this set of simulations, each node’s traffic rate is determined as follows: let i

be a node’s index ranging from 1 to 100, then its traffic rate will be set as ((i

mod 20) + 1)/2 packet/s. Based on the configuration of Dmax and traffic pattern,

three cases are studied: in case 1 and 3, for each node its traffic follows Poisson

arrival, while in case 2 each node’s traffic follows a bursty arrival. Meanwhile, in

case 1 and 2, all nodes set Dmax to be 60, while in case 3, each node with index i

set Dmax to be 60 + (i mod 2). The results are shown in Fig.7.8.

We first study the throughput comparison. From these results we can see that

case 3 has the highest normalized throughput while case 2 has the lowest normal-

ized throughput. This suggests that bursty traffic may decrease the performance,

while if a node has too much traffic to send, increasing their cooperation level

can increase their performance. From these results we can also see that with the

increase of traffic rate, the throughput decreases too. Although increasing Dmax

can slightly increase the performance, it cannot completely solve the problem. The

reason is that the service provided by those nodes with high traffic rate are not

needed by those nodes with lower rates. This can be shown more clearly in the

following simulations.
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Figure 7.8: Effect of inhomogeneous request rates on cooperation stimulation
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By checking the second figure (probability of no route available) in Fig.7.8, we

can see that in case 2 (bursty case), a lot of packets will be dropped due to no

available routes, especially when the node’s traffic rate is high, which explains why

they have lowest throughput. From the third figure (cost per successful delivery)

in Fig.7.8 we can see that with the increase of traffic rate, the hop number per

route may decrease slightly, which is a little bit surprising, but makes sense: when

a node with high traffic rate has used up the quota assigned by those nodes with

lower rate, they are forced to use short routes such as one-hop route. This is also

confirmed by the results in the fourth figure, which indicates that for the first 20

nodes, their overall balance almost reaches to the maximum.

Next we study an extremely asymmetric case, where in this set of simulations,

except the first ten nodes which have packet arrival rate 5 packet/s, all the other

nodes have packet arrival rate 0.5 packet/s. According to the first ten nodes’ Dmax

values, three cases are studied: in case 1 they let Dmax = 60, in case 2 they set

Dmax = 120, and in case 3 they set Dmax = 180. For the other nodes in all the

three cases, Dmax = 60. The results are illustrated in Fig. 7.9. From these results

we can see that by increasing Dmax from 60 to 120, a lot of gain can be obtained

(normalized throughput increases from 8% to 22%), while increasing Dmax from

120 to 180 introduces almost no gain, and the normalized throughput is still only

about 22%. This suggests that although increasing Dmax can provide some gain,

they cannot change the inherent problem.

7.6.6 Effects of Different Drop Packet Attacks

In this set of simulation, we study the effect of different drop packet attacks. Four

drop packet attack strategies are studied: not participate in any route discovery,

194



0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

N
or

m
ai

ze
d 

T
hr

ou
gh

pu
t

Node index

Dmax = 60
Dmax = 120
Dmax = 180

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

P
ro

ba
bi

lit
y 

of
 n

o 
ro

ut
e 

av
ai

la
bl

e

Node index

Dmax = 60
Dmax = 120
Dmax = 180

0

1

2

3

4

5

6

7

20 40 60 80 100

C
os

t p
er

 s
uc

ce
ss

fu
l p

ac
ke

t d
el

iv
er

y

Node index

Dmax = 60
Dmax = 120
Dmax = 180

Figure 7.9: Effect of inhomogeneous request rates, an extreme case
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Figure 7.11: Performance comparison under different number of attackers

drop all packets passing through it, drop half of the packets passing through it,

and selectively drop packets passing through it and at the same time keep avoiding

being detected. Fig. 7.10 illustrates the evolution of the normalized throughput

and payoff averaged among all selfish nodes over time. From these results, first we

can see that dropping all packet can cause the maximum damage, the reason is

the we have set Bth to be a large value (200), so each attacker can drop up to 199

of any other node’s packets without being marked as malicious. However, we can

also see that with time increasing, the selfish nodes’ performance will also increase.

From these results we can also see that adaptive dropping can even increase the

selfish nodes’ performance. This is because the damage it can cause is very limited

in order to avoid being detected, while keeping forwarding packets for selfish nodes

can reduce the selfish nodes’ average hop number per selected route. Although

intuitively adaptive dropping may cause a lot of damage, in reality this may not

be the case.

7.6.7 Effect of Attacker Number

In this set of simulations we study the selfish nodes’ average performance in the

presence of different number of attackers, with the number of attackers ranging

from 5 to 30. All attackers launch inject traffic attack, and will not forward any
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Figure 7.12: Effect of cooperation level on damage

packet for selfish nodes. The results are illustrated in Fig. 7.11. From these results

we can see that with the increase of attacker number, the average normalized

throughput among all selfish nodes keeps almost unchanged, and the average payoff

only decreases very slightly. This can be explained using the second figure, where

here total damage is defined as the total number of packets that selfish nodes have

forwarded for each attacker. From this figure we can see that after some time, no

more damage can be caused to selfish nodes due to the reason that they have used

up all the quota assigned to them. This suggests that the proposed strategy is

robust to inject traffic attack.

7.6.8 Cooperation Level vs. Damage

In this final set of simulations, the effect of Dmax on selfish nodes’ performance

under inject traffic attack is studied, with the selfish nodes’ Dmax varying from

20 to 100. The results are illustrated in Fig. 7.12. From these results we can

see that after Dmax passes 60, the selfish nodes’ average performance (normalized

throughput and payoff) keep almost unchanged. Similar as the results illustrated in

Fig. 7.11, for each given Dmax, the damage caused by the attackers will not change

after some time due to using up all the assigned quota. Meanwhile, the damage will

increase linearly with the increase of Dmax. By also taking into consideration of
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fairness issue, these results also suggest Dmax = 60 can be a good choice. However,

we need to keep in mind that the selection of Dmax also depends on the underlying

traffic rate. It is easy to understand that with the increase of traffic rate, we should

also increase Dmax, especially when mobility is low and traffic may exhibits strong

bursty pattern and/or variable rates.

7.7 Summary

In this chapter we have investigated the issues of cooperation stimulation for self-

organized mobile ad hoc networks in a realistic context, where the communica-

tion channels are error-prone, the underlying monitoring is imperfect, and the

environment is hostile with possible malicious behavior. We have identified the

underlying reasons why stimulating cooperation among nodes under scenarios is

extremely challenging. Unlike most existing work whose goal is to enforce all

nodes to act fully cooperatively, our goal is to stimulate cooperation among selfish

nodes as much as possible through reciprocal altruism. We have devised a set

of reputation-based attack-resistant cooperation stimulation strategies, which are

completely self-organizing and fully distributed, and do not require any tamper-

proof hardware or central banking or billing service. Both theoretical analysis and

extensive simulation studies have demonstrated that the devised strategies can ef-

fectively stimulate cooperation among selfish nodes under various scenarios and

meanwhile is robust to attacks. Further, the conditions under which the devised

strategies cannot work well have also been studied and we conclude that the most

underlying reasons are that favors not being granted simultaneously and future

being unpredictable.
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Chapter 8

Conclusions and Future Work

In this thesis we have studied how to secure cooperative ad hoc network against

insider attacks under noise and imperfect monitoring, and how to design attack-

resistant cooperation strategies for autonomous ad hoc networks that can work

well in noisy and hostile environments.

First, we have studied how to handle routing disruption attacks in mobile ad

hoc networks. Most existing secure ad hoc routing protocols require significant

overhead to implement extra security mechanisms, such as secure neighbor discov-

ery and link-level data forwarding monitoring. In this dissertation we present a set

of light-weight techniques, referred to as HADOF. We use a novel self-evaluation

mechanism that can significantly speed up malicious node detection. With self-

evaluation, a malicious node has to either admit dropping packets or provide re-

ports that are most likely conflicting with others. Based on self-evaluation, a dis-

tributed cheating record is maintained to track nodes’ long-term behavior. In ad-

dition, route diversity and adaptive route rediscovery mechanisms are employed to

enable quick recovery from route disruption due to malicious attacks, mobility and

traffic congestion. HADOF is capable of adaptively adjusting routing strategies
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according to network dynamics, and nodes’ past record and current performance.

It can distinguish routing disruptions caused by nodes’ temporary misbehavior and

those caused by malicious attacks. It can defeat black hole, gray hole, frame-up,

rushing attack, and wormhole attack. More importantly, HADOF introduces little

overhead to the existing routing protocols.

Second, we have investigated the possible injecting traffic attacks that can

be launched in mobile ad hoc networks, and proposed a set of mechanisms to

defend against such attacks. Both query flooding attacks and injecting general data

packets attacks have been investigated. Furthermore, for injecting general data

packets attacks, the situations that attackers may use some advanced transmission

techniques, such as directional antennas or beamforming, to avoid being detected

have also been studied. Two set of defense mechanisms have been proposed, one is

fully distributed, while the other is centralized with de-centralized implementation.

Both theoretical analysis and simulation studies have been conducted, which have

confirmed the effectiveness of the proposed defense mechanisms.

Third, we have formally investigated how to secure cooperative ad hoc networks

against insider attacks under realistic scenarios, where the environment is noisy

and the underlying monitoring is imperfect. We model the dynamic interactions

between good nodes and attackers in such networks as securing routing and packet

forwarding game. The optimal defense strategies have been devised, which are

optimal in the sense that no other strategies can further increase the good nodes’

payoff under attacks. The maximum possible damage that can be caused by the

attackers have also been analyzed. By focusing on the worst-case scenario from

the good nodes’ point of view, that is, the good nodes have no prior knowledge of

the other nodes’ types while the insider attackers can know who are good nodes,
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the devised strategies can work well under any scenarios. Extensive simulations

have also been conducted to justify the underlying assumptions and to evaluate

the proposed strategies.

Fourth, we have investigated the issues of cooperation stimulation and security

in autonomous ad hoc networks, and proposed an Attack-Resistant Cooperation

Stimulation (ARCS) system to stimulate cooperation among selfish nodes and

defend against various attacks launched by malicious nodes. In the ARCS system,

each node can adaptively adjust their own strategies according to the changing

environments. The analysis has shown that in the ARCS system, the damage

that can be caused by malicious nodes is bounded, and the cooperation among

selfish nodes is enforced through introducing a positive cooperation degree. At the

same time, the ARCS system maintains good fairness among selfish nodes. The

simulation results have also agreed with the analysis. Another key property of the

ARCS system is that it is fully distributive, completely self-organizing, and does

not require any tamper-proof hardware or central management points.

Finally, we have formally investigated secure cooperation stimulation in au-

tonomous mobile ad hoc networks under a game theoretic framework. Besides

selfish behavior, possible attacks have also been studied, and attack-resistant co-

operation stimulation have been devised which can work well under noisy and

hostile environments. First, a simple yet illuminating two-player packet forward-

ing game is studied. To find good cooperation strategies, equilibrium refinements

have been performed on obtained Nash equilibrium solutions under different op-

timality criteria, including subgame perfection, Pareto optimality, fairness, and

cheat-proofing, and a unique Nash equilibrium solution is finally derived, which

states that in the two-node packet forwarding game a node should not help its
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opponent more than its opponent has helped it. The results are then extended to

handle multi-node scenarios in noisy and hostile environments, where the dynamic

interactions between nodes are modelled as secure routing and packet forward-

ing games. By taking into consideration the difference between two-node case

and multi-node case, an attack-resistant and cheat-proof cooperation stimulation

strategy has been devised for autonomous mobile ad hoc networks. The analysis

has demonstrated the effectiveness of the proposed strategy, and shown that it is

optimal under certain conditions. The analysis has also shown that the damage

that can be caused by attackers is bounded and limited when the proposed strate-

gies are used by selfish nodes. Simulation results have also illustrated that the

proposed strategies can effectively stimulate cooperation among selfish nodes in

noisy and hostile environments.

Although in this dissertation we have thoroughly addressed several critical is-

sues in securing ad hoc networks, there still exist many issues that need further

investigation. In the following of this chapter, we will list some of them that we

would like to address in future.

The first topic we would like to address is about trust modeling and reputa-

tion propagation in distributed networks. From previous chapters we have learned

that both attacker detection and cooperation stimulation involve the evaluation of

nodes’ trustworthiness. Meanwhile, when evaluating trustworthiness, direct obser-

vation alone may not be sufficient; indirect observation should also be considered,

which results in reputation propagation. Our focus will be on robust trust mod-

eling and reputation propagation. Besides building theoretic framework for trust-

worthiness evaluation in distributed networks, we would also like to investigate

the possible attacks associated to trust model and reputation propagation, since
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like all other schemes associated with security, trust management or reputation

systems can also become attackers’ targets. As a starting point in our exploration,

we have discovered several new attacks on reputation and trust systems, which

will lead to more exciting research challenges.

As mentioned before, effective monitoring is one of most crucial component

in securing wireless ad hoc and sensor networks, which is an indispensable com-

ponent in various aspects, such as intrusion detection, cooperation stimulation,

and trust evaluation. In the future, we will continually design effective and robust

monitoring mechanisms for ad hoc and sensor networks, and formally analyze their

performance under different scenarios. We plan to systematically investigate the

effect of imperfect monitoring on security and cooperation stimulation. Meanwhile

We plan to design low-cost and attack-resistant monitoring mechanisms by also

taking into consideration the tradeoff between monitoring accuracy and incurred

overhead. We also plan to investigate how to perform monitoring in a collaborative

way to simultaneously reduce the overhead and increase the accuracy.

The inherent characteristics and emergent properties of sensor networks make

a node’s location and time clock important parts of their state. Since sensor net-

works are usually deployed in hostile environments, security issues associated with

localization and time synchronization must also be studied. Recently, some suc-

cess has been achieved on securing localization and time synchronization services

in sensor networks. However, most existing schemes assume ideal scenarios, such

as ideal physical layer and perfect observation. Following similar methodologies

as used in this dissertational, in the future we plan to investigate how to perform

localization and time synchronization in noisy and hostile environments based only

on local and imperfect observation.
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