
ABSTRACT

Title of Dissertation: MULTI-USER SECURITY FOR

MULTICAST COMMUNICATIONS

Yan Sun, Doctor of Philosophy, 2004

Dissertation directed by: Professor K. J. Ray Liu
Department of Electrical and Computer Engineering

The ubiquity of communication networks is facilitating the development of

wireless and Internet applications aimed at allowing users to communicate and

collaborate amongst themselves. In the future, group-oriented services will be one

of the dominant services that facilitate real-time information exchange among a

large number of diverse users. However, before these group-oriented services can

be successful deployed, technologies must be developed to guarantee the security

of the information and data exchanged in group communications.

Among all security requirements of group communication, access control is

paramount as it is the first line of defense that prevents unauthorized access to the

group communication and protects the value of application data. Access control

is usually achieved by encrypting the data using a key that is shared among all

legitimated group members. The problem of access control becomes more difficult

when the content is distributed to a dynamic group with user joining and leaving

the service for a variety of reasons. Thus, Group Key Management is required to

achieve key update with dynamic group membership.

Existing group key management schemes seek to minimize either the amount

of rounds needed in establishing the group key, or the size of the key updating

messages. They do not, however, considering the varying requirements of the

users, the underlying networks or the applications. Those generic solutions of

access control often yield large consumption of communication, computation and

storage resources, especially for large groups with highly dynamic membership

in heterogeneous networks. In addition, the design of existing key management

schemes focus on protecting the application data, but introduces vulnerabilities

in protecting the statistics of group membership information. This poses severe

security concern in various group applications.

The focus of this dissertation is to design network-specific and application spe-

cific group key management and solve the security vulnerability of key management

that reveals dynamic group membership information. This dissertation will present

scalable group key management in heterogeneous wireless network, the hierarchical

access control for multimedia applications, and a framework of securing dynamic

group membership information over multicast. The main contribution of this dis-

sertation is to advance the group key management research to achieve higher level

of scalability and security.

MULTI-USER SECURITY FOR MULTICAST

COMMUNICATIONS

by

Yan Sun

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

Advisory Committee:

Professor K. J. Ray Liu, Chairman
Professor Min Wu
Professor Anthony Ephremides
Professor Sennur Ulukus
Professor Lawrence C. Washington

c©Copyright by

Yan Sun

2004

DEDICATION

To My Father, JingLun Sun

ii

ACKNOWLEDGEMENTS

First of all, I would like to express deep appreciation to my advisor, Prof. K.

J. Ray Liu. Five years ago, his class lectures stimulated my curiosity in research,

which later led to one of the most important decisions in my life - pursuing the

PhD degree. He led me onto the exciting journey of academia. In every stage of my

PhD study, his knowledge, vision, encouragement, and guidance pose significant

influence on me and provide me with lifetime benefits. This dissertation could not

have been a reality without his help and support.

I am grateful to the members of the DSP group. I would like to explicitly

mention Dr. Wade Trappe, Dr. Zoltan Safar, Dr. Xiaowen Wang, and Dr. Jie

Song, who helped me to start the research and gave me advices on all aspects of

graduate study. In fact, one of the research ideas in this dissertation originated

from the brainstorming with Wade. I am also indebted to the collaboration with

Charles Pandana, Yinian Mao and Wei Yu. I want to thank Dr. Jane Wang, Hong

Zhao, Dr. Weifeng Su, Dr. Zhu Han, Ji Zhu, and Johannes Thorsteinsson for

sharing ideas and discussing with me. It is a true pleasure to work in the DSP

group. I am proud to be a part of this diversified while strongly bound team.

I would like to thank Prof. Min Wu for sharing her experiences as a young

faculty member, and for giving me valuable suggestions on research, teaching and

academic career. In addition, I appreciate her support to working with her PhD

students and undergraduate students in her class. I also want to thank Prof.

iii

Anthony Ephremides, Prof. Sennur Ulukus, and Prof. Lawrence C. Washington

for their valuable comments and suggestions on the thesis draft.

Finally, I want to take this opportunity to express my sincere appreciation to

my parents and my husband, for their love and unconditional support.

iv

TABLE OF CONTENTS

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 1
1.2 Security Issues in Group Communications 3

1.2.1 Access Control and Data Confidentiality 3
1.2.2 Service Authentication and Verification 4

1.3 Key Management for Group Access Control 6
1.3.1 Centralized Key Management 6
1.3.2 Contributory Key Management 9

1.4 Thesis Overview and Contribution 13

2 Topology-aware Key Management for Wireless Networks 19
2.1 Introduction . 19
2.2 Topology-Matching Key Management Tree 20
2.3 Handoff Schemes for TMKM Tree 25
2.4 Performance Analysis . 29
2.5 Separability of the Optimization Problem 34
2.6 Design of the TMKM Tree . 36

2.6.1 Dynamic membership model 37
2.6.2 ALX tree structure . 38
2.6.3 User subtree design . 43
2.6.4 BS subtree design . 43
2.6.5 SH subtree design . 45

2.7 Simulation Results . 48
2.7.1 One-SH systems . 48
2.7.2 Multiple-SH systems . 51

3 Hierarchical Group Access Control 57
3.1 Introduction . 57
3.2 Hierarchical Access Control for Group Communications 59

v

3.2.1 System description . 59
3.2.2 Security requirements . 60
3.2.3 Data encryption and hierarchical key management 62

3.3 Centralized Multi-group Key Management Scheme 63
3.3.1 Employing independent key trees to achieve hierarchical ac-

cess control . 63
3.3.2 Multi-group key management scheme 64

3.4 Performance Measures and Analysis 68
3.4.1 Storage overhead . 69
3.4.2 Rekey overhead . 72

3.5 Simulations and Performance Comparison 73
3.5.1 Statistical dynamic membership model 74
3.5.2 Performance with different group size 76
3.5.3 Scalability . 79
3.5.4 Performance with different transition probability 80
3.5.5 Simulation of multi-service applications 82

3.6 Contributory Multi-group Key Management 83

4 Protecting Dynamic Group Information in Secure Multicast 87
4.1 Introduction . 87
4.2 GDI Attacks on Centralized Key management 88

4.2.1 Attack A1: Estimation of the number of join/departure users
by inside attackers . 89

4.2.2 Attack AII: Estimation of group size from rekeying message
size . 90

4.2.3 Vulnerability of popular centralized key management schemes 94
4.3 Anti-attack Techniques . 97
4.4 Performance Measure and Optimization 103

4.4.1 The leakage of GDI . 103
4.4.2 Communication overhead . 106
4.4.3 System optimization . 107

4.5 Simulations of the anti-attack scheme 108
4.6 Contributory Key Management Schemes 113

4.6.1 Fully and partially contributory key management schemes . 114
4.6.2 Vulnerability of popular contributory key management schemes115
4.6.3 Prevention of GDI leakage 117

5 Conclusion and Future Work 119

A Calculation of B(b, i, a) 127

B Calculation of pmf of Ĩ 129

vi

Bibliography 130

vii

LIST OF TABLES

2.1 Scalability comparison between TMKM and TIKM trees when the
number of SHs(N)→∞. 34

4.1 Vulnerability of popular centralized key management schemes . . . 97

viii

LIST OF FIGURES

1.1 A typical key management tree . 6
1.2 Key structure . 7
1.3 Key management architecture in centralized scenario 9
1.4 Tree-based contributory key management 11
1.5 Key Management architecture in centralized sceneries 12

2.1 A cellular wireless network model 22
2.2 A Topology -matching key management tree 23
2.3 Key update process when user u moves from cell i to cell j 26
2.4 Key update process when user u leaves the service from cell j . . . 29
2.5 Comparison of the wireless cost and the wireline cost for one user

departure . 32
2.6 ALX tree . 38
2.7 Comparison between the ALX tree performance and the lower bound

for different user joining rates . 41
2.8 Comparison between the ALX tree performance and the lower bound

for different average service duration 42
2.9 An example of the SH subtree . 46
2.10 The cost pairs on the SH subtree 47
2.11 (a) The total message size as a function of the wireless weight; (b)

Performance ratio as a function of the wireless weight 49
2.12 (a) Performance ratio for different user join rate; (b) Performance

ratio for different users’ maximum speed. 50
2.13 Comparison among SH subtree design methods 52
2.14 Performance comparison in multiple-SH systems with identical SHs 53
2.15 Performance comparison in multiple-SH systems with non-identical

SHs . 54
2.16 A TMKM tree containing 5 SHs 55

3.1 Independent-tree key management scheme for layered coded multi-
media service . 64

3.2 Multi-group key management graph construction 65
3.3 User relocation on the key graph 67

ix

3.4 Discrete Markov chain model for multi-layer applications. 75
3.5 Storage overhead at the KDC . 78
3.6 Storage overhead at the users in each SG 78
3.7 Rekey overhead at the KDC . 78
3.8 Rekey overhead at the users in each SG 79
3.9 Storage overhead at the KDC with different number of SGs 80
3.10 Rekey overhead at the KDC with different number of SGs 81
3.11 Rekey overhead at the KDC with different transition probability . . 81
3.12 Rekey overhead at the KDC with unevenly loaded SGs in multi-

service applications . 83
3.13 The total number of rounds performed to establish the group key . 84
3.14 The number of rounds performed by the users in each SG for key

establishment . 85
3.15 The number of rounds performed to establish the group key with

different number of SGs/layers . 85

4.1 Performance of the ML estimator 93
4.2 The anti-attack scheme using phantom users and batch rekeying . . 99
4.3 The GDI of a long audio session in MBone 108
4.4 Upper bound of the GDI leakages 109
4.5 Communication overhead M(L0, N0, d) 110
4.6 Illustration of selecting optimal parameters L0 and N0. 111
4.7 The GDI leakage versus communication overhead for a real MBone

audio session . 112
4.8 The GDI leakage versus communication overhead for a simulated

multicast session . 113

x

Chapter 1

Introduction

1.1 Motivation

Point-to-point communication has been the dominant form of computer network

communication since the beginning of networking. However, with the explosive ad-

vancement of networking and information technologies that bring a large amount of

users to communicate and collaborate, point-to-point communications faces severe

scalability challenges in a variety of emerging applications [1].

• Digital video and audio multicast over Internet, such as movie-on-demand

and video conferences.

• Widespread software distribution, such as anti-virus scanner update and se-

curity patch delivery.

• Disseminating real-time financial market information to a large audience with

various devices, including PDAs, cell phones, computers etc.

• Transportation control where road traffic pattern or air traffic control infor-

mation is distributed to many stations.

1

• Multi-player games involving thousands of users simultaneously interacting

in a virtual game world.

Distributing information to a large audience cannot be achieved over point-to-

point communications without causing congestion and wasting network resources.

For group-oriented applications, Multicast is an essential mechanism to achieve

scalable information distribution.

Multicast describes communication where information is sent from one or more

parties to a set of other parties. In this case, information is distributed from one

or more senders to a set of receivers, but not to all users. Multicast is different

from broadcast where information is distributed to all users. The subtle difference

between broadcast and multicast can be neglected in many context.

Significant advancement has been seen recently, in both the underlying multi-

cast networking technology [2] as well as the deployment of applications utilizing

multicast [1]. Already there are multicast services that stream stock quotes, and

provide video and audio on demand. In the future, multicast applications will

be running in wireless mobile environment, as consumers desire to have a sim-

ilar suite of multimedia-intensive applications on their portable devices as they

currently have available to them at their desktops.

Multicast has the advantage of efficient distributing information to thousands

or even millions of users. However, multicast also creates opportunities for ma-

licious packets to reach thousands or millions of users, and introduces difficulties

in maintaining security with dynamic group membership. In this chapter, we will

first review security issues in group communications, then discuss some drawbacks

of existing security mechanisms, and finally summarize the contribution of this

thesis.

2

1.2 Security Issues in Group Communications

In general, group communications consider the following security requirements.

Confidentiality non-group members cannot read the data

Integrity data cannot be modified or deleted in any unauthorized way

Authentication claimed sender is the actual sender

Access Control only authorized parties can access the group communications

Non-repudiation Recipient can prove what messages it receives

No denial-of-service No interference by un-authorized parties

1.2.1 Access Control and Data Confidentiality

Among all those requirements, access control is the first line of defense needed to

protect the value of application data. A service provider may control access to

content by encrypting the content using a key that is shared by all valid group

members. The problem of access control becomes more difficult when the content

is distributed to a group of users. Since group membership will most likely be

dynamic with users joining and leaving the service for a variety of reasons, it is

necessary to update the group key. The issues of key generation and update are

addressed by Key Management protocols [3, 4]. In addition, encryption and key

management together ensure data confidentiality because unauthorized entities do

not possess the group key and cannot decrypt group communication.

The main problem of group key management is to update keys in dynamically

changing group such that a receiver can decrypt the data only when he is a valid

3

group member. In particular, a group key management protocol should satisfy the

following security requirements.

• Group key secrecy - non-group members cannot obtain any group key.

• Backward secrecy - the join user cannot decrypt the content that was sent

before his join.

• Forward secrecy - the departure/revoked user cannot decrypt the content

that is sent after his deletion from the group.

To achieve forward and backward secrecy, the group key is updated after each

member join and departure event, and the new key information is distributed to

the legitimated group members . It is important to update and distribute keys in

a secure, scalable and reliable way. In Chapter 1.4, these issues will be discussed

in detail. Here we list the properties that a good key management scheme should

have.

• Low communication, computation and storage overhead

• Scalability for large dynamic groups

• Reliable distribution of key update messages

• The ability of detecting dishonest group members and recovering from key

generation failure.

1.2.2 Service Authentication and Verification

Multicast Authentication is another essential security mechanism that ensures data

integrity and validates the source of the data. Authentication can be achieved in

4

an asymmetric manner such as digital signatures. Although digital signatures can

solve the authentication problem, they are inefficient due to their prohibitive com-

putational overhead [5–7]. In point-to-point communications, data authentication

is usually achieved through a symmetric manner where the sender and the receiver

share a secret key to compute a message authentication code (MAC) of all commu-

nicated data. When a message with a correct MAC arrives, the receiver is assured

that the sender generated that message. However, symmetric authentication is

generally not secure in multicast because every group member knows the MAC

key and can impersonate the sender. It is required that every receiver can verify

the authenticity of messages without being able to generate authentic messages,

which is asymmetric in nature. Currently, the most popular multicast authen-

tication schemes use the principle of delayed key disclosure in order to achieve

the asymmetry needed for multicast authentication using symmetric cryptogra-

phy [8–12]. Those schemes require time synchronization between the source and

the receivers. The main idea is to have the sender attach a MAC to each packet

computed using a key known only to itself. The receivers buffer the received pack-

ets without being able to authenticate them. A short time after the delivery of

the packets, the sender discloses the key and the receivers are later able to au-

thenticate the packets. After the key is disclosed, the receivers will not accept the

packages with MAC generated by this key. A representative of such authentication

schemes is TESLA. Interested readers can refer to [11] for the details of TESLA

and other multicast authentication schemes. In addition, non-repudiation problem

and prevention of Denial-of-service attack in secure multicast communications are

relatively new topics. Some studies can be found in [13–15]. In this dissertation,

the focus is access control for secure group communications.

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

K000

K00

KS

Kε

u1 u2 u3 u16......

K0 K1

K01 K10 K11

K001 K010
K011 K101 K100

K110 K111

Users

Private
Keys

SK

KEKs

Figure 1.1: A typical key management tree

1.3 Key Management for Group Access Control

Key management schemes can be classified as centralized schemes and contributory

schemes [16]. In centralized schemes, group members trust a centralized server,

referred to as the key distribution center (KDC), which generates and distributes

encryption keys [4, 16–24]. In contributory schemes, group members are trusted

equally and all participate in the formation of the group key [25–33]. In this section,

we introduce popular centralized and contributory key management schemes.

1.3.1 Centralized Key Management

The most common class of centralized key management schemes employ a tree

hierarchy to maintain the keying material [3, 16–19]. As illustrated in Figure 1.1,

each node of the key tree is associated with a key. The root of the key tree is

associated with the session key (SK), Ks, which is used to encrypt the multicast

content. Each leaf node is associated with a user’s private key, ui, which is only

known by this user and the KDC. The intermediate nodes are associated with

6

Fixed ID Version Revision Secrete material

key selector key content

Figure 1.2: Key structure

key-encrypted-keys (KEK), which are auxiliary keys and only for the purpose of

protecting the session key and other KEKs. To make concise presentation, we do

not distinguish the node and the key associated with this node in the remainder

of the thesis.

Each key contains the secrete material that is the content of the key and a key

selector that is used to distinguish the key. As illustrated in Figure 1.2, the key

selector consists of: 1) a unique ID that stays the same even if the key content

changes and 2) a version and revision field, reflecting update in the keying material.

The version number is increased whenever new keying material is sent out by

the group manager upon user departure, while the revision number is increased

whenever the key is passed through a one-way function. The usage of the version

and revision numbers will be explained in the description of the key updating

process.

Each user stores his private key, the session key, and a set of KEKs on the

path from himself to the root of the key tree. In the example shown in Figure

1.1, user 16 possesses {u16, Ks, Kε, K1, K11, K111}. When a user leaves the service,

all his keys need to be updated in order to prevent him from accessing the future

communication. Here we use the scheme presented in [18] to demonstrate the key

updating process. When user 16 leaves, the KDC generates new keys and conveys

new keys to the remaining users through a set of rekeying messages as:

• {Knew
111 }u15 : user 15 acquires Knew

111 ,

7

• {Knew
11 }Knew

111
,{Knew

11 }Kold
110

: user 13,14,15 acquire Knew
11 ,

• {Knew
1 }Knew

11
,{Knew

1 }Kold
10

: user 9, · · · , 15 acquire Knew
1 ,

• {Knew
ε }Knew

1
,{Knew

ε }Kold
0

: user 1, · · · , 15 acquire Knew
ε ,

• {Knew
s }Knew

ε
: all remaining users acquire Knew

s ,

where the notation xold represents the old version of key x, xnew represents the new

version of key x, and {y}x represents the key y encrypted by key x. The version

numbers are increased for all new keys. This key updating procedure guarantees

that all remaining users obtain the new session key and KEKs, while user 16 is

unable to acquire the new keys. Since the rekeying messages are transmitted in the

multicast channel [17], every user receives all rekeying messages. The session key,

KEKs and users’ private keys usually have the same length. The communication

overhead associated with key updating can be described by rekeying message size,

defined as the amounts of rekeying messages measured in the unit as the same size

as the SK or KEKs. In this example, the rekeying message size is 8 when user

16 leaves the service. It has been shown that the rekeying message size increases

linearly with the logarithm of the group size [18].

When a user joins the service, the KDC chooses a leaf position on the key

tree to put the joining user. The KDC updates the keys along the path from the

new leaf to the root by generating the new keys from the old keys using a one-

way function and increasing the revision numbers of the new keys. The joining

user obtains the new keys through the unicast channel. Other users in the group

will know about the key change when the data packet indicating the increase of

the revision numbers first arrives, and compute the new keys using the one-way

function. No additional rekeying messages are necessary.

8

Multicast Control Flow
Multicast Data Flow
Unicast

KDC

Admission
Control

Key
Management

Sender

Key
Manager

Encryption

Data Source

Receivers

Key
Manager

Decryption

Data App.

������
���	�
��

� 	�� �
���	�����	�
��

�����	�	����
���	�
���

�����	�	����
���	�
���

Policy
Infrastructure

Trust
Infrastructure

Group Key
Management

Plane

Figure 1.3: Key management architecture in centralized scenario

In summary, Figure 1.3 illustrates the high level diagram of centralized access

control mechanism for group communications. All users register at the Key Distri-

bution Center (KDC) that generates and distributes keys. With the group session

key, secure communication can be established between the sender and the receivers

through the data security protocol. The KDC knows group membership changes

through the registration protocol and then updates keys through the rekey protocol

by transmitting a set of rekeying messages in the multicast channel.

1.3.2 Contributory Key Management

In some scenarios, it is not preferred to rely on a centralized server that arbitrates

the establishment of the group key. This might occur in applications where group

members do not explicitly trust a single entity, or there are no servers or group

9

members who have sufficient resources to maintain, generate, and distribute keying

information. Thus, the distributed solution of the key agreement problem has

drawn considerable attention [25–33].

The contributory schemes do not rely on centralized servers. Instead, every

group member makes independent contribution and participates the process of

group key establishment, and the members’ personal keys are not disclosed to

any other entities. The early design of contributory key agreements mostly con-

siders the efficiency of key generation for the initial establishment of the group

key [25, 27, 28, 34]. Among them, Ingemarsson et al. first introduced a confer-

ence key distribution system based on a ring topology [25]. Later, Burmester and

Desmedt proposed a key distribution system that takes only three rounds to gen-

erate a group key [27]. Steiner et al. extended the two-party Diffie-Hellman (DH)

protocol and proposed group Diffie-Hellman protocols GDH.1/2/3 [28,29]. Becker

and Willie studied the communication complexity of contributory key agreements

and proposed the octopus and 2d-octopus protocols [34]. While achieving efficient

initial key establishment, most of these schemes encounter high rekeying complex-

ity upon membership changes. Recent research on key management becomes more

aware of the scalability issue in both key establishment and key update for large

and dynamic groups. After the tree-based approaches were proposed in the central-

ized scenario [4, 17], logical tree structure is also used in the contributory setting

by Kim et al in their TGDH scheme [31], and by Dondeti et al in their DISEC

scheme [32].

Next, we briefly review tree-based contributory key management schemes [31,

32] that use the two-party DH protocol [35] as a basic module. Let A and B denote

two entities, KA denote the private key of A, and KB denote the private key of B.

10

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

M1 M2 M3 M4

(a) a key tree

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

M1 M2 M3

<3,6>

M4 M5

<3,7>

New intermediate
node

New member

(b) user join

Figure 1.4: Tree-based contributory key management

Two-party DH protocol establishes a share key between A and B without revealing

their private keys as follows. First, A sends the message {gKA mod p} to B, and

B sends the message {gKB mod p} to A, where g and p, large prime numbers, are

exponential base and modular base respectively [35]. Then, A computes KAB =
(
gKB mod p

)KA
mod p; and B computes KAB =

(
gKA mod p

)KB
mod p. Both

obtain the shared key KAB.

To establish a shared key among a group of user, the key tree is constructed

in a bottom-up fashion. Users are first grouped into pairs and each pair performs

a two-party DH to form a sub-group. These sub-groups will again pair up and

perform the two-party DH to form larger sub-groups. Continuing in this way,

the final group key can be obtained. An example is shown in Figure 1.4(a) with

four group members, and member Mi has private key ri. The group key K〈0,0〉 is

computed in two rounds as

1. M1 and M2 generate a shared key K〈1,0〉 = (gr1r2 mod p); and M3 and M4

generate a shared key K〈1,1〉 = (gr3r4 mod p). Then, M1 and M2 form a

subgroup; and M3 and M4 form a subgroup.

2. Two subgroups perform two-party DH protocol and generate the group key

11

Receivers
Admission

Control

Encryption

Data Source

Data App.

Decryption
Contributory

Key
Management

����������	
�
��	�		�� ����

� �������
��	�		�

Group Key
Management Plane

Policy
Infrastructure

Trust
Infrastructure

Multicast Control Flow
Multicast Data Flow
Unicast

����
� �
���� �
��

��	�		�

netw
ork

netw
ork

Figure 1.5: Key Management architecture in centralized sceneries

as K〈0,0〉 = (gK〈1,0〉K〈1,1〉 mod p).

In a user join event, the new user will first be paired with an insertion node,

which could be either a leaf node or an inner node, to perform a two-party DH.

Then all the keys on the path from the insertion node to the tree root are updated

recursively. An example is shown in Figure 1.4(b). When member M5 joins the

group, the insertion node is chosen as node 〈2, 3〉 in Figure 1.4(a), then M4 and

M5 perform one round of DH to generate a new inner node 〈2, 3〉 in Figure 1.4(b),

followed by the key updates on the path 〈2, 3〉 → 〈1, 1〉 → 〈0, 0〉.
Upon a user’s departure, the leaving user’s node and its parent node will be

deleted from the key tree. Its sibling node will assume the position of its parent

node. Then all the keys on the path from the leaving user’s grandparent node to

the tree root are recalculated from the bottom to the top.

Compared with centralized schemes, contributory key management has the

advantage of not relying on a single trusted key server, but requires performing

12

computationally expensive cryptographic primitives, such as modular multiplica-

tion and exponentiation [36,37]. As a summary, Figure 1.5 illustrates the high level

diagram of contributory access control mechanism for group communications.

1.4 Thesis Overview and Contribution

Key management is accomplished either by using a centralized entity that is respon-

sible for distributing keys to users, or by contributory protocols where legitimate

members exchange information to agree upon a key. Typical group key manage-

ment schemes seek to minimize either the amount of rounds needed in establishing

the group key, or the size of the rekeying messages. However, those approaches do

not factor in the varying requirements of the users, the underlying network, or the

application, and are therefore not well suited to provide efficient solutions for all

users, for all networks, or for all types of applications. The first two components

of this dissertation focus on tailoring access control solutions to wireless networks

where users are mobile and the medium is inherently unreliable, and to multimedia

applications where the rich properties of the content allow for an improved design

of key management. All these scenarios introduce challenges that are not present

in conventional key management for generic applications. In order to design better

security protocols, it is necessary to look at the security system from an adver-

sarial point-of-view. The third component of this dissertation addresses a security

concern in popular key management schemes and proposes a framework to immu-

nize the key management protocols. Next, we introduce these three components

individually.

Topology-aware key management in wireless networks

To achieve forward and backward security, rekeying messages are sent to group

13

members when there are users joining or leaving the multicast group. In applica-

tions where there are many users and frequent additions or deletions to the group

membership, key management can introduce a significant communication burden.

rekeying messages must be delivered reliably because the loss of rekeying messages

results in severe performance degradation [3]. If a user loses one key, he will not

be able to access multicast content encrypted by this key and may not be able

to acquire future keys from future rekeying messages either. Further, in real-time

multicast applications the rekeying messages should also be delivered in a timely

manner so that users receive the rekeying messages before the new key takes ef-

fect. These reasons alone motivate the need for building communication-efficient

key management schemes. In wireless multicast scenarios, however, the need is

even more pronounced since bandwidth is limited and data typically experience a

higher transmission error rate than in conventional environments.

In the first part of this dissertation, we propose a method for designing a cen-

tralized multicast key management tree for a group of users in a cellular network.

Traditional tree-based multicast key management schemes do not consider the

effect of the network topology upon the delivery of the rekeying messages, and

therefore waste network resources by sending rekeying messages to users who do

not need them. We address this issue by proposing to match the key management

tree to the network topology, thereby localizing the delivery of the rekeying mes-

sages and reducing the communication costs. In mobile environments, the user

will subscribe to a multicast service under an initial host agent, and through the

course of his service undergo handoff to different base stations. We will discuss

issues arising from user relocation and present a handoff scheme that is suitable

for topology-matching key management. In addition, we prove that optimizing

14

the proposed key tree is equivalent to optimizing a set of independent smaller-

scale subtrees. This significantly reduces the complexity of the tree design. A

tree structure that can easily adapt to changes in the number of users and a tree

generation algorithm that considers the heterogeneity of the network will also be

introduced.

Hierarchical Group Access Control

Existing key management schemes, such as in [4, 16–33], address the access

control issues in a single multicast session. They focus on establishing and updating

keys with dynamic membership and provide all group members the same level of

access privilege. That is, the users who possess the decryption keys have the

full access to the content, and the users who do not have the decryption keys

cannot interpret the data. In practice, many group applications contain multiple

related data streams and have the members with various access privileges. These

applications prevail in various scenarios.

• Multimedia applications distributing data in multi-layer coding format [38].

For example, in a video broadcast, users with a normal TV receiver can

receive the normal format, while others with HDTV receivers can receive

both the normal format and the extra information needed to achieve HDTV

resolution.

• Multicast programs containing several related services, such as weather,

news, traffic and stock quote.

• Communications in hierarchically managed organizations, such as military

group communications where participants have various access authorization.

Since group members subscribe to different data steams, or possibly multiple of

15

them, it is necessary to develop access control mechanism that supports the multi-

level access privilege, which shall be referred to as the hierarchical group access

control.

The access control issue for each data stream can be managed separately using

existing key management schemes . However, this leads to inefficient use of keys

and does not scale well when the number of data streams increases. In the sec-

ond part of this dissertation, we develop a multi-group key management scheme

that addresses the generalized hierarchical group access control problem. Partic-

ularly, we design an integrated key graph that maintains the keying material for

all members with different access privileges and incorporates new functionalities

that are not present in conventional multicast key management, such as the user

relocation on the key graph. The proposed multi-group key management scheme

achieves forward and backward secrecy [31] when users (1) join the group com-

munication with certain access privilege; (2) leave the group; and (3) add or drop

the subscription of one or several data streams (change access privilege). The

idea of the integrated key graph can be used in both centralized and contributory

environments. Compared with using single-session access control solutions, such

as a variety of tree-based key management scheme [18, 31], the proposed scheme

reduces the usage of the communication, computation and storage overhead, and

is scalable when the number of access levels increases.

Securing Dynamic Group Membership Information

Key management is employed to prevent unauthorized access to multicast con-

tent. We discovered, however, the rekeying process associated with multicast key

management can disclose information about the dynamics of the group member-

ship to both insiders and outsiders. We collectively refer to group dynamics in-

16

formation (GDI) as information describing the dynamic membership of a group

application, such as the number of users in the multicast group as a function of

time, and the number of users who join or leave the service during a time interval.

The leakage of GDI from the rekeying process can lead to serious security and

privacy problems. For example, in a commercial multicast program, the service

provider performs group management and has the knowledge of GDI. However, it

is highly undesirable to disclose instant detailed dynamic membership information

to competitors, who could develop effective competition strategies by analyzing the

statistical behavior of the audience. Another example is a military group commu-

nication scenario, where GDI represents the number of soldiers on the battlefield

and the number of soldiers moving into or out of certain areas. In this situation,

the valid group members, i.e. regular soldiers, may only be entitled to obtain gen-

eral information through the secure group communication, but not to acquire GDI.

Further, leaking GDI to outsiders, most likely to the enemies, can be devastating.

In the wireless scenario, the need for studying GDI leakage and developing leakage-

immune multicast key management schemes is even more pronounced because the

broadcast nature of the wireless media enables anyone within the broadcast range

to observe the encrypted data.

In the third part of this dissertation, we demonstrate that the key management

schemes can reveal the GDI easily and propose a framework of protecting GDI from

inside and outside attackers. We have developed two effective strategies to attack

and steal information about the membership dynamics from the tree-based central-

ized schemes [3,4,16–19] that employ tree hierarchy for the maintenance of keying

material. These strategies involve exploiting the format of rekeying messages and

estimating GDI directly from the size of the rekeying messages. We also developed

17

an anti-attack method that is fully compatible with the existing key management

schemes. By utilizing batch rekeying [39] and introducing phantom users, the pro-

posed anti-attack method aims to minimize the mutual information between the

rekeying process observed by the attackers and the true group dynamics. Various

aspects of the proposed anti-attack scheme, such as the communication overhead

and the leakage of GDI, are evaluated based on the data obtained from MBone

sessions. The analysis on other non-tree based schemes is also provided. In con-

tributory key management, each group member need to be aware of other group

members in order to establish the shared group key. Thus, the task of protecting

GDI is more difficult than it is in the centralized scenario. We provide qualitative

analysis on the vulnerability of various contributory schemes and techniques that

can be used to protect GDI in the distributed environments.

The rest of the dissertation is organized as follows. The topology-matching

key management scheme for wireless networks is discussed in Chapter 2. The key-

graph based hierarchical group access control is presented in Chapter 3. In Chapter

4, we discuss attack and protection technologies for dynamic group membership

information. Conclusion and future work is in Chapter 5.

18

Chapter 2

Topology-aware Key Management

for Wireless Networks

2.1 Introduction

There has been significant advancements in building a global wireless infrastructure

that will free users from the confines of static communication networks. Users will

be able to access the Internet from anywhere at anytime. As wireless connections

become ubiquitous, consumers will desire to have multicast applications running

on their mobile devices. In order to meet such a demand, there has been increasing

research efforts in the area of wireless multicast [40–42].

In wireless networks, where bandwidth is limited and transmission error rate

is high, the design of key management schemes need to consider the transmission

of the rekeying messages in order to ensure reliable key distribution and reduce

the communication burden associated with key management. Previous key man-

agement schemes focus entirely on generating the rekeying messages, but they

neglect the issues of the delivery of the rekeying messages and do not consider the

19

underlying network topology.

In this Chapter, we propose a topology-aware centralized key management

scheme for multicast applications in a cellular network. By matching the key

management tree to the network topology and localizing the delivery of rekeying

messages, we can significantly reduce the communication burden associated with

rekeying. In Section 2.2, we introduce the concept of matching the key tree to the

network topology and motivate the reduction in the communication cost associated

with rekeying. In mobile environments, the user will subscribe to a multicast

service under an initial host agent, and through the course of his service undergo

handoff to different base stations. In Section 2.3, we discuss issues arising from user

relocation and present a handoff scheme that is suitable for topology-matching key

management. In Section 2.4, we analyze the effect that matching the key tree to

topology has upon the communication overhead. We then address the complexity

of designing the key management tree in Section 2.5 by proving that optimizing

the proposed key tree is equivalent to optimizing a set of independent smaller-

scale subtrees. This significantly reduces the complexity of the tree design. We

describe, in Section 2.6, a tree structure that can easily adapt to changes in the

number of users and a tree generation algorithm that considers the heterogeneity

of the network. We then describe a procedure to build the key tree and determine

the parameters that optimize the tree. Finally, simulation results are presented in

Section 2.7.

2.2 Topology-Matching Key Management Tree

In this section, we introduce the benefits of matching the key tree to the net-

work topology. We outline a procedure to design the key management tree and

20

define the cost functions that we use in the rest of the chapter for measuring the

communication burden associated with key updating.

Let us revisit the example of tree-based centralized key management in Section

4.2.3 (see Figure 1.1). As user 16 leaves the multicast service, all of his keys

are updated through a set of rekeying messages. It is seen that most rekeying

messages are only useful to a subset of users, who are always neighbors on the

key management tree. In fact, the first rekeying message is only useful to user 15,

the second rekeying message is only useful to users 13,14,15, the third rekeying

message is useful to users 9, 10, · · · , 15, and the fourth and fifth rekeying messages

are useful to all users. Therefore, rekeying messages do not have to be sent to

every user in the multicast group.

We propose to exploit this observation in designing a key management tree.

Our key management tree will match the network topology in such a way that

the neighbors on the key tree are also physical neighbors on the network. By

delivering the rekeying messages only to the users who need them, we may take

advantage of the fact that the key tree matches the network topology, and localize

the delivery of rekeying messages to small regions of the network. This lessens the

amount of traffic crossing portions of the network that do not have users who need

to be rekeyed. In order to accomplish this, it is necessary to have the assistance

of entities that would control the rekeying message transmission, such as the base

stations in cellular wireless networks.

A cellular network model, as depicted in Figure 2.1 and proposed in [43], con-

sists of mobile users, base stations (BS) and supervisor hosts (SH). The SHs admin-

istrate the BSs and handle most of the routing and protocol details for mobile users.

The service provider, the SHs, and the BSs are connected through high-speed wired

21

Service
Provider

Network

SH

SH

SH

Base Station

Non group members

group members

Figure 2.1: A cellular wireless network model

connections, while the BSs and the mobile users are connected through wireless

channels. In this work, the SHs can represent any entity that administers BSs,

such as the region servers presented in [44] and radio network controllers (RNCs)

in 3G networks [45]. In cellular wireless networks, multicast communication can

be implemented efficiently by exploiting the inherent broadcasting nature of the

wireless media [46–48]. In this case, multicast data is first routed to the BSs using

multicast routing techniques designed for wireline networks [2], and then broadcast

by the BSs to mobile users.

If we assume that both the SHs and the BSs can determine whether the rekeying

messages are useful for the users under them, then the cellular wireless network

has the capability of sending messages to a subset of users. In particular, the SHs

multicast a rekeying message to their BSs if and only if the message is useful to

one or several of their BSs, and the BSs broadcast the rekeying message to their

users if and only if the message is useful to the users under them. The information

needed to identify whether a SH or BS needs a rekeying message can be sent

in the rekeying message header. We shall not consider the size of this overhead

22

BS BS BS BS

SH

SH

BS BS

BS

SH

……

KDC

Figure 2.2: A Topology -matching key management tree

information in our calculation since this overhead is typically small compared to

the size of the actual rekeying messages, and is implementation-dependent. Hence,

when the key tree matches the network topology, we can localize the delivery of

rekeying messages.

We design a key management tree that matches the network topology in three

steps:

• Step 1: Design a subtree for the users under each BS. These subtrees are

referred to as user subtrees.

• Step 2: Design subtrees that govern the key hierarchy between the BSs and

the SH. These subtrees are referred to as BS subtrees.

• Step 3: Design a subtree that governs the key hierarchy between the SH and

the KDC. This subtree is referred to as the SH subtree.

The combined key management tree is called a Topology-Matching Key Manage-

ment (TMKM) tree. Figure 2.2 illustrates a TMKM tree for the network topology

shown in Figure 2.1. Traditional key management trees, such as those in [16–19],

23

are independent of the network topology, and we call them Topology Independent

Key Management (TIKM) trees. When using a TIKM tree, the users are scat-

tered all over the network, and therefore it is not possible to localize the delivery

of rekeying messages.

We study the communication burden of the rekeying messages in the wired

portion and in the wireless portion of the network separately. Under each SH, the

wireline-message-size is defined as the total size of the rekeying messages multicast

by the SHs to the BSs, and the wireless-message-size is defined as the total size

of the rekeying messages broadcast by the BSs. The message size is measured in

units whose bit length is the same size as the key length. In this work, we assume

that the network connection between the KDC and the SHs has ample bandwidth

resource and experience very low error rate. Thus, the wireline-message-size does

not include the communication overhead between the KDC and the SHs.

Let Sl
1 denote the wireline-message-size under the lth SH and Sl

2 denote the

wireless-message-size under the lth SH, where l = 1, 2, · · · , nsh and nsh is the total

number of SHs. For example, when the length of the session key and KEKs is

128 bits each, if a 256 bit long rekeying message is multicast by the lth SH and

then broadcast by 3 BSs under the lth SH, then Sl
1 = 2 and Sl

2 = 6. Assuming

that users do not leave simultaneously, then the rekeying wireline cost, Cwire, the

rekeying wireless cost Cwireless, and the total rekeying cost CT , are defined as:

Cwire =
nsh∑

l=1

αl
1E[Sl

1] ; Cwireless =
nsh∑

l=1

αl
2E[Sl

2]

CT = γ · Cwireless + (1− γ) · Cwire (2.1)

where E[.] indicates expectation over the statistics governing the user joining and

leaving behavior. Here, 0 ≤ γ ≤ 1 is the wireless weight, which represents the im-

portance of considering the wireless cost, and {αl
1} and {αl

2} are the sets of weight

24

factors that describe the importance of considering the wireline-message-size and

wireless-messages-size under the lth SH respectively. When SHs administrate areas

with similar physical network structure and channel conditions, we can approxi-

mate {αl
1} and {αl

2} by 1. In addition, we define the combined-message-size as

Sl
T = γ ·Sl

2α
l
2 +(1−γ) ·Sl

1α
l
1. Thus, CT can also be expressed as CT =

∑nsh
l=1 E[Sl

T].

For a given wireless weight γ, {αl
1}, and {αl

2}, both the TMKM and TIKM

trees should be designed to minimize the total communication cost, CT .

2.3 Handoff Schemes for TMKM Tree

In mobile environments, the user will subscribe to a multicast service under an

initial host agent, and through the course of his service move to different cells and

undergo handoff to different base stations. Although the user has moved, he still

maintains his subscription to the multicast group. Since the TMKM tree depends

on the network topology, the physical location of a user affects the user’s position

on the key management tree. When a user moves from one cell to another cell,

the user needs to be relocated on the TMKM tree. In this section, we propose

an efficient handoff scheme for our TMKM trees. In this context, the expression

handoff scheme will only refer to the process of relocating a user on the key tree.

One solution to the handoff problem is to treat the moving user as if he departs

the service from the cell that he is leaving from and then rejoins the service in the

cell that he has moved to. This scheme, referred to as the simple handoff scheme,

is not practical for mobile networks with frequent handoffs since rekeying messages

are sent whenever handoffs occur.

During handoff, if a user remains subscribed to the multicast group, it is not

necessary to remove the user from the cell where he previously stayed. Allowing a

25

If u is on WTBRj?

Put u on the branch
that is most recently
updated in cell j

Put u on his previous
position on subtree of
cell j; remove u from

WTBRj

Put u on WTBRi Remove u
from the subtree of cell i

Update keys in
keyset u

j using user
join procedure

If t ujoin>t jupdate?

Send keys in
keyset uj to u

Yes No

Yes

No

Figure 2.3: Key update process when user u moves from cell i to cell j

mobile user to have more than one set of valid keys while he stays in the service

does not compromise the requirements of access control, as long as all of the keys

that he possesses are updated when he finally leaves the service. In order to trace

both the users’ handoff behavior and the key updating process, we employ a wait-

to-be-removed (WTBR) list for each cell. The WTBR list of the cell i, denoted by

WTBRi, contains the users who (1) possess a set of valid keys on the user subtree

of cell i and (2) are currently in the service but not in cell i. These WTBR lists

are maintained by the KDC.

26

Let tiupdate denote the time of the last key update that occurs due to a departure

occurring in cell i, and let tujoin denote the time when the user u first joins the

service. In addition, we define keysetui to be the set of keys possessed by the user

u while he is in cell i. We propose an efficient handoff scheme that is illustrated

in Figure 2.3 and Figure 2.4, as:

• When user u moves from cell i to cell j,

1. Put u on the WTBR list of cell i, i.e. WTBRi, and remove him from

the user subtree of cell i.

2. If u has been in cell j before and is on WTBRj, put u back on the

branch of the subtree that he previously belonged to and remove him

from WTBRj. If u is not on WTBRj, put u on the most recently

updated branch on the user subtree of cell j. We note that the set of

keys associated with u’s new position, keysetuj , was updated at time

tjupdate.

3. If tujoin > tjupdate, the keys in keysetuj are updated using the procedure

for user join described in [18]. If tujoin ≤ tjupdate, the keys do not need to

be updated.

4. The keys in keysetuj are sent to u through unicast.

The purpose of step 3 is to prevent u from taking advantage of the handoff

process to access the communication that occurred before he joined. To see

this, let u join the service at tujoin = t0 in cell i, and then immediately move

to cell j. After relocation, user u obtains keys in keysetuj that is updated at

time tjupdate = t0 − ∆, where ∆ is a positive number. In this case, if we do

not update the keys in keysetuj and u has recorded the communication in cell

27

j before joining, u will be able to decrypt the multicast content transmitted

in [t0 −∆, t0), during which time he is not a valid group member.

• When user u leaves the multicast service from cell j:

1. The keys that are processed by u and still valid should be updated. In

particular, the keys in keysetuj and {keysetui : WTBRi contains u} are

updated using the procedure for user departure in [18].

2. Check other users on the WTBR lists that contain u. If u and another

user u∗ are both on WTBRi, and keysetui = keysetu
∗

i , remove u∗ from

WTBRi. It is noted that u∗ is removed from WTBRi when u∗ does not

have valid keys associated with cell i any more. Step 2 does not require

extra rekeying messages.

3. Remove u from all WTBR lists.

Thus, a user will be removed from the WTBR lists not only when he leaves

the service, but also when other users who share the same keys leave the service.

Compared with the simple handoff scheme, the efficient handoff scheme can reduce

the key updating caused by user relocation because the number of cells that need

to update keys is smaller than the number of cells that a user has ever visited.

When the key tree matches with the network topology, handoffs result in users’

relocation on the key tree, which inevitably introduce extra cost to the task of key

management. In this work, we assume that the KDC has significant computation

and storage resources and do not investigate the cost for the KDC to maintain and

update the WTBR lists. We will focus on the extra communication cost due to

the fact that more than one set of keys may need to be updated for a departure

user when handoffs exist.

28

i=j or u is
on WTBRi ?

Yes

No

Update keys in keyset ui using
user departure procedure

i <= total number
of cells ?

i=1

Yes

Check other users on WTBRi. If
keyset ui = keyset u*

i , remove u*
from WTBRi

Remove u from WTBRi

i = i+1

End

No

Figure 2.4: Key update process when user u leaves the service from cell j

2.4 Performance Analysis

Matching the key management tree with the network topology has two contrasting

effects on the rekeying message communication cost. First, the cost of sending

one rekeying message is reduced because only a subset of the BSs broadcast the

message. Second, the number of rekeying messages may increase due to handoffs.

In this section, we analyze these two effects and investigate the influence that user

mobility and the wireless weight have upon the performance of the TMKM scheme.

29

To simplify the analysis, we assume that the system has aL0 SHs, each SH

administrates aL1 BSs, and each BS has aL2 users, where a ≥ 2, L0, L1 and L2

are positive integers. We also assume that the SHs administer areas with similar

network structure and conditions. Therefore, {αl
1} and {αl

2} are approximated

by 1. The user subtrees, BS subtrees, and SH subtree are designed as balanced

trees with degree a and level L2, L1, and L0, respectively. For fair comparison,

the TIKM tree is also designed as an a-ary balanced tree with (L0 + L1 + L2)

levels. In this work, the level of a tree is defined as the maximum number of nodes

on the path from a leaf node to the root excluding the leaf node. Since the SHs

are usually in charge of large areas, the probability of a user moving between SHs

during a multicast service is much smaller than the probability of handoffs that

are under one SH. In this analysis, we assume that there are no SH level handoffs.

For the present computation, we only calculate the communication cost caused by

one departure user based on the rekeying procedure described in [3, 17, 18].

As illustrated by the example in Section 2.2, rekeying messages with size (a ·L)

need to be transmitted when one user leaves from a balanced key tree with degree a

and level L. When using the TIKM tree, rekeying messages with size a(L0+L1+L2)

are transmitted under aL0 SHs and broadcast by aL0+L1 BSs. Therefore, when one

user leaves the service, wireline-message-size, denoted by C̃tikm
w , and the wireless-

message-size, denoted by C̃tikm
wl , are computed as

C̃tikm
w = (aL0 + aL1 + aL2)a

L0 (2.2)

C̃tikm
wl = (aL0 + aL1 + aL2)a

L0+L1 . (2.3)

The performance of the TMKM tree is affected by the user handoff behavior.

We define the random variable I as the number of WTBR lists that contain the

departing member when he leaves the service. We also introduce the function

30

B(b, i, a) that describes the number of intermediate KEKs that need to be updated.

B(b, i, a) is equivalent to the expected number of occupied boxes when putting i

items in b boxes with repetition, where each box can have at most a items. A

box is called occupied when one or more items are put into the box. The detailed

calculation of B(b, i, a) is given in Appendix A.

When one user leaves the service and he is on I = i WTBR lists, we can show

that:

• We need to update (i · L2) keys on user subtrees. Thus, rekeying messages

with total size (iaL2 − 1) are transmitted under one SH and broadcast by a

single BS.

• We need to update B(aL1−m, i, am) KEKs on the level (L1 − m) of the BS

subtree. Thus, messages with size aB(aL1−m, i, am) are transmitted under

one SH and broadcast by am BSs. Here, m = 1, · · · , L1, and the level 0 of a

tree is just the root.

• We need to update (at) KEKs on the level (L0− t) of the SH subtree. Thus,

messages with size (at+1) are sent under (at) SHs and broadcast by (aL1 · at)

BSs. Here, t = 1, 2, · · · , L0.

• In addition, we need one message to update the session key Ks. This message

is sent to all aL0 SHs and aL0+L1 BSs.

Therefore, when the departing user belongs to i WTBR lists, the expected value

of the wireline-message-size, denoted by Ctmkm
w (i), and the expected value of the

wireless-message-size, denoted by Ctmkm
wl (i), are computed as

Ctmkm
w (i) = iaL2 +

L1∑

m=1

aB(aL1−m, i, am) +
L0∑

t=1

at+1 (2.4)

31

0 2 4 6 8
0

20

40

60

80

100

120

a=2, L
0
=0, L

1
=3, L

2
=6

w
ire

lin
e−

m
eg

−
si

ze
0 2 4 6 8

40

60

80

100

120

140

160

w
ire

le
ss

−
m

sg
−

si
ze

a=2, L
0
=0, L

1
=3, L

2
=6

0 2 4 6 8
20

40

60

80

100

120
a=2, L

0
=1, L

1
=3, L

2
=6

w
ire

lin
e−

m
sg

−
si

ze

0 2 4 6 8
0

200

400

600

800

w
ire

le
ss

−
m

sg
−

si
ze

a=2, L
0
=1, L

1
=3, L

2
=6

0 2 4 6 8
0

50

100

150

200
a=2, L

0
=3, L

1
=3, L

2
=6

The number of cells that update keys (i)

w
ire

lin
e−

m
sg

−
si

ze

0 2 4 6 8
0

5000

10000

15000

The number of cells that update keys (i)

w
ire

le
ss

−
m

sg
−

si
ze

a=2, L
0
=3, L

1
=3, L

2
=6

TIKM : Ctikm
w

TMKM : Ctmkm
w

(i)

TIKM : Ctikm
wl

TMKM : Ctmkm
wl

(i)

(a) (b)

(c)

(e)

(d)

(f)

Figure 2.5: Comparison of the wireless cost and the wireline cost for one user

departure

Ctmkm
wl (i) = iaL2 − 1 +

L1∑

m=1

am+1B(aL1−m, i, am)

+aL1

L0∑

t=1

at+1 + aL0+L1 . (2.5)

The performance of the TIKM tree and the TMKM tree can be compared by

examining the values of C̃tikm
w and Ctmkm

w (i), C̃tikm
wl and Ctmkm

wl (i). In Figure 2.5,

these values are plotted for different i and L0, when the other parameters are fixed

as a = 2, L1 = 3, and L2 = 6. Since the TIKM tree is not affected by handoffs,

C̃tikm
w and C̃tikm

w are constant. Figure 2.5(a) and Figure 2.5(b) show the wireline-

32

message-size and wireless-message-size respectively, when the system has only one

SH. Figure 2.5(c) and Figure 2.5(d) show the corresponding curves for 2 SHs, while

Figure 2.5(e) and Figure 2.5(f) depict the corresponding curves for systems with

8 SHs. We observe that:

• Both Ctmkm
w (i) and Ctmkm

wl (i) are increasing functions of i.

• The TMKM tree always reduces the wireless-message-size, and this advan-

tage becomes larger when the system contains more SHs.

• For systems containing only one SH, i.e. L0 = 0, the TMKM trees intro-

duce larger wireline-message-size than TIKM trees due to the handoff ef-

fects. When there are multiple SHs, the TMKM scheme can take advantage

of the fact that some SHs do not need to transmit rekeying messages to their

BSs, and can reduce the wireline-message-size when i is small. It should be

noted that the wireline cost will be larger than that given in (2.4) if there

are SH-level handoffs.

Since TMKM trees reduce the wireless-message-size more effectively than re-

ducing the wireline message size, a larger wireless weight γ leads to an improved

advantage of TMKM trees over TIKM trees. Using large γ is a reasonable scenario

since the wireless portion of the network usually experiences a higher error rate

and has less available bandwidth when compared to the wireline portion, which

makes the wireless cost the major concern in many realistic systems. In addition,

the communication cost of the TMKM tree increases with the number of cells that

need to update keys when a user leaves. Therefore, when handoffs are less likely

to happen, the TMKM tree has larger advantage over the TIKM tree.

33

Scalability is another important performance measure of key management schemes

[3]. We define N = aL0 as the number of SHs. When N → ∞, the scalability

properties can be easily obtained from (2.2)-(2.5), and are summarized in Table

2.1. Both Figure 2.5 and Table 2.1 demonstrate that the communication cost of

TMKM trees scales better than that of TIKM trees when more SHs participate in

the multicast.

wireline-message-size wireless-message-size

TIKM ∼ aN loga N ∼ aL1+1N loga N

TMKM ∼ a2 loga N ∼ aL1+2 loga N

Table 2.1: Scalability comparison between TMKM and TIKM trees when the

number of SHs(N)→∞.

2.5 Separability of the Optimization Problem

The TMKM tree consists of user-subtrees, BS-subtrees, and SH-subtrees. In this

section, we show that optimizing the entire TMKM tree is equivalent to optimizing

those subtrees individually. This is desirable since optimizing the subtrees sepa-

rately reduces the dimension of the search space for optimal tree parameters and

significantly reduces the complexity of tree design.

In this work, we assume that the users under the same SH have the same

joining, departure and mobility behavior. Thus, the user subtrees under the same

SH have the same structure. It is easy to verify that the main results in this

section still hold in scenarios where the dynamic behavior of the users varies under

different BSs. However, for the discussion in this chapter, we will restrict our

attention to the case where the dynamic behavior of the users between different

34

BSs is identical. In addition, we assume that the number of participating SHs and

BSs do not change during the multicast service. In order to make the presentation

more concise, we introduce the notation Dk,l to represent the situation where k

users are under the lth SH and one of these users leaves the service.

As discussed in Section 2.2, the total communication cost, CT , is expressed as

CT =
nsh∑

l=1

E[Sl
T]. (2.6)

Based on the definition of Sl
T , one can see that

E[Sl
T] =

∑

k

pl(k)Gl(k)El(k), (2.7)

where

pl(k) : pmf of the number of users under the lth SH,

Gl(k) : probability that a user leaves from the lth SH

given that k users are under the lth SH,

El(k) : the expected value of the combined-message-

size given the condition Dk,l.

When a user leaves, the keys that need to be updated are divided into three cat-

egories: (1) the keys on the user subtrees, (2) the keys on the BS subtrees, and

(3) the keys on the SH subtree. Under the condition Dk,l, let Al
1(k), Al

2(k) and

Al
3 denote the expected value of the combined-message-size under the lth SH re-

sulting from updating the keys on the user-subtrees, BS-subtrees and SH-subtrees,

respectively. We note that Al
3 is not a function of k when there are no SH-level

handoffs, and that El(k) = Al
1(k) + Al

2(k) + Al
3. Then, (2.6) becomes

CT =
nsh∑

l=1

(∑

k

pl(k)Gl(k)Al
1(k) +

∑

k

pl(k)Gl(k)Al
2(k) + Al

3 ·
(∑

k

pl(k)Gl(k)

))
.

35

We observe that the structure of the user-subtrees only affects Al
1(k), the struc-

ture of the BS-subtrees only affects Al
2(k), and the structure of the SH-subtrees

only affects Al
3. Therefore, for the TMKM tree, the user-subtrees, BS-subtrees

and SH subtree can be designed and optimized separately. Particularly, the user-

subtrees under the lth SH should be designed to minimize
∑

k pl(k)Gl(k)Al
1(k), the

BS subtree under the lth SH should be designed to minimize
∑

k pl(k)Gl(k)Al
2(k),

and the SH subtree should be designed to minimize
∑nsh

l=1 Al
3 ·

(∑
k pl(k)Gl(k)

)
.

2.6 Design of the TMKM Tree

Key management schemes are closely related to the key management architecture,

which describes the entities in the network that perform key management [3]. In

cellular wireless networks, the BSs are not trusted to perform key management

because they can be easily tampered with [43]. The SHs are able to perform key

management if they are trusted and have the necessary computation and storage

capabilities. The trustiness of the SHs depends on both the business model and

the protection on the SHs. Based on whether SHs perform key management, the

systems can be classified into two categories:

• In the first category, each SH performs key management for a subset of the

group members who reside in the region where this SH is in charge. Each SH

can be looked at as a local key distribution center. Without loss of generality,

since the SHs are independent and may even adopt different key management

schemes, we can study systems containing only one SH, which we shall refer

to as one-SH systems.

• In the second category, SHs do not perform key management. Instead, there

36

is a KDC that manages keys for all users. This KDC can be the service

provider or a trusted third party. The systems containing many SHs are

referred to as multiple-SH systems.

In one-SH systems, the TMKM tree consists of user-subtrees and a BS subtree. In

multiple-SH systems, the TMKM tree consists of user-subtrees, BS-subtrees and a

SH subtree.

In this section, we introduce a model describing the joining and leaving behavior

of the users, and a flexible tree structure that can be used to design the user and

BS subtrees. We then examine the optimization of the user and BS subtrees and

the design of the SH subtree.

2.6.1 Dynamic membership model

Mlisten [49] is a tool that can collect the join/leave times for multicast group

members in MBone sessions. Using this tool, [50] [51] studied the characteristics

of the membership dynamics of MBone multicast sessions and showed that the user

arrival process can be modeled as Poisson and the membership duration of short

sessions (that usually last several hours) is accurately modeled using an exponen-

tial distribution while the membership duration of long sessions (that usually last

several days) is accurately modeled using the Zipf distribution [52]. Based on the

population model of short MBone sessions, we made the following assumptions on

the membership dynamics:

1. Under the lth SH, the user’s arrival process is Poisson with rate λl and the

service duration is governed by an exponential random variable with mean

1/µl, where l = 1, 2, · · · , nsh.

2. A user’s joining and leaving behavior is independent of other users.

37

Figure 2.6: ALX tree

Based on the first assumption, the number of users under the lth SH is a Poisson

random variable with rate θl, i.e. pl(k) =
θk
l

k!
e−θl , where θl = λl/µl [53]. In addi-

tion, it can be shown that Gl(k) approximately equals to k ·µl. It is noted that the

second assumption is reasonable in some types of multicast services, such as peri-

odic news multicast, while it may not be correct for services such as a scheduled

pay-per-view multicast, where different users are related with each other through

watching the same content.

In this work, we use this Poisson arrival and exponential service duration model

to optimize the TMKM tree. In Section 2.7, we will use simulations to demon-

strate that the performance of the TMKM tree is not sensitive to users’ statistical

membership models.

2.6.2 ALX tree structure

The TMKM scheme matches the key tree to the network topology by decomposing

the key tree into user subtrees, BS subtrees, and SH subtrees. The TMKM scheme

does not have constraints on the specific structure of these subtrees. In this section,

we propose a tree structure that is capable of handling membership additions,

deletions, or relocations with minimal changes to the tree’s structure.

38

As illustrated in Figure 2.6 and parameterized by the triple (a, L,x), this

(a, L,x)-logical tree has L + 1 levels. The upper L levels, which comprise a full

balanced subtree with degree a, are fixed during the multicast service. The users

are represented by the leaf nodes on the (L + 1)st level. We use a vector x to

describe the (L + 1)st level, where xi is the number of users attached to the ith

node of the Lth level, and i = 1, 2, · · · , aL. In the example shown in Figure 2.6,

x = [4, 2, 3, 3, 2, 4, 3, 3, 3], a = 3 and L = 3. We will refer to this tree structure as

the ALX tree.

When using the ALX tree, the joining user is always put on the branch with

the smallest value of xi. The maximum number of users on an ALX tree is not

restricted. When a user leaves, the average rekeying message size is (k
aL − 1 + aL),

where k is the number of users on the ALX tree. When the user’s arrival process is

Poisson with rate λ, and the service time is an exponential random variable with

mean 1/µ, the probability that a user leaves the key tree is approximately k · µ,

and the pmf of k is p(k) = θk

k!
e−θ, where θ = λ/µ. The performance of the ALX

tree is evaluated by the expected value of the rekeying message size, denoted by

Calx, and is calculated as:

Calx =
∞∑

k=1

p(k) · k · µ · (k

aL
− 1 + aL), (2.8)

It follows that the optimization problem of the ALX tree can be formulated as:

C̃alx = min
a>1,L>0

Calx. (2.9)

Balanced trees whose degree is pre-determined, such as binary and trinary

trees, are widely used to design key trees [3, 18]. Next, we compare the ALX tree

structure with balanced trees that have a pre-defined degree, which we refer to as

fixed-degree trees in this section.

39

Adding or removing a user from balanced fixed-degree trees often requires split-

ting or merging nodes. For example, when a new user is added to the key tree

shown in Figure 1.1, one leaf node must be split to accommodate the joining user.

In this case, a new KEK is created and must be transmitted to at least one existing

user. When using the ALX tree structure, however, no new KEKs are created dur-

ing membership changes. We know that updating existing KEKs for user join can

be achieved without sending any rekeying messages, as suggested in [18], because

existing users can update KEKs using one-way functions after being informed of

the need to update their keys. Therefore, the ALX tree structure allows for a key

updating operation that does not require sending any rekeying messages during

user joins. In addition, the ALX tree introduces minimal change to the tree struc-

ture with dynamic membership and therefore is easy to implement and analyze.

On the other hand, the ALX tree is optimized over the distribution of the

group size. If we take individual snapshots of the system when the group size is

very small or large, the ALX tree may not perform as well as fixed degree trees

that adjust themselves according to the group size. However, we will derive the

performance lower bound for fixed degree trees and then demonstrate that the cost

for ALX trees, C̃alx, is in fact very close to this lower bound. Similar to (2.8), the

expected rekeying message size when using a tree with fixed degree n, denoted by

Cfix(n), is calculated as:

Cfix(n) =
∞∑

k=1

p(k) · k · µ(n− 1 + n · (P − 1)) ,

where P is the average length of branches for a tree with k leaves and degree n.

It is well known that P equals the expected codeword length of a source code

containing k symbols with equal probability. The bounds on P are known to be

40

2 4 6 8 10 12 14 16 18 20
0

2000

4000

6000

8000

10000
ALX Tree Cost vs Lower Bound of the fixed degree tree

user join rate (λ)
A

ve
ra

ge
d

re
ke

y
m

es
sa

ge
 s

iz
e

ALX Tree
Lower Bound

2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04
Relative difference

user join rate (λ)

(
C

al
x −

 C
fix

)
/ C

fix

Relative Difference

Figure 2.7: Comparison between the ALX tree performance and the lower bound

for different user joining rates

logn(k) ≤ P < logn(k) + 1 [54]. Therefore,

Cfix(n) >
∞∑

k=1

p(k) · k · µ · (n logn(k)− 1). (2.10)

Based on (2.10), the performance lower bound for the fixed degree trees is given

by

C̃fix = min
n

∞∑

k=1

p(k) · k · µ · (n logn(k)− 1). (2.11)

It is noted that no fixed degree trees can reach this lower bound. In fact, C̃fix

would be achieved if and only if we could (1) reorganize the tree immediately after

user join or departure in such a way that the rekeying message size for the next

user join/leave operation is minimized; and (2) reorganize the tree without adding

any extra communication cost. However, reorganizing trees, such as splitting or

merging nodes, requires sending extra keying information to users. These above

two conditions can never be achieved simultaneously.

41

10 15 20 25 30 35 40 45 50 55 60
0

2000

4000

6000

8000

10000
ALX vs Lower Bound

Average user service time
A

ve
ra

ge
 r

ek
ey

 m
es

sa
ge

 s
iz

e

ALX Tree
Lower Bound

10 15 20 25 30 35 40 45 50 55 60
0

0.005

0.01

0.015

0.02

Relative difference

user join rate (λ)

(
C

al
x −

 C
fix

)
/ C

fix

Relative Difference

Figure 2.8: Comparison between the ALX tree performance and the lower bound

for different average service duration

The lower bound in (2.11) is used as a reference for evaluating the performance

of the ALX tree. In Figure 2.7, C̃fix and C̃alx are compared for different user

joining rates, λ. In Figure 2.8, C̃fix and C̃alx are compared for different average

service duration, 1/µ. We observe that the relative difference between the lower

bound and the performance of the ALX tree is less than 3.5%.

The ALX tree has the advantage of maintaining tree structure as user join

and leaves, while its performance is very close to the lower bound of fixed degree

trees. Although the ALX tree is not the optimal solution amongst all possible

tree structures, its practical nature makes the ALX tree an ideal candidate for

designing the user and BS subtrees.

42

2.6.3 User subtree design

The user subtrees are designed as ALX trees. Under the lth SH, the optimal tree

parameters, a and L, solve

min
a,L

∑

k

pl(k)Gl(k)Al
1(k), (2.12)

where a and L are positive integers and Gl(k) ≈ kµl. Let T u
w(k, i) and T u

wl(k, i)

respectively represent the expected value of the wireline-message-size and wireless-

message-size caused by updating keys on the user subtrees, given that k users are

under the lth SH, one of them leaves and he is on i WTBR lists. We can show that

T u
w(k, i) = T u

wl(k, i) = (
k/nl

bs

aL
− 1 + aL)i.

Then, Al
1(k) is computed as

Al
1(k) =

nl
bs∑

i=1

pl
h(i)(α

l
2γT u

wl(k, i) + αl
1(1− γ)T u

w(k, i))

= (αl
2γ + αl

1(1− γ))(
k/nl

bs

aL
− 1 + aL)E[I l], (2.13)

where E[I l] =
∑nl

bs
i=1 pl

h(i)i, and αl
1 and αl

2 are defined in Section 2.2. By substituting

(2.13) into (2.12), the optimization problem for the user-subtrees under the lth SH

is

min
a,L

∑

k

k · pl(k) · (k/nl
bs

aL
− 1 + aL). (2.14)

The optimum a and L can be obtained by searching the space of possible a and L

values.

2.6.4 BS subtree design

We also design BS subtrees as ALX trees. We denote the degree and the level of

a BS subtree by abs and Lbs, respectively. Let T b
w(k, i) and T b

wl(k, i) respectively

43

denote the expected value of the wireline-message-size and wireless-message-size

caused by key updating on the BS subtree under the lth SH given the condition

Dk,l and the condition that the departing member is on i WTBR lists. We can

show that:

T b
w(k, i) = s ·B(abs

Lbs , i, s) +
Lbs∑

m=1

abs ·B(abs
Lbs−m, i, s · am

bs) (2.15)

T b
wl(k, i) ≈ s2 ·B(abs

Lbs , i, s)

+
Lbs∑

m=1

abs · abs
m · s ·B(abs

Lbs−m, i, s · am
bs), (2.16)

where s =
nl

bs

a
Lbs
bs

. Equation (2.15) and (2.16) are derived based on the following

intermediate results:

• On average, B(abs
Lbs−m, i, s · am

bs) keys need to be updated on level (Lbs−m)

of the BS subtree.

• To update one KEK at level Lbs, the average message size is (s) and these

messages are broadcast to an average of (s) BSs. To update one KEK at level

(Lbs−m),m > 0, the message size is (abs) and these messages are broadcast

by (am
bs) BSs.

From the definition of Al
2 and using both (2.15) and (2.16), we can see that

Al
2 =

nl
bs∑

i=1

pl
h(i)(α

l
2γT b

wl(k, i) + αl
1(1− γ)T b

w(k, i))

=

nl
bs∑

i=1

pl
h(i)

(
B(abs

Lbs , i, s)
(
s2αl

2γ + sαl
1(1− γ)

)
(2.17)

+
Lbs∑

m=1

B(abs
Lbs−m, i, sam

bs)abs

(
am

bssα
l
2γ + αl

1(1− γ)
)

 ,

44

where nl
bs is the number of BSs under the lth SH. In practice, it is difficult to obtain

an analytic expression for pl
h(i) that depends on the statistical behavior of the users

during membership joins and departures, as well as their mobility behavior and

how handoffs are addressed. Thus, we introduce random variable Ĩ l, which is the

number of cells that a leaving user has ever visited. Obviously, Ĩ l ≥ I l. The

pmf of Ĩ l, denoted by p̃l
h(i) , can be derived from user mobility behavior and the

distribution of the service duration, as described in Appendix B. Let Ãl
2 denote

the right hand side value in (2.17) when replacing pl
h(i) by p̃l

h(i). We can show

that Ãl
2 is an upper bound of Al

2. We notice that Ãl
2 is not a function of k.

As discussed in Section 2.5, the parameters of the BS subtree under the lth SH

should be chosen to minimize
∑

k pl(k)Gl(k)Al
2. Since Gl(k) is not a function of

abs and Lbs, minimizing
∑

k pl(k)Gl(k)Al
2 is equivalent to minimizing Al

2. Due to

the unavailability of pl
h(i), we choose the parameter of the BS subtrees under the

lth SH that minimize the upper bound of Al
2, as

min
abs>1,Lbs>0

Ãl
2. (2.18)

2.6.5 SH subtree design

In a typical cellular network, each SH administrates a large area where both the

user dynamics and the network conditions may differ significantly from the areas

administered by other SHs. The heterogeneity among the SHs should be considered

in designing the SH subtree. Due to SH heterogeneity, the ALX tree structure,

which treats every leaf equally, is not an appropriate tree structure to build the

SH subtree. Instead, the SH heterogeneity may be addressed by building a tree

where the SHs have varying path lengths from the root to their leaf node. In this

section, we will first formulate the SH subtree design problem and then provide a

45

SH1 SH2

SH3
SH4 SH5

K0

Kε

K00

Ks

Figure 2.9: An example of the SH subtree

sub-optimal tree generation procedure.

The root of the SH subtree is the KDC, and the leaves are the SHs. The design

goal is to minimize the third term in (2.8), which shall be denoted by Csh and is

Csh =
nsh∑

l=1

ql · Al
3, (2.19)

where ql =
∑

k pl(k)Gl(k). Let βl denote the communication cost of transmitting

one rekeying message to all the users under the lth SH. Based on the definition of

αl
1 and αl

2 in Section 2.2, it is easy to show that βl = (1− γ)αl
1 + γnl

bsα
l
2.

The value of Al
3 can be calculated directly from βl where l = 1, 2, · · · , nsh. In

the simple example demonstrated in Figure 2.9, when a user under SH1 leaves the

multicast service, K00, K0, Kε and Ks, need to be updated. The communication

cost of updating K00 is 2(β1 + β2). The communication cost of updating K0 is

2(β1+β2+β3). The communication cost of updating Kε is 2(β1+β2+β3+β4+β5).

Since the communication cost of updating Ks does not depend on SH subtree

structure, it is not counted in the total communication cost. Then, we have:

A1
3 = 2(β1 + β2) + 2(β1 + β2 + β3) + 2(β1 + β2 + β3 + β4 + β5).

The goal of the SH subtree design is to find a tree structure that minimizes Csh

given βl and ql. However, it is very difficult to do so based on (2.19). Thus, we

46

),(11 βα

),(2121 ββαα ++

),(22 βα
),(33 βα),(44 βα),(55 βα

),(5454 ββαα ++

),(5151 ββαα +⋅⋅⋅++⋅⋅⋅+

),(321321 βββααα ++++

Figure 2.10: The cost pairs on the SH subtree

compute Csh in a different way.

We assume that the SH subtree has the fixed degree n. We shall assign a cost

pair, which is a pair of positive numbers, to each node on the tree as follows. The

cost pair of the leaf node that represents the lth SH is (ql, βl). The cost pair of the

intermediate nodes are the element-wise summation of their children nodes’ cost

pairs, as illustrated in Figure 2.10. The cost pairs of all intermediate nodes are

represented by (xm, ym), where m = 1, 2, · · · ,M , and M is the total number of

intermediate nodes on the tree. Then, Csh can be calculated as

Csh = n
M∑

m=1

xm · ym. (2.20)

It is easy to verify that (2.20) is equivalent to (2.19). Based on (2.20), we propose

a tree construction method for n = 2 as

1. Label all the leaf nodes using their cost pairs, and mark them to be active

nodes.

2. Choose two active nodes, (xi, yi) and (xj, yj), such that (xi + xj) · (yi + yj)

is minimized among all possible pairs of active nodes. Mark those two nodes

to be inactive and merge them to generate a new active node with the cost

pair (xi + xj, yi + yj).

47

3. Repeat step 2 until there is only one active node left.

This method, which we call the greedy-SH subtree-design (GSHD) algorithm, can

be easily extended to n > 2 cases. We can prove that the GSHD algorithm produces

the optimal solution when β1 = β2 = · · · βnsh
, but is not optimal in general cases.

Since the optimization problem for the SH-subtree is non-linear, combinatorial, and

even does not have a closed expression for the objective function, we do not seek

the optimal SH subtree structure in this work. In Section 2.7, we will compare

the performance of the GSHD algorithm and the optimal solution obtained by

exhaustive search.

2.7 Simulation Results

2.7.1 One-SH systems

We first compare the performance of the TMKM tree and the TIKM tree in one-

SH systems by both analysis and simulations. Similar to [55, 56], we employ a

homogeneous cellular network that consists of 12 concatenated cells, and wrap

the cell pattern to avoid edge effects. We use the mobility model proposed in [57],

where R denotes the radius of the cells, and Vmax denotes the maximum speed of the

mobile users. Since the wireless connection usually experiences a high transmission

error rate and the number of users under one BS is larger than the number of BSs,

the wireless communication cost of the multicast communication is assigned a

larger weight than the wireline communication cost, i.e. γ > 0.5.

For the purpose of fair comparison, the TIKM tree is designed as an ALX

tree, which is optimized for the statistics of the number of participating users.

The wireline cost of the TIKM tree, denoted by Ctikm
wire , is computed using (2.8),

48

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

12

14

x 10
5

wireless weight(γ)

T
ot

ol
 c

lo
st

 (
C

to
ta

l)

R=4 miles, V
max

=50 miles/hr, 1/µ =20 min. , λ = 16 users per cell per min.

TIKM message size (exponential service time)
TIKM message size (Zipf service time)
TMKM message size (exponential service time)
TMKM message size (zipf service time)

(a)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.32

0.34

0.36

0.38

0.4

0.42

0.44

wireless weight(γ)

pe
rf

or
m

an
ce

 r
at

io
 (

η)

R=4 miles, V
max

=50 miles/hr, 1/µ =20 min., λ = 16 users per cell per min.

performance ratio(expoential service time)
performance ratio(zipf service time)

(b)

Figure 2.11: (a) The total message size as a function of the wireless weight; (b)

Performance ratio as a function of the wireless weight

where p(k) denotes the pmf of the number of users in the multicast service. The

wireless cost of the TIKM tree is computed as Ctikm
wireless = nbsC

tikm
wire , where nbs

is the total number of BSs. In one-SH systems, the total communication cost is

Ctikm
T = γCtikm

wireless + (1− γ)Ctikm
wire . We define the performance ratio η as the total

communication cost of the TMKM tree divided by the total communication cost

of the TIKM tree, i.e. η = Ctmkm
T /Ctikm

T . When η is less than 1, the TMKM tree

has smaller communication cost than the TIKM tree, and smaller η indicates an

improved advantage that the TMKM tree has over the TIKM tree.

49

4 6 8 10 12 14 16 18 20 22 24
0.34

0.36

0.38

0.4

0.42

0.44

0.46

user join rate (λ)

P
er

fo
rm

an
ce

 r
at

io
 (η

)

R=4 miles, V
max

=50 miles/hr, 1/µ = 20 min., γ = 2/3

Simulation result
Analysis result

(a)

10 20 30 40 50 60 70 80 90 100
0.32

0.34

0.36

0.38

0.4

0.42

0.44

Maximum speed of mobile users (mile/hr)

P
er

fo
rm

an
c

ra
tio

 (η
)

R=2 miles, λ = 16 users/cell.min., 1/µ = 20 min., γ = 2/3

Simulation result
Analysis result

(b)

Figure 2.12: (a) Performance ratio for different user join rate; (b) Performance

ratio for different users’ maximum speed.

Figure 2.11(a) shows the total communication cost of the TMKM tree and the

TIKM tree for different wireless weights (γ), when the cellular cells have a radius of

4 miles, the maximum mobile speed is 50 miles/hour, and the user joining rate is 16

users per minute per cell. The corresponding performance ratio is shown in Figure

2.11(b). In this simulation, two models are used to describe users’ join/departure

behavior. The first one, representing short sessions, uses a Poisson arrival and

exponential service time duration model. The second one, representing long ses-

sions, uses a Poisson arrival and Zipf service time duration model. The users stay

in the service for an average of 20 minutes in both cases. Three observations are

50

made. First, the communication cost of the TMKM tree is always less than 42%

of the communication cost of the TIKM tree. Second, the performance ratio η is

smaller for larger γ, which supports the argument in Section 2.4 that the advantage

of the TMKM tree is larger when more emphasis is placed on the wireless cost.

Third, when the wireless transmission is the bottleneck of the system, i.e. γ = 1,

the TMKM tree can reduce the communication burden by as much as 65%, i.e.

η = 35%. In addition, two models yield similar results, which indicates that the

performance of the TMKM is not sensitive to the models. In the remainder of this

section, we adopt the short session model.

Figure 2.12(a) shows both the analysis and the simulation results of η for differ-

ent user join rates (λ) when the radius of the cellular cells is 4 miles, the maximum

mobile speed is 50 miles per hour, the average service time (1/µ) is 20 minutes,

and γ = 2/3. Since the exact expression for the pmf of I l is not available, to

calculate analytical results, we use an empirically estimated pmf of I l, which is

obtained from simulations with the same user join/departure and mobility mod-

els. We can see that the advantage of the TMKM tree is larger when the system

contains more users. This property can be verified by studying the cost functions

derived in the previous sections. In Figure 2.12(b), the performance ratio is shown

for different Vmax when the user joining rate is 16 users per minute per cell. The

performance ratio is an increasing function of Vmax when other parameters are

fixed since handoffs occur more frequently as users move faster.

2.7.2 Multiple-SH systems

As discussed in Section 2.6, when the system contains multiple SHs that do not per-

form key management, the design of the TMKM tree should consider the topology

51

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

C
sh

The number of SHs

Comparison of different SH−subtree Design Methods

Balanced tree
GSHD Algorithm
Optimal Tree

Figure 2.13: Comparison among SH subtree design methods

of the SHs.

SH subtree design methods

In this section, we compare the GSHD algorithm with the optimal tree obtained

by exhaustive search, and with a balanced tree that treats each SHs equally and

represents traditional key management schemes. We assume that half of the {βl}
are uniformly distributed between 1 and 20, which represent rural areas, and the

other half of {βl} uniformly distributed between 101 and 120, which represent

metropolitan areas. We also assume that ql, which is defined in Section 2.6.5

and represents the probability of a user leaving, is proportional to βl, where l =

1, 2, · · · , nsh. Here, {ql} are normalized such that
∑

ql = 1. In Figure 2.13, the

communication cost caused by updating keys on SH-subtrees, Csh, is shown when

using different SH subtrees. Results are averaged over 500 realizations. Since

52

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6
x 10

7
 R = 4 miles, V

max
=50 miles.hr, 1/µ = 30 min., λ = 10 users/cell/min

the number of SHs
w

ire
le

ss
 c

os
t

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5
x 10

6

the number of SHs

w
ire

lin
e

co
st

TIKM wireline cost
TMKM wireline cost

TIKM wireless cost
TMKM wireless cost

Figure 2.14: Performance comparison in multiple-SH systems with identical SHs

exhaustive search is very computationally expensive, it is only done for 10 and

fewer SHs. The simulation results indicate that the performance of the GSHD is

very close to optimal. Compared with the balanced tree, GSHD algorithm reduces

the communication cost contributed by the SH subtree by up to 18%.

Performance of TMKM trees and TIKM trees in multiple-SH systems

For the TMKM trees in multiple-SH systems, we designed the user-subtrees and

BS-subtrees as ALX trees, while the SH-subtrees were constructed using the GSHD

algorithm. We simulated a multiple-SH system where each SH administers 12

concatenated identical cells. The SH-subtrees are constructed as binary trees.

We first study a simple case where the user statistics and network conditions are

identical under all SHs. In this case, αl
1’s and αl

2’s are set to be 1. The radius of

the cells is R = 4 miles, the maximum velocity is Vmax = 50 miles/hr, and we also

53

1 2 3 4 5 6 7 8 9
0.2

0.25

0.3

0.35

0.4

O
ve

ra
ll

P
er

fo
rm

an
ce

 r
at

io
The number of SHs

 1/µ = 30 min. , λ = 10 users/cell/min, Vmax = 50 miles/hr, R = 4 miles

simulation
analysis

Figure 2.15: Performance comparison in multiple-SH systems with non-identical

SHs

choose µl = 1/30 and λl = 10 for all SHs.

In Figure 2.14, the wireless cost and the wireline cost of the TMKM trees

and the TIKM tree are shown for different quantities of participating SHs. We

observed that the TMKM trees have both smaller wireless cost and smaller wireline

costs than the TIKM trees when the number of SHs are equal or greater than 2,

and the advantages of the TMKM trees are more significant when the system

contains more SHs, which verifies the analysis in Section 2.4. In addition, the

corresponding performance ratio is drawn in Figure 2.15 for γ = 2/3. In this

system, the communication cost of the TMKM trees can be as low as 20% of the

communication cost of the TIKM trees. This indicates an 80% reduction in the

communication cost.

A more complicated system containing 5 SHs with different user joining rates

was also simulated. In this scenario, the λl values for the five SHs were set to 5, 10,

15, 20 and 25 respectively, and R = 4 miles, Vmax = 50 miles/hr, and µl = 1/20

for all SHs. The TMKM tree structure is shown in Figure 2.16. The TIKM tree

is simply an ALX tree with degree 3 and level 6. In this system, the wireless cost

of the TMKM tree is 21.8% of that of the TIKM tree, and the wireline cost of the

54

12 BS’s

ALX
a=2
L=2

12 BS’s

ALX
a=2
L=2

12 BS’s

ALX
a=2
L=2

12 BS’s

ALX
a=2
L=2

12 BS’s

ALX
a=2
L=2

users

ALX
tree
a=3
L=1

users

ALX
tree
a=3
L=2

users

ALX
tree
a=3
L=2

users

ALX
tree
a=3
L=2

users

ALX
tree
a=3
L=3

SH1 SH2

SH3 SH4 SH5

Key Management Center

Figure 2.16: A TMKM tree containing 5 SHs

TMKM tree is 34.0% of that of the TIKM tree. When the wireless weight γ is set

to 2/3, the TMKM tree reduced total communication cost by 74%.

In this chapter, we described a topology-aware multicast key management

scheme for mobile wireless environment. Compared with traditional tree-based

key management schemes that are independent of network topology, the proposed

TMKM scheme achieved a significant reduction in the communication burden asso-

ciated with rekeying. The proposed key tree consists of user-subtrees, BS-subtrees

and SH-subtrees. We proved that the problem of optimizing the communication

cost for the TMKM tree is separable and can be solved by optimizing each of

those subtrees separately. This property greatly reduced the complexity in key

tree design. The ALX tree structure, which easily adapts to changes in the num-

ber of users, was introduced to build user-subtrees and BS-subtrees. The GSHD

algorithm, which considers the network heterogeneity where the SHs administer

areas with varying network conditions, was introduced to build the SH subtree.

An efficient handoff scheme was introduced to address the consequences that user

55

mobility has upon the TMKM tree. Both simulations and analysis demonstrated

that the proposed TMKM scheme can significantly reduces the communication

cost. In addition, the communication cost of the TMKM tree scales better than

that of topology-independent trees as the number of participating SHs increases.

56

Chapter 3

Hierarchical Group Access

Control

3.1 Introduction

Many group communications involve multiple data streams and group members

with various access privileges. This type of group communication prevails in mul-

timedia applications that often distribute data in multi-layer coding format [38],

in multicast applications containing several related services, and in hierarchical

managed organizations.

Traditional multicast key management schemes are not designed to handle key

management issues associated with multiple services occurring concurrently that

have correlated memberships. New key management scheme need to be designed

that exploit the overlap in the memberships of different data streams, while in-

corporating new functionalities that are not present in conventional multicast key

management. Specifically, it is necessary to introduce new rekeying events that

allow users to subscribe or cancel membership to some layers while maintaining

57

their membership to others.

As discussed in Section 1.4, the straightforward approach to achieve hierarchical

access control is to associate a separate key tree with each data stream. The

advantage of such a scheme lies primarily in the simplicity of implementation: on

the server side separate trees are maintained for separate data stream, while on

the client side the user need only store keys for the data he is consuming. This

scheme, however, makes inefficient use of keys and does not scale well when there

are many data streams or more complicated access relationship.

There are limited works that have addressed the dynamic group membership

issues for certain special access scenarios. In [58], tree based traditional key man-

agement scheme is modified to fit the Bell-LaPedulla [59] confidentiality model.

These schemes, however, cannot be generalized to solve more complicated hierar-

chical access control problems.

In this chapter, we present a multi-group key management scheme that main-

tains the keying material for all members with different access privileges using an

integrated key graph. In particular, the hierarchical group access control prob-

lem is formulated in Section 3.2. The centralized multi-group key management is

presented in Section 3.3, 3.4, and 3.5. Particularly, Section 3.3 describes the con-

struction of the integrated key graph and the rekey algorithm. Section 3.4 analyzes

the performance of the proposed scheme and the asymptotical behavior. Section

3.5 provides the simulation results and compares the proposed scheme with exist-

ing tree-based solutions in various application scenarios. Finally, the contributory

key management scheme that uses the integrated key graph is presented in Section

3.6.

58

3.2 Hierarchical Access Control for Group Com-

munications

3.2.1 System description

Let R = {r1, r2, · · ·} denote the set of resources in the system. In the group

communication scenario, the data of each resource are transmitted in one multicast

session, which is associated with a multicast address and a multicast routing tree

[2]. Thus, each resource corresponds to one multicast data stream. From data

transmission points of view, a Data Group (DG) is defined as a set of users who

have access to a resource. Thus, the users belonging to the same multicast session

form a DG. It is clear that the DGs may have overlapped membership because

users may subscribe multiple resources. From access control points of view, a

Service Groups (SG) is defined as a set of users who can access the exactly same

set of resources. SGs do not have overlapped membership. In this chapter, the

DGs are denoted by {D1, D2, · · · , DM}, where M is the total number resources,

and the SGs are denoted by {S1, S2, · · · , SI}, where I is the total number SGs. It

is easy to prove that I ≤ 2M − 1.

The access relationship between the resources and the SGs is usually described

by capability lists, which record the set of resources that can be accessed by each

SG. Here are two examples illustrating typical access relationship in group com-

munication.

Example 1. Multimedia applications distributing data in multi-layer format [38].

• Resources : {base layer (r1), enhancement layer 1 (r2), enhancement layer 2

(r3)}.

59

• Service Groups : {users subscribing basic quality (S1), users subscribing mod-

erate quality (S2), users subscribing high quality (S3)}.

• Capability lists : S1 access {r1}; S2 access {r1, r2}; S3 access {r1, r2, r3}.

Example 2. Multicast programs containing several related services.

• Resources : {News (r1), Stock quote (r2), Traffic/Weather (r3)}.

• Service Groups : Users can subscribe any combination of the resources. Thus,

there are total 7 SGs, denoted by S1, S2, · · · , S7.

• Capability lists : S1 access {r1}; S2 access {r2}; S3 access {r3}; S4 access

{r1, r2}; S5 access {r1, r3}; S6 access {r2, r3}; S7 access {r1, r2, r3}.

Besides capability list, access matrix is also used to describe the access rela-

tionship. In particular, the element on the ith row and mth column of the access

matrix, denoted by ai,m, is

ai,m =

1, if the SG Si can access the resource rm

0, otherwise
,

where i = 1, · · · , I and m = 1, · · · ,M .

Based on those definitions, the group size of SGs and DGs must satisfy:

n(Dm) =
I∑

i=1

ai,m · n(Si), (3.1)

where n(Si) is the number of users in SG Si and n(Dm) is the number of users in

DG Dm.

3.2.2 Security requirements

Group communication often involves dynamic membership. In the applications

containing multiple multicast sessions, users not only join or leave service, as

60

addressed in the single multicast session scenario, but also may switch between

the SGs by subscribing or dropping data streams. It is noted that the users’

join/departure/switching behaviors are associated with the changes in their per-

sonal access privilege but do not affect the access relationship between the SGs

and the resources.

We introduce the notation Si → Sj that represents a user switching from the

SG Si to the SG Sj. To simplify future notations, S0 is defined as a virtual

service group containing users who cannot access any resources. Thus, S0 → Si

represents a user joining the SG Si, and Si → S0 represents a user leaving the

group communication from the SG Si.

Similar as the single session access control problem addressed by traditional key

management schemes [3], the hierarchical group access control should guarantee

the following security requirements.

• The users in the SG Si have and only have access to the resources {rm,∀ m :

ai,m = 1}.

• When a user Si → Sj,

– This user cannot access the future content of the resources {rm,∀ m :

ai,m = 1 and aj,m = 0}. This property can be referred to as the forward

secrecy [31].

– This user cannot access the previous content of the resources {rm,∀ m :

ai,m = 0 and aj,m = 1}. This property can be referred to as the back-

ward secrecy [31].

61

3.2.3 Data encryption and hierarchical key management

In hierarchical access control scenario, there are two ways to encrypt and distribute

multicast data. In the first method, resources are encrypted using separate keys,

which are called Data Group Keys. The data group key used to encrypt resource

rm, denoted by KD
m , is shared among the users in DG Dm. In this case, each

resource is distributed in a single multicast session, and the users may subscribe

to one or several multicast sessions according to their access privilege. The task of

key management is to securely update and distribute {KD
m , ∀m : ai,m = 1} to the

users in Si, where i = 1, 2, · · · , I.

In the second method, the users in each SG share a secrete key called the Service

Group Key and the multicast sessions are formed based on SGs. In particular, the

users in Si share the service group key KS
i and form one multicast session. In

this multicast session, the resources {rm,∀m : ai,m = 1} are encrypted by KS
i and

transmitted to the users in Si. In this case, one resource may be distributed in

several multicast sessions while being encrypted by different service group keys.

The task of key management is to securely distribute and update KS
i for the users

in SG Si. Compared with the first method, this method obviously consumes more

bandwidth for data transmission. On the other hand, since users subscribe to only

one multicast session, the task of key management for the second method can be

solved by applying traditional key management for each SG separately.

In this work, the first encryption method is adopted because of its bandwidth ef-

ficiency. In order to guarantee forward and backward secrecy, when a user switches

from SG Si to Sj, it is necessary to

• update {KD
m ,∀ m : ai,m = 0 and aj,m = 1}, such that this user cannot access

the previous communication in corresponding DGs;

62

• and update {KD
m ,∀ m : ai,m = 1 and aj,m = 0}, such that this user cannot

access the future communication in corresponding DGs.

The focus of this work is to solve this hierarchical group key management problem

efficiently.

3.3 Centralized Multi-group Key Management

Scheme

Hierarchical group access control can be achieved in either centralized or contribu-

tory manner. While the contributory solution will be discussed in Section 3.6, this

section and the following two sections will be dedicated to the centralized schemes.

3.3.1 Employing independent key trees to achieve hierar-

chical access control

To reduce the communication, computation and storage overhead, tree structure

is widely used in centralized key management schemes to maintain the keying

material and coordinate the key generation [4,16–21] (see Section 4.2.3 and 1.3.2).

When using tree-based schemes to achieve hierarchical group access control, a

separate key tree must be constructed for each DG, with the root being the data

group key and the leaves being the users in this DG. This approach is referred to

as the Independent-tree key management scheme, and is illustrated in Figure 3.1.

This scheme does not exploit the relationship among the subscribers and makes

inefficient use of keys because of the overlapped DG membership. As an extreme

example, if a user who subscribes all data streams leaves the service, key updating

has to take place on all key trees.

63

BL
sK

BLK

2EL
sK

2ELK

key tree for
DG EL2

key tree for
DG EL1

key tree for DG BL

1EL
sK

1EHK

Figure 3.1: Independent-tree key management scheme for layered coded multime-

dia service

3.3.2 Multi-group key management scheme

To achieve hierarchical group access control, we propose a multi-group key manage-

ment scheme that employs one integrated key graph accommodating key materials

of all users. This key graph consists of several subtrees, and is constructed in three

steps.

Step1: For each SG Si, construct a subtree having the leaf nodes as the private

keys of users in Si and the root node as the service group key KS
i . These

subtrees are referred to as the SG-subtrees.

Step2: For each DG Dm, construct a subtree whose root is the DG key KD
m and

whose leaves are {KS
i ,∀i : ai,m = 1}. These subtrees are referred to as the

DG-subtrees.

64

DK1

Step 1:

Step 2:

SK1
SK2

SK3

}001{: 11 =VS }011{: 22 =VS }111{: 33 =VS

SK3
SK2

SK3

SK2
SK3

SK1

DK2
DK3

1SK 2SK 3SK

Step 3:

SK1
SK2

SK3

}001{: 11 =VS }011{: 22 =VS }111{: 33 =VS

DK1

DK2

)(3
DK

1SK 2SK 3SK

1211−K

1 2 3 4 5 6 7 8 9 10 11 12

21−K 43−K 65−K 87−K 109−K

Figure 3.2: Multi-group key management graph construction

65

Step3: Generate the key graph by connecting the leaves of the DG-subtrees and

roots of SG-subtrees.

This 3-step procedure is illustrated in Figure 3.2 for the services containing 3 layers

and having 4 users in each SG. Some duplicated structures may appear on DG-

subtrees, and they can be merged to reduce the number of keys on the key graph.

In the example shown in Figure 3.2, KS
3 and KD

3 , which are on the same line, are

merged. The DG-subtrees of D2 and D1 have the same structure that connect KS
2

and KS
3 . Thus, the parent node of KS

2 and KS
3 on DG-subtree of D2 is merged

with KD
2 .

This multi-group key graph can also be interpreted as M overlapped key trees,

each of which has KD
m as the root and the users in DG Dm as the leaves. Obviously,

these M key trees can be used in the independent-tree scheme. This reveals the

fact that the multi-group key graph removes the ”redundancy” presented in the

independent-tree scheme. Therefore, it can reduce the overhead associated with

key updating.

As defined in [17], keyset refers to the set of keys associated with a edge node

on the key graph and possessed by the user located at this edge node. In our key

graph, the keyset of a user in SG Si is the keys on the pathes from himself to the

roots of the DG-subtrees of Dm for {m : ai,m = 1}. It is noted that the keyset of

users in S0 is just an empty set.

Besides user join and departure, the rekey algorithm in the multi-group key

management scheme must address users’ relocation on the key graph. We describe

the rekey algorithm for Si → Sj, which includes the cases for user join, departure,

and switching SGs. First, the switching user is moved from the SG-subtree of Si to

a new location on the SG-subtree of Sj. Let φi denote the keyset associated with

66

SK1
SK2

SK3

DK1

DK2

)(3
DK

1SK 2SK 3SK

1211−K

1 2 3 5 6

7

9 10 11 12

21−K 43−K 65−K 109−K

4 8

positionnew theofkeyset :

position previous theofkeyset :

2

1

φ
φ

84−K

Figure 3.3: User relocation on the key graph

the user’s previous position, and φj denote the keyset associated with the user’s

new position. Then,

• the KDC updates the keys in φi ∩ φj using one-way functions, similar as the

procedure for user join in [18],

• and, the KDC generates new versions of the keys in φi ∩ φj and distributes

these new keys encrypted by their children node keys from bottom to up,

similar as the procedure for user departure in [18].

We illustrate this rekey algorithm through an example. Let user 8 switches from

SG S2 to S1 (see Figure 3.3). On the SG-subtree of S1, the leaf node associated

with user 4 is split to accommodate user 8. Then, user 4 and 8 will share a

new KEK, denoted by K4−8. On the SG-subtree of S2, user 7 will be moved up

and occupy the node that is previously associated with K7−8. In this case, φ2 is

{K7−8, K
S
2 , KD

2 , SK2, K
D
1 , SK1} and φ1 is {K4−8, K3−4, K

S
1 , KD

1 , SK1}.
Let the notation xnew represent the new version of key x, {y}x represent the

key y encrypted by key x, and uk represent the private key of user k. Each key is

67

associated with a ID, a version number and a revision number.

In this example, the KDC generates the new keys, Knew
3−4 and KS,new

1 , from the

old keys using a one-way function, and increases the revision numbers of those new

keys. Thus, the user 1,2,3,4 will know about the key change when the data packet

indicating the increase of the revision numbers first arrives, and compute the new

keys using the same one-way function. No rekeying messages are necessary for

distributing Knew
3−4 and KS,new

1 .

Then, the KDC generates new keys, Knew
4−8 , KS,new

2 , KD,new
2 , and SKnew

2 , and

distributes them through a set of rekeying messages as:

{Knew
4−8}u8 , {Knew

4−8}u4 , {KS,new
2 }K5−6 , {KS,new

2 }u7

{KD,new
2 }KS,new

2
, {KD,new

2 }KS
3
, {SKnew

2 }KD,new
2

In this case, the rekeying message size is 7.

It is noted that φi ∩φj may contain the new KEKs that are created for accom-

modating the switching user. These new KEKs are encrypted by users’ private

keys and distributed through rekeying messages. In addition, φi ∩ φj may con-

tain KEKs that do not exist any more after the relocation of the switching user.

Obviously, these keys are discarded.

3.4 Performance Measures and Analysis

Communication, computation and storage overhead associated with key updating

are major performance criteria for key management schemes [3, 4, 17]. In the

hierarchical access control scenario, we define the performance measures as:

• Storage overhead at the KDC : denoted by RKDC and defined as the expected

number of keys stored at the KDC.

68

• Rekey overhead at the KDC : denoted by MKDC and defined as the expected

amount of rekeying messages transmitted by the KDC.

• Storage overhead of users : denoted by Ru∈Si
and defined as the expected

number of keys stored by the users in SG Si.

• Rekey overhead of users : denoted by Mu∈Si
and defined as the expected

amount of rekeying messages received by the users in SG Si.

Here, RKDC and Ru∈Si
describe the storage overhead, while MKDC and Mu∈Si

reflect the usage of communication and computation resources.

3.4.1 Storage overhead

We first consider the storage overhead of a single key tree. Similar to most key

management schemes [3, 4, 16–18], the key tree investigated in this work is fully

loaded and maintained as balanced as possible by putting the joining users on the

shortest branches.

Let fd(n) denote the length of the branches and rd(n) denote the total number

of keys on the key tree when the key tree has degree d and accommodates n users.

Since the key tree is balanced, fd(n) is either L0 or L0 + 1, where L0 = blogd nc.
Particularly,

• the number of users who are on the branches with length L0 is dL0−dn−dL0

d−1
e,

• and, the number of users who are on the branches with length L0 + 1 is

n− dL0 + dn−dL0

d−1
e.

Thus, the total number of keys on this key tree is calculated as:

rd(n) = n + 1 +
dL0 − 1

d− 1
+ dn− dL0

d− 1
e. (3.2)

69

Using the fact that n−dL0

d−1
≤ dn−dL0

d−1
e < n−dL0

d−1
+ 1, we have

dE[n]− 1

d− 1
+ 1 ≤ E[rd(n)] <

dE[n]− 1

d− 1
+ 2, (3.3)

where the expectation, E[.], is taken over the distribution of n(Dm) and the length

of the branches on the key trees. The left-hand-side equality is achieved when

logd(n) is an integer. In addition, since logd(n) is a concave function andblogd nc ≤
logd n, it is clear that

E[fd(n)] ≤ E[logd n] + 1 ≤ logd E[n] + 1. (3.4)

With (3.3) and (3.4), we are ready to analyze the storage overhead. When

using the separate key trees (i.e. independent-tree scheme), the KDC stores all

keys on total M key trees, and users in Si store subsets of keys on the key trees

that are associated with Dm, for {m : t0m = 1}. Thus,

Rind
KDC =

M∑

m=1

E [rd(n(Dm))] , (3.5)

Rind
u∈Si

=
M∑

m=1

ai,m (E[fd(n(Dm))] + 1) . (3.6)

In the multi-group key management scheme, the DG-subtree of Dm has cm =

∑
i ai,m leaf nodes. Before removing the redundancy on DG-subtrees, there are

in total
∑M

m=1 rd(cm) keys on DG-subtrees. Also, the total number of keys on

the SG-subtrees is
∑I

i=1 rd(n(Si)). Merging duplicated structures of DG-subtrees

can future reduce the number of keys on the key graph. Therefore, the storage

overhead at the KDC is

Rmg
KDC ≤

I∑

i=1

E[rd(n(Si))] +
M∑

m=1

E [rd(cm)] . (3.7)

A user in SG Si stores fd(n(Si)) keys on the SG-subtree and up to
∑M

m=1 ai,m(fd(cm)+

1) keys on the DG-subtrees. Therefore, the users’ storage overhead of the multi-

70

group scheme is:

Rmg
u∈Si

≤ E[fd(n(Si))] +
M∑

m=1

ai,m(E[fd(cm)] + 1). (3.8)

We will demonstrate the storage overhead of the independent-tree and the

multi-group key management in the applications containing multiple layers, as

described in Example 1 in Section 3.2.1. In this case, ai,m = 1 for m ≤ i and

ai,m = 0 for m > i. We also assume that each layer contains the same amount of

users, denoted by n(Si) = n0. Thus, n(Dm) = (M −m + 1)n0. Using (3.6) and

(3.8), the users’ storage overhead is calculated as:

Rind
u∈Si

=
i∑

m=1

(E[fd((M −m + 1) · n0)] + 1) , (3.9)

Rmg
u∈Si

≤ E[fd(n0)] +
i∑

m=1

(E[fd(M −m + 1)] + 1) . (3.10)

When the group size is large, i.e. n0 →∞, (3.4)(3.9) and (3.10) lead to

Rind
u∈Si

∼ O(i · log(n0)), Rmg
u∈Si

∼ O(log(n0)). (3.11)

Using (3.5) and (3.7), the storage overhead at the KDC is calculated as:

Rind
KDC =

M∑

m=1

E[rd(m · n0)], (3.12)

Rmg
KDC ≤ M · E[rd(n0)] +

M∑

m=1

E[rd(m)]. (3.13)

From (3.3), it is seen that limn→∞ rd(n) = d
d−1

n. Therefore,

Rind
KDC ∼ O(

d

d− 1

M(M + 1)

2
n0), (3.14)

Rmg
KDC ∼ O(

d

d− 1
M · n0). (3.15)

By using the integrated key graph instead of the separate key trees, the multi-

group key management scheme reduces the storage overhead of both the KDC and

71

the users. As indicated in (3.14) and (3.15), the storage advantage of the proposed

scheme becomes larger when the system contains more SGs, i.e. requiring more

levels of access control. The proposed scheme in fact scales better when the number

of layers (M) increases.

3.4.2 Rekey overhead

In this section, we calculate the amount of rekeying messages transmitted by the

KDC when one user switches from Si to Sj, denoted by Ci,j. It is noted that the

rekey overhead, MKDC and Mu∈Si
, can be calculated from Ci,j, as long as the users’

statistical joining/leaving/switching model is given.

Switching from Si to Sj is equivalent to adding the subscription to the DG

{Dm,∀m : ai,m = 0 and aj,m = 1} and dropping the subscription to the DG

{Dm,∀m : ai,m = 1 and aj,m = 0}. When using the tree-based key management

schemes, the rekeying message size is calculated as:

Cind
ij =

M∑

m=1

max(ai,m − aj,m, 0) · (d · fd(n(Dm))) . (3.16)

We can see that the term (max(ai,m− aj,m, 0)) equals to 1 only when ai,m = 1 and

aj,m = 0. When this term equals to 1, d ·fd(n(Dm) rekeying messages are necessary

to update keys on the key tree associated with the DG Dm.

In the multi-group key management scheme, when a user switches from Si to

Sj and i 6= j,

• The amount of messages that update the keys on the SG-subtree of Si is up

to (d · fd(n(Si))− 1).

• The amount of messages that convey the KEK created for accommodating

the switching/join user on the SG-subtree of Sj is always less than 2.

72

• If this user drops the subscription of the DG Dm, i.e. (max(ai,m−aj,m, 0)) =

1, the amount of rekeying messages that update keys on the DG-subtree of

Dm is up to (d · fd(cm) + 1).

• If this user remains the subscription of the DG Dm, i.e. ai,m = aj,m = 1, we

need up to (d · fd(cm)) rekeying messages to update keys on the DG-subtree

of Dm.

Therefore, when using the multi-group scheme and i 6= j, we have

Cmg
ij ≤ ∑M

m=1 (max(ai,m − aj,m, 0) · (d · fd(cm) + 1)

+ ai,maj,md · fd(cm)) + d · fd(n(Si)) + 1, (3.17)

Similar as in Section 3.4.1, we analyze the rekey overhead in a multi-layer

scenario with n(Si) = n0. In this case, the rekeying message size for one user

departure, i.e. Sj → S0, is computed from (3.16) and (3.17) as:

Cind
0j =

j∑

m=1

d · E[fd((M −m + 1)n0)], (3.18)

Cmg
0j ≤ d · E[fd(n0)] + 1 +

j∑

m=1

(d · E[fd(M −m + 1)] + 1) .

When n0 →∞, we can see that

Cind
0j ∼ O(i · d · log(n0)), Cmg

0j ∼ O(d · log(n0)). (3.19)

The comprehensive comparison between the proposed scheme and the independent-

tree scheme will be presented in Section 3.5.

3.5 Simulations and Performance Comparison

In this section, the proposed multi-group key management scheme is compared with

the existing tree-based key management schemes in various application scenarios.

73

3.5.1 Statistical dynamic membership model

In [50] [51], it has been shown that the users’ arrival process and membership

duration of MBone multicast sessions can be modelled by Poisson and exponential

distribution respectively, in a short period of time. In this work, we use this Poisson

arrival and exponential distribution duration model, and assume that when a user

switches between SGs, the SG that he switches to depends only on his current SG.

Therefore, the users’ statistical behavior can be described by an embedded

Markov chain [53]. Particularly, there are a total of I + 1 states, denoted by

S̃i, i = 0, · · · , I. When a user is in the SG Si, he is in the state S̃i. After a user

enters state S̃i, i.e. subscribes or switches to SG Si, this user stays at state S̃i for

time Ti, which is governed by an exponential random variable. When time is up,

the user moves to state S̃j. The selection of S̃j only depends on the current state

S̃i and is not related to previous states.

In practice, it is usually not necessary to update keys immediately after mem-

bership changes. Many applications allow the join/departure users receive limited

previous/future communications [39]. For example, in video streaming applica-

tions, a joining user may receive a complete group-of-picture (GOP) [38] although

partial of this GOP already been transmitted before his subscription. Those situa-

tions prefer batch rekeying [39] that postpones key updating such that the rekeying

overhead is reduced by adding or removing several users altogether.

In this work, batch rekeying is implemented as updating keys periodically.

The time between key updates is fixed and denoted by Bt. For the users who

join/leave/switch SGs in the time interval ((k − 1)Bt, kBt], the key updating will

take place at time kBt, where k is a positive integer. From the key updating points

of view, with batch rekeying, we can prove that the previous continuous Markov

74

S0

not in service
V0={ 0,0,0}

S1

low quality
V1={ 1,0,0}

S2

moderate quality
V2={ 1,1,0}

S3

high quality
V3={ 1,1,0}

Join

Departure
Switching

Figure 3.4: Discrete Markov chain model for multi-layer applications.

model can be simplified as a discrete Markov chain model [53], as illustrated in

Figure 3.4. In this model,

• The transition matrix is denoted by P = [pij](I+1)×(I+1), where pij is the

probability that one user moves from SG Si to Sj in the time interval

(kBt, (k + 1)Bt] given that this user is in Si at time kBt.

• The n-step transition probability matrix is denoted by P (n), and obviously,

P (n) = PN . The element at the ith row and jth column of P (n) is denoted

by pij(n).

• The stationary state probability is a 1-by-(I + 1) vector, denoted by π =

[π0, π1, · · · , πI].

In practice, most group applications have the following properties.

• p(n)0j 6= 0 for some positive finite n and for any j because users should be

able to subscribe to any SGs.

75

• p(n)i0 6= 0 for some positive finite n and for any i because users should be

able to leave from any SGs.

• pii > 0 because users can always stay in his current SG.

• The mean recurrence time [53] of the state S̃0 is finite because the expected

time that a user stays in the group communication is finite.

Because of these properties, this Markov chain is irreducible, aperiodic and positive

recurrent. As a result, the stationary state probability mass function (pmf) exists

[53] and is the unique solution of

πP = π, and
∑

i

πi = 1 . (3.20)

3.5.2 Performance with different group size

We first study the applications containing multiple layers (see Example 1 in Section3.2.1)

where users in SG Si can access DG D1, D2, · · · , Di. In the simulation, the transi-

tion matrix is chosen as follows.

• Users join different SGs with the same probability, i.e. P0j = α, ∀j > 0.

• Users leave different SGs with the same probability, i.e. Pi0 = β, ∀i > 0.

• While a user is in the service, he adds/drops only one DG at a time, i.e.

Pi,j = 0,∀i, j > 0 and |i − j| > 1. Also, users switch between SGs with the

same probability, i.e. Pi,j = γ, ∀i, j > 0 and |i− j| = 1.

76

Thus, the transition matrix is described by only three variables. For example,

the multi-layer service with M = 3 has the transition matrix as:

P =

1− 3α α α α

β 1− β − γ γ 0

β γ 1− β − 2γ γ

β 0 γ 1− β − γ

In all simulations, batch rekeying is applied and the key trees are binary. The

initial state is chosen as the stationary state, i.e. Si contains N0πi users at the

beginning of the service.

In Figure 3.5, 3.6, 3.7 and 3.8, the multi-group scheme and the independent-

tree scheme are compared for varying group size, N0. The results are averaged

over 300 realizations, and the number of layers is 4. In those simulations, we chose

α = 0.005, β = 0.01, and γ = 0.001.

Figure 3.5 shows that the storage overhead at the KDC, RKDC , increases lin-

early with the group size. This result can be verified by (3.3)(3.5) and (3.7). In

the case when M = 4, the multi-group scheme reduces RKDC by more than 50%.

Figure 3.6 shows that the users’ storage overhead, Ru∈Si
, increases linearly with

the logarithm of the group size. This can be verified by (3.9) and (3.10). The users

who subscribe only one layer have the similar storage overhead in both schemes.

For the uses who subscribe multiple layers, the multi-group scheme results in less

storage overhead than the independent-tree scheme.

The KDC’s rekeying overhead, RKDC and the users’ rekey overhead, Ru∈Si
are

shown in Figure 3.7 and 3.8, respectively. In both cases, the multi-group scheme

reduces the rekey overhead by more than 50%.

77

0 500 1000 1500 2000 2500 3000
0

2000

4000

6000

8000

10000
 Centralized −− Storage overhead at the KDC (4−layer)

S
to

ra
ge

 o
ve

rh
ea

d
at

 th
e

K
D

C
N0 −− total number of potential users

Multi−group KM
Independent−tree KM

Figure 3.5: Storage overhead at the KDC

0 1000 2000 3000
0

5

10

15

20

25

30

35

40

Centralized −− Multi−group KM

N
0

S
to

ra
ge

 o
ve

rh
ea

d

users in S
1

users in S
2

users in S
3

users in S
4

0 1000 2000 3000
0

5

10

15

20

25

30

35

40

Centralized −− Independent−tree KM

N
0

R
ek

ey
 o

ve
rh

ea
d

Figure 3.6: Storage overhead at the users in each SG

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600
 Centralized −− Rekey overhead at the KDC (4−layer)

N0 −− total number of potential users

R
ek

ey
 o

ve
rh

ea
d

at
 th

e
K

D
C Multi−group KM

Independent−tree KM

Figure 3.7: Rekey overhead at the KDC

78

0 1000 2000 3000
0

100

200

300

400

500

600
Centralized −− Multi−group KM

N
0

R
ek

ey
 o

ve
rh

ea
d

users in S
1

users in S
2

users in S
3

users in S
4

0 1000 2000 3000
0

100

200

300

400

500

600
Centralized −− Independent−tree KM

N
0

R
ek

ey
 o

ve
rh

ea
d

Figure 3.8: Rekey overhead at the users in each SG

3.5.3 Scalability

Next, we change the number of layers (M) while maintaining roughly the same

number of users in the service by choosing the join probability α as 0.02/M . The

values of β and γ are the same as those in Section 3.5.2.

Figure 3.9(a) and Figure 3.10(a) show the storage and rekey overhead at the

KDC, respectively. When M increases, the storage and rekey overhead of the

multi-group scheme do not change much, while the overhead of the independent-

tree scheme increases linearly with M . It is clear that the multi-group scheme

scales better when M increase. By removing the redundancy in DG membership,

the scale of the key graph mainly depends on the group size, not the number

of layers or services. On the other hand, by constructing M separate key trees,

the independent-tree scheme requires larger storage and rekey overhead when M

increases even when N0 is fixed.

79

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

2

4

6

8

10
x 10

4 Storage overhead at KDC with different number of SGs(N0=15000)

 The number of layers (I)

 S
to

ra
ge

 o
ve

rh
ea

d
at

 K
D

C

Multi−group KM: Rmg
KDC

Independent−tree KM: Rind
KDC

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1

2

3

4

 Ratio: Rind
KDC

 / Rmg
KDC

 The number of layers (I)

 R
in

d
K

D
C

 /
R

m
g

K
D

C

Figure 3.9: Storage overhead at the KDC with different number of SGs

Figure 3.9(b) shows that the ratio between Rind
KDC and Rmg

KDC increases linearly

with M , which agrees with (3.14) and (3.15). Similarly, the ratio between M ind
KDC

and Mmg
KDC increases linearly with M , as shown in Figure 3.10(b).

3.5.4 Performance with different transition probability

In the previous simulations, we set γ = 0.1β, which means that the users are

more likely to leave the service than to switch SGs. Figure 3.11 shows the rekey

overhead with different values of γ. Remember that γ describes the probability of

user switching between SGs. In this simulation, M = 4, N0 = 1000, and the values

of α and β are the same as those in the previous experiments.

When γ is very small, the multi-group scheme reduces the rekey overhead by

about 50%, as we have shown in the previous simulations. When γ is less than 2β,

the advantage of the multi-group scheme decreases with the increase of γ. This

is because the multi-group scheme introduces larger rekey overhead when users

switch SGs by simply subscribing more DGs. To see this, let a user move from

80

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1000

2000

3000

4000

5000

 C
om

m
. O

ve
rh

ea
d

at
 K

D
C

Comm. overhead at KDC with different number of SGs(N0=15000)

 the number of layers (I)

Multi−group KM: Mmg
KDC

Independent−tree KM: Mind
KDC

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1

2

3

4

 Ratio: Mind
KDC

 / Mmg
KDC

 the number of layers (I)

 M
in

d
K

D
C

 /
M

m
g

K
D

C

Figure 3.10: Rekey overhead at the KDC with different number of SGs

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

100

200

300

400

500

600

700

800
 Communication Overhead at KDC with different transition prob. (N0=1000)

 The switch probablity factor

 C
om

m
. o

ve
rh

ea
d

at
 D

K
C

Multi−group KM
Independent−tree KM

Figure 3.11: Rekey overhead at the KDC with different transition probability

81

SG S1 to SG S2. When using the independent-tree scheme, this user only needs

to be added to the key tree associated with the DG D2 and no rekeying messages

are necessary. When using the multi-group scheme, we need to update keys on

the SG-subtree of S1 and the DG-subtree of D1. Therefore, the performance gain

reduces when more users tend to switch SGs.

When γ continues to increase, however, the rekey overhead of the multi-group

scheme decreases. Particularly, when γ = 0.45, which describes the scenario where

users are much more likely to switch SGs than to stay in the current SG or leave

the service, the performance gain of the multi-group scheme is about 50% again.

This phenomena is due to the fact that the size of the SG-subtree is greatly reduced

when a significant potion of users are switching away from this SG. In this case,

removing a large potion of users from the key tree using batch rekeying requires

less rekeying messages than just removing several users.

3.5.5 Simulation of multi-service applications

We also simulated the multi-service scenario illustrated in Example 2 (Section

3.2.1), which contains 3 DGs and 7 SGs. The users can subscribe any combination

of DGs and switch to any SGs. Here, the transition matrix is 8 by 8, with Pj0 =

0.01,∀j > 0 and Pi,j = 0.00017, ∀i, j > 0 and i 6= j. N0 is fixed to be 1500. The

values of P0i,∀i > 0, are adjusted such that the SGs contain varying number of

users while (
∑I

i=1 P0i) is maintained to be the same.

The horizontal axis in Figure 3.12 is the ratio between the number of users

subscribing more than one DGs and the number of users subscribing only one DG.

Larger is this ratio, more overlap is in DG membership. Figure 3.12 shows that the

advantages of the multi-group scheme is larger when more users subscribe multiple

82

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
120

140

160

180

200

220

240

 # of users subscribing >1 DGs / # of users subscribing 1 DG

 Centralized −− Rekey overhead at the KDC with unevenly loaded SGs (multi−service)

R
ek

ey
 o

ve
rh

ea
d

at
 th

e
K

D
C

Multi−group KM
Independent−tree KM

Figure 3.12: Rekey overhead at the KDC with unevenly loaded SGs in multi-service

applications

DGs.

3.6 Contributory Multi-group Key Management

The multi-group key management schemes can be extended to the contributory

environment by using the same graph construction procedure presented in Section

3.3.2. Similar as in the centralized environments, separate key trees for each DG

must be constructed when using existing tree-based contributory schemes [31–33],

and the multi-group contributory schemes maintains one integrated key graph for

all users.

The key establishment protocols are straightforward extensions from the exist-

ing protocols in tree-based contributory schemes [31–33]. When users join/leave/switch,

the set of keys that need to be recalculated is the same as that need to be updated

83

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

of

 r
ou

nd
 fo

r
es

ta
bl

is
hm

en
t

N0 −− total number of potential users

Contributary −− Rekey overhead at key establishment

Multi−group KM
Independent−tree KM

Figure 3.13: The total number of rounds performed to establish the group key

in the protocols presented in Section 3.3.2. The new keys are recalculated by ap-

plying the DH protocol between the users who are under the left child node and

the users who are under the right child node from bottom to up.

For contributory key management schemes, the number of rounds is usually

used to measure the communication, computation, and latency [60] associated

with key establishment and updating [30–32].

With the same simulation setup as that in Section 3.5.2, the performance of

the independent-tree and multi-group contributory key management schemes are

compared for varying group size. Figure 3.13 shows the total number of rounds

to establish the group key, which reflects the latency in key establishment [60].

Figure 3.14 shows the number of rounds performed by the users in each SG, which

describes the users’ computation overhead. In each round, a user performs two

modular exponentiations. With the same simulation setup as that in Section 3.5.2,

Figure 3.15 shows the number of rounds for key updating for with different num-

ber of layers. Compared with the tree-based contributory schemes, the multi-group

contributory scheme significantly reduces the computation and latency associated

with key establishment and updating. The advantage of the multi-group contrib-

utory scheme is larger when M increases.

In this chapter, we designed a multi-group key management scheme that achieves

84

0 1000 2000 3000
0

5

10

15

20

25

30

35

40

Contributory −− Multi−group KM

N
0

of

 r
ou

nd
s

to
 e

st
ab

lis
h

ke
y

users in S
1

users in S
2

users in S
3

users in S
4

0 1000 2000 3000
0

5

10

15

20

25

30

35

40

Contributory −− Independent−tree KM

N
0

of

 r
ou

nd
s

to
 e

st
ab

lis
h

ke
y

Figure 3.14: The number of rounds performed by the users in each SG for key

establishment

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
10

20

30

40

50

60

70

80

90
 Contributary −− Rekey overhead for different number of SGs/Layers(N0=15000)

 The number of SGs/layers (I)

 #
 o

f r
ou

nd
s

ne
ed

 to
 u

pd
at

e
ke

ys

Multi−group KM
Independent−tree KM

Figure 3.15: The number of rounds performed to establish the group key with

different number of SGs/layers

85

hierarchical group access control in secure group communications, where multiple

data streams are distributed to group members with various access privileges. The

proposed multi-group key management scheme employs an integrated key graph to

maintain keying material, and uses a generalized rekey algorithm that allow users

subscribing/dropping the group communications as well as changing access lev-

els. Compared with traditional tree-based key management, the proposed scheme

can greatly reduce the communication, computation, and storage overhead associ-

ated key establishment and update. Further, when the system contains more data

streams, i.e. more complicated access relationship, the multi-group key manage-

ment scheme achieves better scalability than tree-based schemes.

86

Chapter 4

Protecting Dynamic Group

Information in Secure Multicast

4.1 Introduction

In order to design better security protocols, it is necessary to look at the security

system from an adversarial point-of-view. By aggressively inspecting existing key

management protocols, we discovered a weakness that has been overlooked during

the design phase. That is, key management can disclose group dynamic infor-

mation (GDI) to both insiders and outsiders. In this work, the group dynamic

information particularly refers to a set of functions as:

• N(t): the number of users in the multicast group at time t.

• J(t0, t1): the number of users who join the service between time t0 and t1.

• L(t0, t1): the number of users who leave the service between time t0 and t1.

In many group communications, GDI is confidential and should not be disclosed

to either valid group members or outsiders. Such group applications widely exist in

87

commercial as well as military applications, as discussed in Section 1.4. However,

to acquire GDI by launching attacks on the key management schemes can be

very simple as we will demonstrate. Instead of trying to break the encryption or

compromise the key distribution center, the adversaries can subscribe to the service

as regular users. In this case, they are referred to as the inside attackers. As we

will show later in this chapter, inside attackers can obtain very accurate estimation

of GDI by monitoring the messages conveying new key updating information, i.e.

rekeying messages. Even if the adversaries cannot become valid group members,

they still have the opportunities to steal GDI as outside attackers as long as they

can observe the traffic and distinguish the rekeying messages and other data.

In this chapter, we demonstrate that the key management schemes can re-

veal the GDI easily and propose a framework of protecting GDI by introducing

anti-attack technologies to key management. In particular, the attack strategies

and the anti-attack method for the centralized schemes are presented in Section

4.2 and Section 4.3 respectively. In Section 4.4, the performance criteria of the

proposed anti-attack method are derived and the optimization problem is formu-

lated. Simulation results based on the user log data from real MBone sessions are

shown in Section 4.5. The investigation on contributory key management schemes

is presented in Section 4.6.

4.2 GDI Attacks on Centralized Key manage-

ment

In centralized key management schemes there usually exists a centralized server,

such as the service provider, who is trustful, well protected, and has the compu-

88

tation and storage ability to generate and distribute the decryption keys [3]. In

this section, we investigate the attack strategies that aim to attack the central-

ized key management schemes for obtaining the dynamic group information. Two

attack strategies for tree-based key management will be presented, followed by a

discussion of vulnerability of other prevalent centralized key management schemes.

We consider a popular tree-based centralized key management scheme proposed

in [18], whose rekeying process has been shown in Section 4.2.3. In brief, when a

user leaves the group, all the keys on the path from this user to the root of the

key tree are updated by conveying a set of rekeying messages, that have the basic

format as one key encrypted by another key. When a user joins the group, all

existing users compute the new key using a one-way function upon noticing the

increased revision numbers of keys. No additional rekeying messages are necessary.

The rekeying procedure although has some differences, most tree-based central-

ized key management schemes [3, 4, 16–19] share two common properties. First,

group members can distinguish the key updating process due to user join and that

due to user departure. Second, rekeying message size is closely related with the

group size. Due to these properties, the attackers can estimate J(t0, t1) and L(t0, t1)

by examining the rekey processes, and estimate N(t) directly from the rekeying

messages size. Next, we illustrate these two types of attacks on the tree-based key

management scheme presented in [18].

4.2.1 Attack A1: Estimation of the number of join/departure

users by inside attackers

An inside attacker, like other regular users, processes Ks, Kε, and a set of KEKs.

He receives rekeying messages, decrypts the messages that are encrypted by his

89

keys, and observes the rekeying message size without having to understand the

content of all messages. Since the key updating process for user join and the

process for user departure are different, he can estimate J(t0, t1) and L(t0, t1)

using the following strategy:

• When receiving the rekeying message containing Knew
ε encrypted by one of

his KEKs, he assumes that one user leaves the service.

• When observing the increase of the revision number of Kε, he assumes that

one user joins the service.

This strategy is effective when most users do not join/leave simultaneously and

the keys are updated immediately once each user join/departure. Otherwise, more

complicated techniques involving examining the rekeying message size shall be

used. When this attack is successful, N(t) can be calculated from J(t0, t1) and

L(t0, t1) as:

N(t1) = N(t0) + J(t0, t1)− L(t0, t1). (4.1)

Even if the attacker do not know the initial value of the group size, he obtains

the changing trend of the group size.

4.2.2 Attack AII: Estimation of group size from rekeying

message size

Besides using (4.1), the group size N(t) can also be estimated directly from the

rekeying message size. We will derive a Maximum Likelihood estimator for the

attackers and then demonstrate the effectiveness of this estimator through simu-

lations.

We assume that N(t) does not change much within a short period of time. In

this time period, there are W departure users who do not leave simultaneously.

90

Thus, the attacker makes W observations of the rekeying message size due to single

user departure, denoted by Msg = {m1,m2, · · · ,mw}.
Similar to most key management schemes [3,4,16–18], the key tree investigated

in this work is fully loaded and maintained as balanced as possible by putting the

joining users on the shortest branches. In the worst-case scenario, the attacker

knows this property and the degree of the key tree, denoted by d. Then, the

attacker can calculate the depth of the branch where the ith leaving user was

located before departure, denoted by Li. Without losing information, the observed

Msg is converted to {L1 = l1, L2 = l2, · · · , LW = lW}, where li = dmi+1
d
e. Then,

the Maximum Likelihood (ML) estimator is formulated as:

NML = arg max
n

Prob{L1 = l1, L2 = l2, · · · , LW = lW |N(t) = n}. (4.2)

To solve (4.2), we introduce a set of new variables: {Sk}k=Lmin,Lmin+1,···,Lmax , where

Sk is the number of users who are on the branches with length k, Lmax is the

length of the longest branches, and Lmin is the length of the shortest branches. It

is obvious that

∑

k

Sk = n. (4.3)

In addition, the length of the branches of a key tree must satisfy the Kraft inequal-

ity [54], i.e.
∑

j dLmax−bj ≤ dLmax , where bj is the length of the branch on which the

user j stays and j = 1, 2, · · · , n. Thus, Sk, which equals to the number of elements

in set {bj : bj = k}, must satisfy

∑

k

Skd
Lmax−k ≤ dLmax , (4.4)

It can be verified that the equality is achieved when all intermediate nodes on the

key tree have d children nodes. When the key tree is balanced and fully loaded, it

91

is reasonable to approximate (4.4) by

∑

k

Skd
Lmax−k = dLmax . (4.5)

We assume that the leaving users are uniformly distributed on the key tree, and

the number of users in the system is much larger than the number of leaving users,

i.e. N(t) >> W . Then, the probability mass function (pmf) of Li is

Prob{Li = k |n, Sk} =
Sk

n
, k = Lmin, Lmin + 1, · · · , Lmax.

We assume that Li, i = 1, · · · ,W are i.i.d. random variables. Thus, the probability

in (4.2) is calculated as:

Prob{L1 = l1, L2 = l2, · · · , LW = lW |N(t) = n, Sk} =
∏

k

(
Sk

n

)h(k)

, (4.6)

where h(k) denotes the number of elements in set {li : li = k} and obviously,

∑
k h(k) = W . Then, the values of n and {Sk} that maximize (4.6) under the

constraint (4.3) and (4.5) are obtained using Lagrange multiplier as:

{Sk}ML =
n

W
h(k), (4.7)

NML =
W∑

k h(k)d−k
. (4.8)

This ML estimator was applied to simulated multicast services. As suggested

in [50] [51], the user arrival process is modelled as poisson process, and the service

duration is modelled as an exponential random variable. In Figure 4.1(a), 4.1(b),

and 4.1(c), the estimated group size is obtained by using the estimator in (4.8),

and compared with the true values of N(t). These three plots are for different

simulation settings. The entire service period is divided into four sessions. The

model parameters, i.e. user arrival rate and average service time, are fixed within

each session and vary in different sessions. In the ith session, described by interval

92

0 500 1000 1500 2000 2500
0

20

40

60

80

gr
ou

p
si

ze
 N

(t
)

Time (min)

0 1000 2000 3000 4000 5000
100

200

300

400

500

gr
ou

p
si

ze
 N

(t
)

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

gr
ou

p
si

ze
 N

(t
)

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

600

gr
ou

p
si

ze
 N

(t
)

Time (min)

real N(t)
estimated N

ML
(t)

Estimate N(t) using ML estimator

(a) (b)

(c) (d)

Figure 4.1: Performance of the ML estimator

[ti−1, ti), the user arrival rate is λi and the average service time is µi. In all

three cases, [t0, t1, t2, t3, t4] is chosen to be [0, 200, 1600, 3200, 5000] minutes, and

the initial group size is 0. In plot (a), [λ1, λ2, λ3, λ4] = [0.5, 0.5, 0.5, 0.3]min−1 and

[µ1, µ2, µ3, µ4] = [1400, 800, 600, 400]min. In plot (b), [λ1, λ2, λ3, λ4] is chosen as

[0.1, 0.3, 0.2, 0.5]min−1, and [µ1, µ2, µ3, µ4] is chosen as [1500, 1500, 1000, 800]min.

In plot (c), [λ1, λ2, λ3, λ4] is [0.3, 0.7, 0.1, 0.9]min−1 and [µ1, µ2, µ3, µ4] is chosen as

[1400, 800, 600, 400]min. In addition, Figure 4.1(d) demonstrates the performance

of the ML estimator, when it was applied to a real MBone audio session, CBC

Newsworld on-line test, starting on Oct. 29. 1996 and lasted for about 5 days [61].

In all four cases, the changing trend of the group size is well captured by the

attacker. It is also observed that the estimated group size tends to be larger than

the true N(t), which is due to the approximation that we replace (4.5) by (4.4).

Although not perfect, this estimator is effective in helping the attackers to achieve

many of their goals, such as analyzing audience behavior and monitoring the group

93

size changes.

The inside attackers can launch both attack AI and AII. They obtain J(t0, t1)

and L(t0, t1) using AI, and the initial value N(t0) using AII. Then, N(t) can be

obtained by using either (4.1) or (4.8), or jointly.

It has been shown that the rekeying messages must be delivered reliably and

in a timely manner in order to guarantee the quality of service [62]. Therefore,

it is possible that rekeying messages are treated differently from the regular data

in terms of error control, or even transmitted in a reliable multicast channel sep-

arated from the channel used for transmitting multicast content. This provides

an opportunity for outsiders to separate the rekeying messages and the multicast

content. Thus, the outsiders may also launch attack AII directly by monitoring

the transmission of the rekeying messages.

It should be noted that the performance of the attack AI and AII degrades

when many users join/leave simultaneously. It will be shown in Section 4.3 that

the rekeying message size still reveals a significant amount of information on GDI

even when multiple users are removed from or added to the key tree together.

4.2.3 Vulnerability of popular centralized key management

schemes

The attack methods described in Section 4.2.1 and 4.2.2 can be tailored to many

other key management schemes. When the inside attacker can separate the rekey-

ing messages for user join and those for user departure, they launch AI type attacks.

When the amount of rekeying messages is largely depends on the group size, attack-

ers can launch AII type attacks, although the estimator may be slightly different

from (4.8). In this section, we review several key management schemes and discuss

94

their vulnerability to AI and AII type attacks.

Since protecting GDI is not part of the design goal in traditional key manage-

ment schemes, it is not surprising that some schemes reveal GDI in a very direct

way. For example, in the approach proposed in [22], a security lock is implemented

based on the Chinese remainder theorem and the length of the lock is proportional

to the number of users. Thus, N(t) is obtained by measure the length of the lock,

which is the simplest AII type attack.

Tree-based key management schemes have been known for their efficiency in

terms of the usage of communication, computation and storage resources. Many

tree-based schemes, such as [4,17–19], are similar to that described in Section . In

these cases, both AI and AII type attacks can be applied. In [16, 20, 21], another

class of tree-based schemes were presented to further reduce the communication

overhead by introducing the dependency among keys, such as using one-way func-

tion trees. In these schemes, only AII type attacks are suitable.

Besides the tree-based scheme described in Section , VersaKey framework [18]

also includes a centralized flat scheme. When a user joins or leaves the group,

the rekeying message size equals to the length of the binary representation of the

user ID, which can be independent of N(t). Thus, this key management scheme

is resistant to both AI and AII type attacks. This scheme, however, is vulnerable

to collusion attacks. That is, the KDC cannot update keys without leaking new

key information to the leaving user, who has a collusion partner in the group.

Although the GDI is protected, this scheme cannot protect the multicast content

well when collusion attacks are likely.

In Iolus [23], a large group is decomposed into a number of subgroups, and

the trusted local security agents perform admission control and key updating for

95

the subgroups. This architecture reduces the number of users affected by key

updating due to membership changes. Since the key updating is localized within

each subgroup, the attacker can only obtain the dynamic membership information

of the subgroup that he belongs to.

The idea of clustering was introduced in [24] to achieve the efficiency by lo-

calizing the key updating. The group members are organized into a hierarchical

clustering structure. The cluster leaders are selected from group members and

perform partial key management. Since the cluster leaders establish keys for the

cluster members through pair-wise key exchange [24], the cluster members cannot

obtain GDI of their clusters. However, the cluster leaders naturally obtain the

dynamic membership information of their cluster and all clusters below by partici-

pating key management. In [24], the cluster size is chosen from 3 to 15. Therefore,

this key management scheme can be applied only when a large potion of group

members are trusted to perform key management and obtain GDI.

In Chapter 2, we have presented a topology-matching key management (TMKM)

scheme that reduced the communication overhead associated with key updating by

matching the key tree with the network topology and localizing the transmission

of the rekeying messages. In this scheme, group members receive only the rekey-

ing messages that are useful for themselves and their neighbors. Thus, they only

obtains the local GDI by using AI or AII type attacks.

As a summary, Table 4.1 lists various key management schemes and their vul-

nerability to AI and AII type attacks. We can see that the AII type attacks are

effective for stealing GDI or local GDI from many key management schemes. Two

schemes, flat VersaKey [18] and the clustering [24], are resistant to these attacks.

Their usage, however, are limited by the fact that they are either not resistant to

96

Is attack AII Is Attack AI

Centralized Key Management Schemes Effective? Effective?

Tree Based

Key Graph [17], Wallner98 [4], Yes Yes

Tree-based scheme in

VersaKey framework [18]

Embedding [19]

One-way function tree [20] Yes No

Improve Key Revocation [16]

ELK [21]

Flat

Security lock [22] Yes –

Flat centralized scheme No No

in VersaKey framework [18]∗

Local security

agents

Iolus [23] Local Local

Clustering [24]∗ No No

Others TMKM [63] Local Local

Table 4.1: Vulnerability of popular centralized key management schemes

collusion attacks or must put trust in a large number of cluster leaders. Therefore,

it is very important to investigate the anti-attack techniques to protect group dy-

namic information that are compatible with a variety of key management schemes.

4.3 Anti-attack Techniques

We have discussed two types of attacks that can steal GDI from centralized key

management schemes. This discussion, however, does not cover all aspects of the

97

key management schemes that can reveal group dynamic information. For example,

the number of KEKs possessed by the inside attacker equals to the depth of the

key tree and reveals at least the order of the group size. We can also show that

the IDs of the keys reveal the structure of the key tree. Thus, new attack methods

may emerge in the future. Therefore, we propose an anti-attack framework that

is robust to various types of attacks and compatible with most centralized key

management schemes.

We first introduce the concept of Batch Rekeying that plays an important role

in our anti-attack technique. As proposed in [39], batch rekeying is to postpone

the update of keys such that several users can be added to or removed from the

key tree altogether. Compared with updating keys immediately after each user

join or departure, batch rekeying reduces the communication overhead at the ex-

pense of allowing the joining/leaving user to access a small amount of information

before/after his join/departure.

In this work, batch rekeying is implemented as periodic updating of keys and

the time between key updates are fixed and denoted by Bt. Particularly, the users

who join or leave the group in the time interval [(k − 1)Bt, kBt], are added to

or removed from the key tree together at time kBt. Then, the notations of GDI

functions are simplified as: J(k) = J((k − 1)Bt, kBt), L(k) = L((k − 1)Bt, kBt),

and N(k) = N(kBt).

Since the AI type attacks are effective only when users are added to or removed

from the key tree individually, utilizing batch rekeying can fight against the AI type

attacks. However, batch rekeying alone is not enough to fight against the AII type

attacks. Figure 4.2 shows some simulation results for the batch rekeying when Bt is

set to be 5 minutes. Simulation setup is similar to that in Section 4.2.2. The solid

98

0 1000 2000 3000
0

500

1000

1500

2000

2500
of users

(a)

N(k)
N

a
(k)

0 1000 2000 3000
0

10

20

30

40

50

60

70
of users joining

(b)

J(k)
J

a
(k)

0 1000 2000 3000
0

10

20

30

40

50

60

70
of users leaving

(c)

J(k)
J

a
(k)

0 1000 2000 3000
0

100

200

300

400

500

600
rekey message size

(d)

for the real GDI
for the artificial GDI

Figure 4.2: The anti-attack scheme using phantom users and batch rekeying

line in Figure 4.2(a), 4.2(b), 4.2(c), 4.2(d) represent the N(k), J(k), L(k) and

the rekeying message size, respectively. One can see that the rekeying message

size is closely related to L(k) and reflects the trend of N(k). A large amount of

information about N(k) and L(k) can be obtained by the attackers from examining

the rekeying message size.

Besides using batch rekeying, we propose to insert phantom users into the

system. These phantom users, as well as their join and departure behavior, are

created by the KDC in such a way that the combined effects of the phantom users

and the real users lead to a new rekeying process, called observed rekeying process,

which is observed by the attackers. An important goal is for the system to produce

an observed rekeying process that reveals the least amount of information about

the GDI.

99

Let Na(k) denote the total number of the real and phantom users, and Ja(k)

and La(k) denote the total number of the real and phantom users who join/leave

the service respectively. Na(t), Ja(k), and La(k) are referred to as the artificial

GDI. From the key management points of view, the phantom users are treated

the same as the real users. They occupy leaf nodes on the key tree, and they are

associated with a set of KEKs that are updated when they virtually join or leave

the group. Thus, the observed rekeying process only depends on the artificial GDI.

We first consider choosing the artificial GDI as a set of constant functions, that

is,

Ja(k) = L0, La(k) = L0, Na(k) = N0. (4.9)

By doing so, the observed rekeying process does not leak the information about the

changing trend of the real GDI. However, the perfect flat artificial GDI functions

in (4.9) may not be achievable. Since the real GDI functions are random processes,

it is possible that the predetermined L0 and N0 are not large enough such that the

artificial GDI cannot be maintained as straight lines. For example, when N(k) >

N0, Na(k) cannot be the predetermined value N0 because the number of phantom

users must be non-negative. In fact, the artificial GDI functions must satisfies four

requirements: (r1) Na(k) ≥ N(k), (r2) La(k) ≥ L(k), (r3) Ja(k) ≥ J(k), and (r4)

Na(k) = Na(k − 1) + Ja(k) − La(k). In this work, we choose the artificial GDI

functions as:

Na(k) = max{N(k), N0} (4.10)

Ja(k) = max{J(k), L(k), L0} (4.11)

La(k) = Na(k − 1)−Na(k) + Ja(k) (4.12)

When N(k) ≤ N0, L(k) ≤ L0, and J(k) ≤ L0, equation (4.10)-(4.12) are equivalent

100

to (4.9). The artificial GDI functions in (4.10)-(4.12) obviously satisfy requirement

(r1) (r3) and (r4). Next, we prove that the requirement (r2) is also satisfied.

• When N(k) > N0, it follows that

La(k) = Na(k − 1)−Na(k) + Ja(k) ≥ L(k) = N(k − 1)−N(k) + J(k),

using the fact that Na(k− 1) ≥ N(k− 1), Na(k) = N(k), and Ja(k) ≥ J(k).

• When N(k) ≤ N0, one can see that

La(k) ≥ Ja(k) ≥ L(k),

using the fact that Na(k − 1) ≥ N0 and Ja(k) ≥ L(k).

It shall be noted that there are many other ways to choose the artificial GDI

functions. The proposed anti-attack scheme supports any artificial GDI functions

that satisfy the requirement (r1)-(r4).

Given the artificial GDI functions, the KDC creates phantom users and per-

forms key management as follows.

(1) Determine N0 and L0 based on the system requirements and the users’ sta-

tistical behavior. The criteria for selecting N0 and L0 will be presented in

Section 4.4.

(2) Before the service starts, create N0 phantom users and establish a key tree

to accommodate them. Set index k = 1.

(3) While the service is not terminated, execute the following:

– Record user join and departure requests in the time period ((k − 1)Bt,

kBt], and obtain J(k) and L(k). During this time, the current session

101

key is sent to the joining users such that they can start receiving the

multicast content without delay.

– At time kBt, the KDC creates Ja(k)− J(k) phantom users joining the

service, and then selects La(k) − L(k) phantom users in the current

system and makes them leave. Following the key updating procedure

presented in any existing key management schemes, the KDC updates

corresponding keys for real and phantom users’ join and departure. The

number of total real and phantom users are maintained to be Na(k).

– Set k = k + 1.

Figure 4.2(a), 4.2(b), and 4.2(c) illustrate the real GDI (N(k), L(k), J(k)) and

the artificial GDI (Na(k), La(k), Ja(k)) for a simulated multicast service. The

simulation results of communication overhead, i.e. the rekeying message size, is

shown in Figure 4.2(d), where the solid line represents the case without phantom

users and the dash line represents case when the proposed anti-attack method

is applied. We can see that the observed process reveals very limited information

about the real GDI. Not surprisingly, the communication overhead increases, which

is a disadvantage of utilizing phantom users.

Utilizing phantom users and batch rekeying is not the only solution to the

problem of GDI leakage. There are other techniques that can protect GDI from one

or several attacks. For example, embedding rekeying messages into the multicast

content [19] can prevent outside attackers to launch the AII type attacks. Using

the same rekeying procedure for user join and departure is also a good way to

prevent the AI type attacks. In addition, the KDC can generate faked rekeying

messages to prevent the AII type attacks, which is different from the proposed

anti-attack scheme where the key tree reserves slots for the phantom users and all

102

rekeying messages have meanings.

Compared with other techniques, using phantom users and batch rekeying has

two major advantages. First, the proposed anti-attack scheme resists to a variety

of attacks. Since the real GDI are concealed before the rekeying messages are

generated, the attackers only see the artificial GDI from the observed rekeying

process unless they break the encryption or compromise the KDC. Second, the

proposed scheme does not rely on specific rekeying algorithms and is compatible

with existing key management schemes.

4.4 Performance Measure and Optimization

In this section, we define two performance criteria and evaluate the performance of

the proposed anti-attack technique. The criteria are (a) the amount of information

leaked to the attackers measured by mutual information, and (b) the communica-

tion overhead introduced by the phantom users. We study the tradeoff between

these two metrics and provide a framework of choosing proper amount of phantom

users, described by the parameter L0 and N0 in (4.10)-(4.12).

4.4.1 The leakage of GDI

We use mutual information to measure the leakage of the GDI, which is indepen-

dent of the attack strategies adopted by the attackers and represents the maximum

amount of information that the attackers can possibly obtain. Let T be the total

number of key updating, that is, the service duration is TBt. Then, the real GDI

is described by a set of random variables as

R = {N(1), · · · , N(T), J(1), · · · , J(T), L(1), · · · , L(T)}, (4.13)

103

and the artificial GDI is

A = {Na(1), · · · , Na(T), Ja(1), · · · , Ja(T), La(1), · · · , La(T)}. (4.14)

The mutual information, I(R; A), describes the reduction in the uncertainty of the

real GDI (R) due to the knowledge of the artificial GDI (A) [54]. Therefore, the

leakage of the GDI can be measured by

I(R; A) = H(A)−H(A|R), (4.15)

where H(.) and H(.|.) denote the entropy and conditional entropy, respectively.

Equation (4.10) - (4.12) indicate that the artificial GDI is a set of deterministic

functions of the real GDI. Thus, the conditional entropy in (4.15) equals to zero,

i.e. H(A|R) = 0. Since La(k) is directly computed from Ja(k), Na(k) and Na(k−1)

in (4.12), the terms La(1), La(2), · · · , La(T) can be removed from the expression of

the entropy of A, i.e. H(A) = H(Na(1), · · · , Na(T), Ja(1), · · · , Ja(T)). Then, the

upper bound of I(R; A) is calculated as:

I(R; A) = H(Na(1), · · · , Na(T), Ja(1), · · · , Ja(T))

≤ ∑

k

H(Na(k)) +
∑

k

H(Ja(k)). (4.16)

The equality is achieved when {Na(k), Ja(k), k = 1, · · · , T} are mutually indepen-

dent. It is noted that the GDI at time kBt and the GDI at time (k + 1)Bt can be

approximately independent when Bt is large and the group is high dynamic. In

these cases, (4.16) provides a tight upper bound of I(R; A).

We introduce pNk
(n) and pNak

(n) to denote the pmf of N(k) and Na(k), re-

spectively. From (4.10), one can see that

pNak
(n) =

∑N0
x=0 pNk

(x), n = N0

pNk
(n), n > N0

0, o.w.

104

Then,

H(Na(k)) = −(1− εk
N) log(1− εk

N)−
∞∑

n=N0+1

pNk
(n) log pNk

(n), (4.17)

where εk
N = 1−∑N0

x=0 pNk
(x). Similarly, let pJk

(x), pJak
(j), and pLk

(y) denote the

pmf of J(k), Ja(k), and L(k), respectively. We then have,

H(Ja(k)) = −∑

j

pJak
(j) log pJak

(j), (4.18)

and,

pJak
(j) =

(1− εk
J)(1− εk

L), j = L0

pJk
(j)

∑j−1
y=0 pLk

(y) + pLk
(j)

∑j−1
x=0 pJk

(x) + pJk
(j)pLk

(j), j > L0

0, o.w.

(4.19)

where εk
J = 1 − ∑L0

x=0 pJk
(x) and εk

L = 1 − ∑L0
y=0 pLk

(y). Given the pmf of the

real GDI functions, the upper bound of I(R; A) is calculated from (4.16)-(4.19).

Since the observed rekeying process is determined by the artificial GDI, the mutual

information between the observed process and the real GDI is bounded by I(R; A)

due to the data processing theory [54]. Therefore, I(R; A) is the upper bound of

the amount of information that can be possibly obtained by the attackers.

From (4.10)-(4.12), one can see that the artificial GDI reveals the real GDI

when N(k) > N0, L(k) > L0, or J(k) > L0. We define overflow probability as

the probability that the artificial GDI cannot be straight lines, i.e. 1 −mink(1 −
εk
N)(1 − εk

L)(1 − εk
J). Besides the mutual information, overflow probability can be

a more visualized complementary measure for the leakage of the GDI. When the

overflow probability is zero, the calculation in (4.16)-(4.18) leads to the result that

I(R; A) = 0, which indicates the prefect protection of the real GDI.

105

4.4.2 Communication overhead

Communication overhead, measured by the rekeying message size, is one of the

major performance criteria of key management schemes [3] [4]. We introduce

the notation M(L,N, d) as the expected value of the rekeying message size when

removing L users from the key tree that contains total N users and has degree d.

We assume that the leaving users are uniformly distributed on a full loaded and

balanced key tree. Then, there are dl KEKs at the lth level of the key tree for

l = 1, · · · , D− 2 and D = dlogd Ne, and the number of the KEKs at the (D− 1)th

level is s1 = dN−dD−1

d−1
e.

Let αl be the number of KEKs need to be updated at level l when L user leaves

the service. Then, M(L,N, d) is expressed as:

M(L,N, d) = E

[
D−1∑

l=0

αl

]
=

D−1∑

l=0

E[αl] (4.20)

We introduce the notation B(b, i, a), which is equivalent to the expected number

of non-empty boxes when putting i items in b boxes with repetition where each

box can have at most a items. The detailed calculation of B(b, i, a) is provided in

the Appendix. We can show that

E[αl] = d ·B(dl, L,
N

dl
), 0 ≤ l ≤ D − 2, (4.21)

E[αD−1] = (d− 1)
L∑

L̃=1

(
s1

L̃

)(
N − s1

L− L̃

)/(
N

L

)
B(s1, L̃, d) (4.22)

Using the fact that d i
a
e ≤ B(b, i, a) ≤ min(b, i) (see Appendix), we can derive the

upper bound of the M(L,N, d) as:

M(L,N, d) ≤ dL logd(N). (4.23)

This upper bound indicates that the communication overhead increases linearly

with the number of departure users and with the logarithm of the group size.

106

Let Cr and Ca be the average communication overhead for rekey process based

on real GDI and the artificial GDI, respectively. Then, the extra communication

overhead introduced by the proposed anti-attack technique is:

Ca − Cr =
1

T

T∑

k=1

M(La(k), Na(k), d)− 1

T

T∑

k=1

M(L(k), N(k), d). (4.24)

When the overflow probability is small, (4.24) can be approximated by:

Ca − Cr ≈ M(L0, N0, d)− 1

T

T∑

k=1

M(L(k), N(k), d). (4.25)

4.4.3 System optimization

From the system design points of view, parameter L0 and N0 should be chosen such

that the leakage of the GDI is minimized while the extra communication overhead

do not exceed certain requirements. When the overflow probability is small, the

optimization problem is formulated as:

min
N0,L0

∑

k

H(Na(k)) +
∑

k

H(Ja(k)) (4.26)

subject to:

M(L0, N0, d) ≤ β, (4.27)

where β is the maximum allowed communication overhead per key updating. We

can show that H(Na(k)) in (4.18) is monotonous non-increasing with N0; H(Ja(k))

in (4.17) is monotonous non-increasing with L0; and the communication overhead

M(L0, N0, d) in (4.20) is non-decreasing with L0 and N0. Therefore, the optimiza-

tion problem is simplified as:

min
L0

(∑

k

H(Na(k)) +
∑

k

H(Ja(k))

) ∣∣∣
N0=M−1(β)|L0,d ,

(4.28)

107

0 1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

N
(k

)

 Group Dynamic Information of the CBC Newsworld On−Line Test on 10/29/1996

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

J(
k)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

L(
k)

Time (minute)

Figure 4.3: The GDI of a long audio session in MBone

where M−1(β)|L0,d is the largest value of N0 that satieties (4.27) with given L0 and

d. Fortunately, the number of departure users between two key updates is usually

not a large number in practice. Thus, the searching space for parameter L0 is not

large and this optimization problem can be solved by full search.

4.5 Simulations of the anti-attack scheme

Mlisten1, a tool developed at Georgia Institute of Technology, can collect the

join/leave time for the multicast group members in MBone [50] sessions. Using

this tool, the characteristics of the membership dynamics of MBone multicast

sessions has been studied in [50] [51].

The proposed anti-attack scheme is applied to the data collected in 1996 [61].

1available at www.cc.gatech.edu/computing/Telecomm.mbone

108

051015202530

20

40

60

80

100

0

10

20

30

40

50

60

70

80

L
0

Leakage of the GDI vs. L
0
 and N

0

N
0

U
pp

er
 b

ou
nd

 o
f G

D
I L

ea
ka

ge
 (

I(
R

;A
))

Figure 4.4: Upper bound of the GDI leakages

Particularly, we selected one audio session that started on Oct. 29th and lasted

for about 5 days and 20 hours. Figure 4.3 shows the N(k), L(k) and J(k) of this

session, where the Bt is chosen to be 15 minutes.

It is suggested that the users statistical behavior, such as inter-arrival and

membership durations, can be modelled by exponential distribution in a short

period of time [50]. In the simulation, the entire service time is divided into non-

overlapped sections, as illustrated in Figure 4.3. The length of these sessions is set

to be 4 hours. To simplify the analysis, it is assumed that N(k), L(k) and J(k) are

stationary and ergodic Poisson processes in each session. Then, we can calculate

the GDI leakage using (4.16)-(4.19).

Figure 4.4 and Figure 4.5 demonstrate the upper bound of mutual information

(see (4.16)) and the communication overhead M(L0, N0, d) for different values of L0

109

0
5

10
15

20
25

30

20

30

40

50

60

70

80

90

100
0

100

200

300

400

L
0

Communication Overhead vs. L
0
 and N

0

N
0

U
pp

er
 b

ou
nd

 o
f C

om
m

un
ic

at
io

n
O

ve
rh

ea
d

(M
(L

0,N
0,d

)
)

Figure 4.5: Communication overhead M(L0, N0, d)

and N0, respectively. We can see that communication overhead is a non-decreasing

function with L0 and N0, while the GDI leakage is a non-increasing function with

L0 and N0. This verifies the argument in Section 4.4.

Figure 4.6 illustrates the solution of the optimization problem. Figure 4.6(a)

shows the maximum value of N0 that satisfies the communication overhead con-

straint in (4.27) with fixed L0, i.e. N0 = max{N : M(L0, N, d) ≤ β}, where β is

chosen to be 50 in this example. As discussed in Section 4.4, the optimal values

of L0 and N0 must be on this curve. Therefore, the upper bound of the GDI

leakage,
∑

k H(Na(k)) +
∑

k H(Ja(k)), is evaluated only at (L0, N0 = max{N :

M(L0, N, d) ≤ β}), which is shown in Figure 4.6(b). The optimal values of L0 and

N0 are also marked.

Figure 4.7 shows the tradeoff between the communication overhead and the GDI

110

0 2 4 6 8 10 12 14 16
10

0

10
1

10
2

10
3

L
0

The maximum N
0
 that satisfies the comm. overhead constrain, (β=50)

N
0
 = max {N : M(L

0
, N,d)} ≤ β

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

L
0

Upper bound of GDI leakage vs L
0

Σ H(N
a
(k)) + H(J

a
(k))

(a)

(b) optimal Lo

optimal No

Figure 4.6: Illustration of selecting optimal parameters L0 and N0.

leakage. This figure demonstrates the upper bound of the mutual information as a

function of the communication overhead constraint, where the parameters L0 and

N0 have been optimized. This can help the system designer in determining the

proper β for the communication constraint in (4.27). When not using phantom

users, the artificial process is identical to the real process and we have I(R; A) =

I(R; R) = H(R). In this case, this particular multicast session require average 3.6

rekeying messages to be sent in every 15 minutes (Bt = 15) and has I(R; A) ≈ 137.

Figure 4.7 shows that the proposed anti-attack scheme can reduces I(R; A) to 5.5

by increasing the communication overhead to 23.2 messages every 15 minutes. The

communication overhead Ca is significantly larger than Cr because a large amount

of activities of the phantom users must be created. However, the absolute value of

the Cr is still small compared with the multicast data throughput. On the other

111

15 20 25 30 35 40 45 50 55
0

5

10

15

20

25

30

35

40

Communication Overhead

G
D

I l
ea

ka
ge

 GDI leakage vs Communication Overhead for a non−active session

When not using phantom users
 communication overhead : 3.6
 leakage of GDI : 137

Figure 4.7: The GDI leakage versus communication overhead for a real MBone

audio session

hand, the leakage of the group dynamic information is greatly reduced.

It is important to note that this MBone audio session contains only up to 60

users and represents the scenario where the group size is small and group members

are not very active. Due to the lack of the experimental data for large multicast

groups, we investigated a simulated multicast session with larger group size and

more active group members. The simulation setup is the same as that is used

for Figure 4.1(c) in Section 4.2, where the group size is about 500. When not

using phantom users, the KDC sends average 28.16 rekeying messages in every

5 minutes (Bt = 5), while the amount of information leaked to the attackers,

H(R), is 249.2. The performance of the proposed anti-attack methods is shown in

Figure 4.8. We can see that the GDI leakage can be reduced to 5 at the expense of

increasing the communication overhead to 93 messages per 5 minutes. The relative

communication increase is smaller than that for the less active sessions.

112

50 60 70 80 90 100 110 120
0

5

10

15

20

25

30

35

40

45

50

Communication Overhead

G
D

I l
ea

ka
ge

 GDI leakage vs Communication Overhead for an active session

When not using phantom users:
 communication overhead : 28.16
 leakage of GDI: 249.2

Figure 4.8: The GDI leakage versus communication overhead for a simulated mul-

ticast session

4.6 Contributory Key Management Schemes

As we have discussed in the previous sections, group keys are generated and dis-

tributed by the key distribution center when centralized key management schemes

are employed. In many scenarios, however, it is not preferred to rely on a central-

ized server that arbitrates the establishment of the group key. This might occur

in applications where group members do not explicitly trust a single entity, or

there are no servers or group members who have sufficient resources to maintain,

generate and distribute keying information. Thus, the distributed solution of the

key management problem has seen considerable attention [18,25–33].

The contributory key management schemes do not rely on centralized servers.

Instead, every group member makes independent contribution and participates the

process of group key establishment. The members’ personal keys are not disclosed

113

to any other entities [28]. An important class of contributory key management

schemes, such as [25–33], are inspired by the Diffie-Hellman (DH) two-party key

exchange protocol [35], and are usually refereed to as the Diffie-Hellman-like pro-

tocols. Compared with the centralized schemes, the contributory schemes have the

advantage of not putting full trust on a single entity and therefore do not suffer

the problem of single-point-failure. However, their distributed nature makes the

task of protecting the GDI very difficult. In this section, we investigate the ways

that the group members acquire GDI from the Diffie-Hellman-like key management

schemes and provide a brief discussion on preventing the leakage of GDI.

4.6.1 Fully and partially contributory key management schemes

We discuss two slightly different flavors of contributory key agreement scheme:

fully contributory and partially contributory.

In the fully contributory schemes, all key agreement operations are contributed

to every group member [29]. Since there is no dedicated group manager, every

participant may perform admission control and other administrative functions [29].

Thus, group members are naturally aware of the information about the group

membership. In addition, group members are usually arranged in a logical ring [25],

a logical chain [28–30], or a logical tree [31–33]. These logical ring/chain/tree

structures describe the key establishment procedure, and must be maintained and

updated by every member independently in the fully contributory environment [31].

This, again, requires members to have knowledge of the initial group membership as

well as the membership changes. Therefore, the fully contributory schemes, whose

implementation relies on the members’ knowledge on dynamic group membership,

are not suitable for the multicast applications with confidential GDI.

114

In the partially contributory schemes, one group member takes on a special

role and performs some operations in a centralized manner [28] [29]. This special

member is usually referred to as the group controller. The role of the group con-

troller can be assigned to a fixed member or be handed over to other members

when membership changes [29]. The group controller is different from the KDC in

the centralized schemes because it does not hold the private keys of other members

or generate the complete group key for other members. Instead, it may perform

admission control and coordinate the process of the key formation. The original

purpose of introducing group controller is to achieve efficient key updating in the

case of user joining and departure [28]. In the context of protecting GDI, the

partially contributory schemes make it possible to confine dynamic membership

information to the group controllers while preventing other group members from

accessing GDI. Although only a handful of contributory schemes [28–32] suggest

using group controller, most of the schemes [25–27, 33] can work in the partially

contributory manner. For contributory key management schemes, the fundamen-

tal rule for protecting GDI is that a group controller that is trusted to handle GDI

shall perform admission control, maintain the logical key ring/chain/tree structure

and coordinate the process of the key formation.

4.6.2 Vulnerability of popular contributory key manage-

ment schemes

Utilizing group controller is not a complete solution to the GDI protection problem.

Next, we examine the Diffie-Hellman-like key management schemes and demon-

strate various other opportunities for the insiders to acquire group dynamic infor-

mation.

115

The scheme presented in [25] is the earliest attempted to extend two-party

Diffie-Hellman protocol to group scenario. This scheme, sometimes referred to as

ING [30], arranges members in a logical ring and is executed in (n − 1) round,

where n is the group size. Therefore, every member obtains the group size by

simply counting the number of rounds that he performed.

Similarly, the schemes presented in [26] and [27], referred to as the STR and BD

respectively, also reveal the group size. Here, each member receives the broadcast

messages from all other members, and therefore must know the existence of other

group members.

In [31] [32] [33], logical tree structures are introduced to manage the formation

of the group keys. In these schemes, each member performs L rounds and holds L

subgroup keys, where L is the depth of the key tree. Since L is proportional to the

logarithm of the group size, group members know at least the order of the group

size.

Another important set of contributory key management schemes are GDH.1,

GDH.2 and GDH.3 [28]. These schemes arrange group members in a logical chain

and accumulate the keying material by traversing group members one by one. In

GDH.1/2, the kth member receive k or k + 1 messages from the (k− 1)th member.

Thus, the amount of the messages reveals information about the group size. The

users who are closer to the end of the chain have more accurate information about

the group size. GDH.3 is executed in four stages [28]. In the second and the fourth

stage, the last user on the key chain broadcast n messages to the rest of the group,

and n is the group size. In all three schemes, the group size information is revealed

by the size of keying messages.

116

4.6.3 Prevention of GDI leakage

As discussed in Section 4.6.1 and 4.6.2, the contributory key management schemes

are more vulnerable to GDI attacks than the centralized schemes. Besides ex-

amining rekeying message size as in the centralized schemes, the attackers can

also steal GDI through performing admission control, maintaining the logical key

ring/chain/tree structure, and counting the number of rounds in the contributory

key management schemes.

In general, we suggest using centralized key management schemes for the ap-

plications with confidential GDI. However, there are scenarios that centralized

schemes cannot be employed, such as when no trusted centralized entities exist.

In these cases, we suggest using GDH.3, which has the strongest centrality flavor

amongst contributory schemes. As discussed in Section 4.6.2, GDH.3 reveals group

size through the broadcast message size. Thus, the following modifications must

be made.

• Selecting the group member at the end of the logical chain as the group

controller, who performs admission control and coordinates the key formation

such that a regular member only communications with his two neighbors on

the key chain and the group controller in the key establishment process.

• Replacing the broadcasting in the second and fourth stage [28] by multiple

unicasting, which unfortunately increases the communication overhead.

The modified GDH.3 prevents regular group members from obtaining the informa-

tion on the group size, at the expenses of non-scalable communication overhead.

In addition, anti-traffic-analysis techniques, such as in [64] [65], shall be used to

prevent the GDI attacks from outsiders, which will not be discussed in this work.

117

In this chapter, we raised the issues of the disclosure of dynamic group mem-

bership information through key management. We demonstrated that such a new

security threat impacts various group communication applications. We developed

attack strategies that could steal the GDI from key management. To protect GDI,

an anti-attack framework was investigated, that involves utilizing batch rekeying,

introducing phantom users, and analyzing the tradeoff between communication

overhead and security.

118

Chapter 5

Conclusion and Future Work

This dissertation presented the design of network-specific and application specific

group key management schemes and investigated the problem of protecting dy-

namic group membership information in secure group communications.

In particular, we presented a method for designing the multicast key manage-

ment tree in the mobile wireless environment. By matching the key management

tree to the cellular network topology and localizing the delivery of rekeying mes-

sages, a significant reduction in the communication burden associated with rekey-

ing was observed compared to trees that are independent of the topology. We

designed a topology-matching key management tree that consists of user-subtrees,

BS-subtrees and SH-subtrees. It was shown that the problem of optimizing the

communication cost for the TMKM tree is separable and can be solved by opti-

mizing each of those subtrees separately. The ALX tree structure, which easily

adapts to changes in the number of users, was introduced to build user-subtrees

and BS-subtrees. The performance of the ALX tree is very close to the performance

lower bound for any fixed degree tree. The GSHD algorithm, which considers the

network heterogeneity where the SHs administer areas with varying network con-

119

ditions, was introduced to build the SH subtree. The performance of the GSHD

algorithm is very close to the optimal and has better performance than treating

SHs equally. Additionally, we addressed the consequences that user mobility has

upon the TMKM tree, and presented an efficient handoff scheme to reduce the

communication burden associated with rekeying. A popular user joining/leaving

procedure was used to study the performance of the TMKM and TIKM trees.

Both simulations and analysis were provided. For systems consisting of only one

SH, simulations performed for different user-join rates and mobile user speeds

show that the cost of the TMKM tree is approximately 33-45% of the cost of the

TIKM tree, which indicates a reduction of 55-67% in the total communication cost.

For systems consisting of multiple SHs, simulations were performed for different

amounts of participating SHs, and indicated that the TMKM tree can reduce the

communication burden by as much as 80%. In addition, both analysis and simula-

tions indicate that the communication cost of the TMKM tree scales better than

that of topology-independent trees as the number of participating SHs increases.

While traditional group key management only provides the same access priv-

ilege to all group members, this dissertation presented a multi-group key man-

agement scheme that achieves hierarchical group access control in secure group

communications. Hierarchical access control problem prevails in multimedia group

applications, where multiple data streams are distributed to group members with

various access privileges. We designed an integrated key graph, as well as the

rekey algorithms, which allow users subscribing/dropping the group communi-

cations and changing access levels while maintaining the forward and backward

security. Compared with using the existing tree-based key management schemes

that are designed for a single multicast session, the proposed scheme can greatly

120

reduce the overhead associated with key management. In the multi-layer services

containing 4 layers, we observed more than 50% reduction in the usage of storage,

computation, and communication resources in the centralized environments, and

the number of rounds to establish and update keys in the contributory environ-

ments. More importantly, the proposed scheme scales better than the existing

tree-based schemes, when the group applications contains more data streams and

require the mechanism to manage more levels of access control.

Besides scalability issues, a more fundamental concern of group key manage-

ment is security. This dissertation raised the issues of the disclosure of dynamic

group membership information through key management in secure multicast com-

munications. Such a security concern has not been addressed in traditional key

management schemes. We demonstrated that the attackers can successfully obtain

good estimates of the GDI from a large number of centralized and contributory key

management schemes, and investigated the techniques of improving or modifying

the existing key management schemes such that the GDI as well as the multicast

content is protected. For the centralized key management schemes, we developed

two effective attack strategies, which exploit the format and the size of the rekey-

ing messages. To protect the GDI, we proposed the anti-attack technique utilizing

batch rekeying and phantom users. This anti-attack technique reduces the leakage

of the GDI and is fully compatible with the existing centralized key management

schemes. We investigated the tradeoff between the communication overhead and

the leakage of the GDI, and provided a framework for selecting the proper amount

of phantom users. The proposed anti-attack technique was tested on real MBone

user log data and simulated multicast sessions. We also demonstrated the vulner-

ability of the contributory key management schemes, where group members can

121

acquire the group size from performing admission control, maintaining logical key

ring/chain/tree structure, counting the number of rounds and measuring the num-

ber of the key exchange messages. In the contributory environment, the solution of

protecting GDI involves utilizing the group controller and modifying the existing

GDH.3 key establishment protocol.

Based on the research results presented in this dissertation, there are several

research directions that can be further investigated:

Fault-tolerant contributory key agreement

Besides the technologies that have been presented in this dissertation, we plan

to incorporate the fault-tolerate features in the future design, especially for con-

tributory key management. The existing contributory key management schemes

assume that users honestly perform the key agreement protocol. As a result, they

perform poorly or not at all in the presence of malicious group members who ma-

nipulate the keying messages and aim to cause the key agreement process to fails.

To demonstrate this fact, we examine one of the most popular schemes for dis-

tributed key agreement, namely GDH.2. This scheme organizes the users in a

chain. Each user performs computation and passes some intermediate values to

the next user. This stage of the scheme is referred to as upflow and continues until

the computation and passing on of intermediate results has reached the last user

at the end of the chain. Then, the direction of information flow is reversed and the

scheme enters its downflow stage. The users once again perform computation on

intermediate values and pass them on. During both upflow and downflow stages,

malicious users have the opportunity to selectively sabotage the intermediate re-

sults calculated by the users that are ordered before them in the chain. At the end

of the key agreement protocol, all users individually calculate the group key. The

122

users, whom have been targeted by the malicious users, will have a different key

from the rest of the group. In this case, no common group secret is established

for securing group communication and the group key agreement protocol fails. For

GDH.2, we can show that a malicious user can sabotage and remain undetected

even after the key generation protocol is run many times with different orderings

of the users. The failure of key agreement not only prevents secure group commu-

nication, but also causes extra use of computational and communication resources

that are precious for wireless scenarios. All communication and computation spent

on the key agreement is in vein since it is not possible to recover or reuse any part

of previous group secret.

We believe that one of the largest problems with GDH.2 and any scheme that

operates in a similar manner is the lack of verifying intermediate steps. In order to

detect malicious users and recover from possible errors, our preliminary investiga-

tion suggests that distributed tree-based key agreement schemes, have the potential

of detecting malicious users and allow for efficient recovery from key establishment

failure. In tree-based key agreement schemes, the keys are generated recursively,

allowing us to integrate detection and error recovery in the key generation process.

We propose to design a protocol that detects malicious behavior/error by selec-

tively validating the intermediate results and achieves fast recovery by reusing

validated intermediate keys. The idea is to solve the dispute locally before it

affects the entire group. We will investigate the tradeoff between the probabil-

ity of successful establishing the group key and the increased communication and

computation cost due to the checking mechanism.

Topology-aware hierarchical access control with GDI protection

In this dissertation, we have addressed the topology-aware key management,

123

hierarchical access control and GDI protection separately. In the future, we plan

to develop a suite of key management design techniques that incorporate all above

advanced technologies. For example, topology-match key management has positive

influence on protecting GDI because the users may only obtain their local GDI

in TMKM scheme. In addition, the hierarchical key management design may

also consider topology issues, when the access requirement is correlated with the

physical locations of users.

More topics in wireless network security

Wireless communication has dramatically changed the way people work and

interact. Unfortunately, the wireless era continues to be plagued by insufficient

security. Key management solves the group access control problem, but it is not

the complete solution of wireless network security problem. In wireless networks,

the security weakness exists in every layer. In the future, we will investigate secure

routing in ad hoc networks and securing resource allocation against greedy users.

Secure routing protocols are the foundation of the dependability in ad hoc

networks. Various attacks, such as black/gray hole, rushing attack, blackmail,

wormhole, prevent good routes being discovered and cause denial-of-service. We

would like to develop a set of mechanisms to secure against routing disruptions.

For each node, the first mechanism is to launch a route traffic observer to moni-

tor the behavior of each valid route in its route cache, and to collect the packet

forwarding statistics submitted by the hops on the routes. Since malicious nodes

may submit false report, for each node, the next mechanism is to keep a cheating

record database for the other nodes. If a node is detected as dishonest, future route

discovery should prevent this node from being on the route. The third mechanism

is to use friendship (trust relationship) to speed up the malicious node detection.

124

The fourth mechanism is to explore route diversity by discovering multiple routes

to the destination, which can increase the chance to defeat the malicious nodes

aiming to prevent good routes from being discovered. Instead of waiting for all the

routes in its route cache becoming invalid, an adaptive route rediscovery mecha-

nism is applied by each node to determine when a new route discovery should be

initiated. Based on the observed behavior and the history record of each node,

the design goal is to improve the network performance by limiting the damage of

malicious attacks and detecting malicious nodes.

The common philosophy of resource allocation is to improve overall network

performance or achieve fairness, by properly assigning network resources to users.

One example is the power control algorithm in 3G wireless networks, where the

base stations assign different transmission power to mobile users according to their

channel conditions. Many resource allocation algorithms require the measurement

or feedback of users’ status, such as their computation capability and channel

conditions. However, greedy or malicious users can make dishonest claims or ma-

nipulate the measurements, hoping that they can get more system resources or

cause denial-of-service to other honest users. To make things even worse, it can

be extremely difficult to detect these dishonest claims and manipulated measure-

ments. I believe that resource allocation algorithms should consider this security

threat in the early design stage. We propose to quantify this security concern

and introduce a security constraint for resource allocation. There will be a trade-

off between the optimality of the resource allocation and the robustness to false

measurement/claims. The ultimate goal is to understand the interplay between

security and quality of service.

As a summary, while attack and anti-attack as two major forces that drive

125

the advancement of network security research, we believe that tomorrow will be

better.

126

Appendix A

Calculation of B(b, i, a)

We define n(b, i, a) to be the number of non-empty boxes when randomly placing

i identical items into b identical boxes with repetition, where each box can hold

at most a items. In this appendix, we calculate B(b, i, a) as the expected value of

n(b, i, a), i.e. B(b, i, a) = E[n(b, i, a)]. It is obvious that the value of n(b, i, a) is

bounded as B0 ≤ n(b, i, a) ≤ B1, where B0 =
⌈

i
a

⌉
and B1 = min(i, b).

We define an intermediate quantity w(y, i, a) as the number of ways of putting

i items into y boxes such that each box contains at least 1 and at most a items.

w(y, i, a) can be calculated recursively as:

w(B0, i, a) =

(
aB0

i

)
(A.1)

w(B0 + k, i, a) =

(
a(B0 + k)

i

)

−
k−1∑

m=0

(
B0 + k

B0 + m

)
w(B0 + m, i, a), (A.2)

where 0 ≤ k ≤ B1 −B0. Then, the pmf of n(b, i, a) can be expressed as:

Prob{n(b, i, a) = B0 + k} =
1

N

(
b

B0 + k

)
w(B0 + k, i, a), (A.3)

127

where N =
(

ab
i

)
represents the total number of ways of putting i items into b boxes.

By substituting (A.2) into (A.3), we get:

Prob{n(b, i, a) = B0 + k} =
1

N

(
b

B0 + k

)(
a(B0 + k)

i

)

−
k−1∑

m=0

(
b

B0+k

)(
B0+k
B0+m

)
(

b
B0+m

) Prob{n(b, i, a) = B0 + m}.

It can be shown that:
(

b
B0+k

)(
B0+k
B0+m

)
(

b
B0+m

) =

(
b−B0 −m

k −m

)
.

Therefore,

Prob{n(b, i, a) = B0 + k} =
1

N

(
b

B0 + k

)(
a(B0 + k)

i

)

−
k−1∑

m=0

(
b−B0 −m

k −m

)
Prob{n(b, i, a) = B0 + m}. (A.4)

By substituting (A.1) into (A.3), we have:

Prob{n(b, i, a) = B0} =
1

N

(
b

B0

)(
aB0

i

)
. (A.5)

Based on (A.4) and (A.5), we can calculate Prob{n(b, i, a) = B0 + k} for k =

0, 1, · · · , B1−B0 recursively. Then, we can calculate B(b, i, a), i.e. E[n(b, i, a)], as:

B(b, i, a) =
B1−B0∑

k=0

(B0 + k) · Prob{n(b, i, a) = B0 + k}. (A.6)

128

Appendix B

Calculation of pmf of
˜
I

Let tM denote the service duration, tn denote the new cell dwell time, and th denote

the previously handed-off cell dwell time [57]. We assume that tM follows exponen-

tial distribution. The distributions of tn and th are often presented together with

the mobility models. For the mobility model used in Section 2.7, the distribution

of tn and th can be found in [57].

Using these distributions, we calculate pn = Prob{tM < tn} and ph = Prob{tM <

th}. The number of cells that a user ever visited before departure, denoted by Ĩ,

has the pmf as Prob{Ĩ = 1} = pn, Prob{Ĩ = 2} = (1 − pn)ph, Prob{Ĩ = 3} =

(1− pn)(1− ph)ph, and Prob{Ĩ = i} = (1− pn)(1− ph)
i−2ph.

129

BIBLIOGRAPHY

[1] A. Perrig and J. D. Tygar, Secure Broadcast Communication: In Wired and
Wireless Networks, Kluwer Academic Publishers, 2002.

[2] S. Paul, Multicast on the Internet and its applications, Kluwer Academic
Publishers, 1998.

[3] M.J. Moyer, J.R. Rao, and P. Rohatgi, “A survey of security issues in multicast
communications,” IEEE Network, vol. 13, no. 6, pp. 12–23, Nov.-Dec. 1999.

[4] D.M. Wallner, E.J. Harder, and R.C. Agee, “Key management for multicast:
issues and architectures,” Internet Draft Report, Sept. 1998, Filename: draft-
wallner-key-arch-01.txt.

[5] R. Gennaro and P. Rohatgi, “How to sign digital streams,” in Advances in
Cryptology-Crypto ’97, 1997.

[6] C. K. Wong and S. Lam, “Digital signatures for flows and multicasts,”
IEEE/ACM Trans. On Networking, vol. 7, pp. 502–513, 1999.

[7] P. Rohatgi, “A compact and fast hybrid signature scheme for multicast packet
authentication,” in 6th ACM Conference on Computer and Communications
Security, 1999, pp. 93–100.

[8] F. Bergadano, D. Cavalino, and B. Crispo, “Chained stream authentication,”
in Selected Areas in Cryptography 2000,Waterloo, Canada, August 2000.

[9] B. Briscoe, “Flames: Fast, loss-tolerant authentication of
multicast streams,” Technical report, BT research, 2000,
http://www.labs.bt.com/people/briscorj/papers.html.

[10] A. Perrig, R. Canetti, J.D. Tygar, and D. Song, “The tesla broadcast authen-
tication protocol,” in RSA Cryptobytes, 2002.

[11] A. Perrig, R. Canetti, D. Song, and J.D. Tygar, “Efficient and secure source
authentication for multicast,” in Network and Distributed System Security
Symposium, NDSS ’01, 2001.

130

[12] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J.D. Tygar, “Spins: security
protocols for sensor networks,” in Proceedings of the 7th Annual Conference
on Mobile Computing and Networking (Mobicom), 2001, pp. 189–199.

[13] A. Perrig, J. D. Tygar, D. Song, and R. Canetti, “Efficient authentication
and signing of multicast streams over lossy channels,” in Proceedings of the
2000 IEEE Symposium on Security and Privacy (S&P 2000), 2000, p. 56.

[14] B. Briscoe and I. Fairman, “Nark: receiver-based multicast non-repudiation
and key management,” in Proceedings of the 1st ACM conference on Electronic
commerce, 1999, pp. 22–30.

[15] S. Xu and R. Sandhu, “Authenticated multicast immune to denial-of-service
attack,” in Proceedings of the 2002 ACM symposium on Applied computing,
2002, pp. 196–200.

[16] R. Canetti, J. Garay, G. Itkis, D. Miccianancio, M. Naor, and B. Pinkas,
“Multicast security: a taxonomy and some efficient constructions,” Proc.
IEEE INFOCOM’99, vol. 2, pp. 708–716, March 1999.

[17] C. Wong, M. Gouda, and S. Lam, “Secure group communications using key
graphs,” IEEE/ACM Trans. on Networking, vol. 8, pp. 16–30, Feb. 2000.

[18] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The VersaKey
framework: Versatile group key management,” IEEE Journal on selected areas
in communications, vol. 17, no. 9, pp. 1614–1631, Sep. 1999.

[19] W. Trappe, J. Song, R. Poovendran, and K.J.R. Liu, “Key distribution for
secure multimedia multicasts via data embedding,” Proc. IEEE ICASSP’01,
pp. 1449–1452, May 2001.

[20] D. McGrew and A. Sherman, “Key establishment in large dynamic groups
using one-way function trees,” Technical Report 0755, TIS Labs at Network
Associates, Inc., Glenwood, MD, May 1998.

[21] A. Perrig, D. Song, and D. Tygar, “ELK, a new protocol for efficient large-
group key distribution,” in Proc. IEEE Symposium on Security and Privacy,
2001, pp. 247 –262.

[22] G. H. Chiou and W. T. Chen, “Secure broadcasting using the secure lock,”
IEEE Trans. Software Eng., vol. 15, pp. 929–934, Aug 1989.

[23] S. Mittra, “Iolus: A framework for scalable secure multicasting,” in Proc.
ACM SIGCOMM ’97, 1997, pp. 277–288.

131

[24] S. Banerjee and B. Bhattacharjee, “Scalable secure group communication over
IP multicast,” JSAC Special Issue on Network Support for Group Communi-
cation, vol. 20, no. 8, pp. 1511 –1527, Oct. 2002.

[25] I. Ingemarsson, D. Tang, and C. Wong, “A conference key distribution sys-
tem,” IEEE Transactions on Information Theory, vol. 28, pp. 714–720, Sep.
1982.

[26] D. G. Steer, L. Strawczynski, W. Diffie, and M. Wiener, “A secure audio
teleconference system,” in Proceedings on Advances in cryptology. 1990, pp.
520–528, Springer-Verlag New York, Inc.

[27] M. Burmester and Y. Desmedt, “A secure and efficient conference key distri-
bution scheme,” Advances in Cryptology- Eurocrypt, pp. 275–286, 1994.

[28] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-hellman key distribution
extended to group communication,” in Proceedings of the 3rd ACM conference
on Computer and communications security. 1996, pp. 31–37, ACM Press.

[29] M. Steiner, G. Tsudik, and M. Waidner, “CLIQUES: a new approach to
group key agreement,” in Proceedings of the 18th International Conference
on Distributed Computing Systems, May 1998, pp. 380 –387.

[30] M. Steiner, G. Tsudik, , and M. Waidner, “Key agreement in dynamic peer
groups,” IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, vol. 11, no. 8, pp. 769–780, Aug 2000.

[31] G. Tsudik Y. Kim, A. Perrig, “Simple and fault-tolerant key agreement for
dynamic collaborative groups,” in Proceedings of the 7th ACM conference on
Computer and communications security, November 2000.

[32] L.R. Dondeti, S. Mukherjee, and A. Samal, “DISEC: a distributed framework
for scalable secure many-to-many communication,” in Proceedings of Fifth
IEEE Symposium on Computers and Communications, 2000, pp. 693 –698.

[33] W. Trappe, Y. Wang, and K.J.R. Liu, “Establishment of conference keys in
heterogeneous networks,” in proceedings of IEEE International Conference on
Communications, 2002, vol. 4, pp. 2201 –2205.

[34] K. Becker and U. Wille, “Communication complexity of group key distribu-
tion,” in Proceedings of 5th ACM Conf. on Computer Commun. Security,
1998, pp. 1–6.

[35] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans.
on Information Theory, vol. 22, pp. 644–654, 1976.

132

[36] P. Judge and M. Ammar, “Gothic: A group access control architecture for
secure multicast and anycast,” in Proceedings of the IEEE INFOCOM02,
2002, p. 15471556.

[37] S.E. Eldridge and C.D. Walter, “Hardware implementation of montgomerys
modular multiplication algorithm,” IEEE Transactions on Computers, vol.
42, no. 6, pp. 693699, June 1993.

[38] A. Puri and T. Chen, Multimedia Systems, Standards, and Networks, Marcel
Dekker Inc, 2000.

[39] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam, “Reliable group rekeying:
a performance analysis,” Proc. of the 2001 conference on applications, tech-
nologies, architectures, and protocols for computer communications, pp. 27 –
38, August 2001.

[40] C. Diot, B.N. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deployment
issues for the IP multicast service and architecture,” IEEE Network, vol. 14,
pp. 78 –88, Jan.-Feb 2000.

[41] A. Acharya and B.R. Badrinath, “A framework for delivering multicast mes-
sages in networks with mobile hosts,” Journal of Special Topics in Mobile
Networks and Applications, vol. 1, no. 2, pp. 199–219, Oct. 1996.

[42] H-S Shin and Y-J Suh, “Multicast routing protocol in mobile networks,” Proc.
IEEE International Conference on Communications, vol. 3, pp. 1416 –1420,
June 2000.

[43] K. Brown and S. Singh, “RelM: Reliable multicast for mobile networks,”
Computer Communication, vol. 2.1, no. 16, pp. 1379–1400, June 1996.

[44] E. Ha, Y. Choi, and C. Kim, “A multicast-based handoff for seamless con-
nection in picocellular networks,” Proc. IEEE Asia Pacific Conference on
Circuits and Systems, pp. 167 –170, Nov. 1996.

[45] Universal Mobile Telecommunications System (UMTS) Technical Specifica-
tion, Digital cellular telecommunications system (Phase 2+ (GSM)), “Net-
work architecture,” 3GPP TS 23.002 version 5.9.0 Release 5, 2002-12.

[46] J.E. Wieselthier, G.D. Nguyen, and A. Ephremides, “On the construction
of energy-efficient broadcast and multicast trees in wireless networks,” Proc.
IEEE INFOCOM’00, vol. 2, pp. 585 –594, March 2000.

[47] L. Gong and N. Shacham, “Multicast security and its extension to a mobile
environment,” Wireless Networks, vol. 1, no. 3, pp. 281–295, 1995.

133

[48] M. Hauge and O. Kure, “Multicast in 3G networks: employment of existing
IP multicast protocols in umts,” in Proceedings of the 5th ACM international
workshop on Wireless mobile multimedia. 2002, pp. 96–103, ACM Press.

[49] “Mlisten,” available at www.cc.gatech.edu/computing/Telecomm.mbone.

[50] K. Almeroth and M. Ammar, “Collecting and modeling the join/leave behav-
ior of multicast group members in the mbone,” in Proc. High Performance
Distributed Computing (HPDC’96), Syracuse, New York, 1996, pp. 209–216.

[51] K. Almeroth and M. Ammar, “Multicast group behavior in the internet’s
multicast backbone (MBone),” IEEE Communications, vol. 35, pp. 224–229,
June 1999.

[52] G.K. Zipf, Human Behavior and the Principle of Least Effort, Addison-Wesley
Press, 1949.

[53] A. Leon-Garcia, Probability and Random Processes for Electrical Engineering,
Addison Wesley, 2nd edition, 1994.

[54] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley-
Interscience, 1991.

[55] M. Rajaratnam and F. Takawira, “Nonclassical traffic modeling and perfor-
mance analysis of cellular mobile networks with and without channel reserva-
tion,” IEEE Trans. on Vehicular Technology, vol. 49, no. 3, pp. 817–834, May
2000.

[56] M. Sidi and D. Starobinski, “New call blocking versus handoff blocking in
cellular networks,” Proc. IEEE INFOCOM ’96, vol. 1, pp. 35–42, March
1996.

[57] M. M. Zonoozi and P. Dassanayake, “User mobility modeling and character-
ization of mobility patterns,” IEEE Journal on Selected Areas in Communi-
cations, vol. 15, no. 7, pp. 1239–1252, Sep. 1997.

[58] M. Eltoweissy and J. Bansemer, “A framework for scalable multicast security
with bell-lapedulla confidentiality model,” Journal of Internet Technology:
Special Issue on Network Security, July 2002.

[59] D. Bell and L. La Padula, “Secure computer systems: Mathematical founda-
tions and model,” in MITRE Report, M74-244, MTR 2547 v2, Nov. 1973.

[60] B. Sun, W. Trappe, Y. Sun, and K.J.R. Liu, “A time-efficient contributory
key agreement scheme for secure group communications,” Proc. of IEEE
International Conference on Communication, vol. 2, pp. 1159 –1163, 2002.

134

[61] “http://ftp.cc.gatech.edu/people/kevin/release-data,” .

[62] Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru, T. Schlossnagle,
J. Schultz, J. Stanton, and G. Tsudik, “Secure group communication in asyn-
chronous networks with failures: Integration and experiments,” in Proceedings
of IEEE ICDCS 2000, April 2000.

[63] Y. Sun, W. Trappe, and K.J.R. Liu, “An efficient key management scheme
for secure wireless multicast,” Proc. of IEEE International Conference on
Communication, vol. 2, pp. 1236–1240, 2002.

[64] M. Reed, P. Syverson, and D. Goldschlag, “Anonymous connections and
onion routing,” IEEE journal on selected areas in communications, vol. 16,
pp. 482–494, May 1998.

[65] R.E. Newman-Wolfe and B.R. Venkatraman, “High level prevention of traffic
analysis,” in Proceedings of Seventh Annual Computer Security Applications
Conference, Dec. 1991, pp. 102–109.

135

