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As existing wireless communication systems and standards cannot fully support

the new, emerging multimedia applications, the designers of future wireless systems

will have to face the challenge of devising coding and modulation methods that can

provide reliable communication at very high data rates. To achieve this goal, one of

the most promising techniques suggested recently is the exploitation of the spatial

dimension: by employing multiple transmit and receive antennas, the detrimental

effects of channel fading can be significantly reduced.

This thesis aims to contribute to the field of wireless communications by devel-

oping efficient coding and decoding methods for systems having multiple transmit



and receive antennas. First, we propose a systematic space-time trellis code con-

struction method for the quasi-static, flat multi-antenna channel model by exploit-

ing the trellis structure. The method can be used to construct space-time trellis

codes for an arbitrary number of transmit antennas and any memoryless modu-

lation. Then, we consider the problem of space-time code design for correlated

fading channels, and derive the performance criteria assuming that the space-time

correlation matrix is of full rank. We also propose a new code design criterion,

the uniqueness criterion, and develop a systematic space-time trellis code design

method for the correlated fading channel model. Finally, we propose a fast de-

coding algorithm for space-frequency-coded multi-antenna OFDM systems. The

central component of the algorithm is a modulation independent decoding frame-

work, which is based on a new interpretation of the sphere decoding problem.

Using this decoding framework, we devise several SF block code decoding algo-

rithms: a modulation independent decoding algorithm that can be used with any

memoryless modulation, and 2 modulation specific decoding algorithms for QAM

and PSK constellations using the idea of fast nearest neighbor search.
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ii



ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my advisor, Prof. K. J. Ray

Liu. During our interactions, I have been influenced by his vision, attitude, energy

and desire to excel, and he has shown me how to expect high quality work from

myself and how to achieve excellence through hard work. I especially appreciate

the freedom he gave me to choose a research topic within the broad areas of his

research interests. I also value his commitment to his students: when I was seeking

advice, he was always available. He has played a significant role in my professional

and personal development during my Ph.D. studies at the University of Maryland,

and his help and guidance have been instrumental to the work presented in this

thesis.

I am also indebted to my technical secondary school teacher, Horváthné Tőkei
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Chapter 1

Introduction

1.1 Motivation

In recent years, wireless communication has experienced a rapid growth, and it

promises to become a globally important infrastructure. The advances in inte-

grated circuit technology and digital signal processing algorithms have made wire-

less communication technology accessible to millions of people. The light weight,

longer operational time, and affordable prices of portable devices have resulted in

ever increasing demand for wireless services.

We are living in the information era: acquiring and exchanging information

has become an integral part of our daily lives. Now it is possible to retrieve and

communicate information in the forms of voice, data, and multimedia content (e.g.

images, video, and music). However, the current wireless communication systems

and standards, the 3G cellular standard or the Wireless LAN IEEE802.11 standard,

cannot cope with the requirements of the new emerging multimedia applications.

The quality of service they provide is not competitive with that wire-line service

providers can offer now. The large volume and sensitivity of multimedia data
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require the development and deployment of wireless communication systems that

can guarantee reliable data transmission at very high data rates.

As a consequence, the designers of future wireless communication systems will

have to face the challenge of devising coding, modulation and signal processing

techniques that can combat the adverse effects of the radio signal propagation

environment, such as multi-path fading and interference more effectively. One of

the most promising techniques suggested recently is the exploitation of the spatial

dimension: by employing multiple transmit and receive antennas and developing

appropriate coding and modulation methods, the detrimental effects of channel

fading can be significantly reduced. It was established that the capacity of multi-

antenna communication systems increases roughly linearly with the number of

antennas. This result triggered enormous research activity in the area of multiple-

input-multiple- output (MIMO) wireless communication systems.

One approach to improving the performance of the MIMO communication sys-

tem is by using space-time (ST) codes. In case of ST coding, the transmitter sends

two-dimensional codewords, with the dimensions corresponding to different trans-

mit antennas and different discrete time instants. Such approach can increase the

slope of the error performance curve, resulting in a much more energy-efficient

and/or bandwidth-efficient system than the traditional single-antenna communi-

cation systems. However, most ST coding techniques have been developed for

idealistic channel models, such as frequency non-selective (flat), quasi-static or

fast fading channels, assuming that there is no correlation between the different

transmit and receive antenna pairs. Since real-world MIMO channels exhibit both

spatial and temporal correlation, the coding methods designed for ideal channel

models may suffer considerable performance degradation. As a consequence, it is
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of interest to develop analytical tools to be able to evaluate the effect of fading

correlation on the performance and to devise coding and modulation methods that

explicitly take the channel correlation into account.

In case of broadband wireless communication systems, the channel exhibits

frequency selectivity (delay spread), resulting in inter-symbol interference (ISI)

that can also degrade the performance seriously. Among the various ISI miti-

gating approaches, Orthogonal Frequency Division Multiplexing (OFDM) is one

of the most promising techniques, as it eliminates the need for high complexity

equalization and offers high spectral efficiency. OFDM has been successfully used

for broadband applications and has been chosen as the standard for digital audio

broadcasting and digital terrestrial TV broadcasting in Europe. Due to parallel

transmission over multiple sub-carriers, OFDM is able to operate at higher data

rates and this fact has motivated the IEEE 802.11 working group to choose OFDM

as the physical layer implementation for the IEEE802.11b WLAN standard.

In order to combine the advantages of both the MIMO systems and the OFDM,

space-frequency (SF) coded MIMO-OFDM systems have been proposed, where two-

dimensional coding is applied to distribute channel symbols across space (transmit

antennas) and frequency (OFDM tones). However, the constraints of practical

implementation may hamper the applicability of the previously proposed SF codes.

So far fast decoding algorithms have only been proposed for ST codes transmitted

over flat, quasi-static fading channels, so the decoding complexity of SF codes can

be a bottleneck in case of a portable wireless device with limited computing power

and/or battery life. The complexity of the maximum likelihood (ML) decoding

algorithm is exponential in the data rate, so the development of computationally

efficient decoding algorithms is of paramount importance.
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1.2 The Wireless Channel

The mobile radio channel severely attenuates and distorts the transmitted signal.

The components of the detrimental effects of the wireless channel can be classified

as [1], [2], [3], [4]:

• Path loss: Signal attenuation due to the distance between the transmitter

and the receiver. The transmitter-receiver separation might even be several

kilometers.

• Shadowing: Signal attenuation due to environment clutter such as buildings

and trees. It causes slow signal variations as the mobile moves distances of

10-100 meters.

• Fading: The transmitter and the receiver are surrounded by objects which re-

flect and scatter the transmitted radio signal. As a consequence, the received

signal consists of incoming radio waves arriving from different directions with

different amplitudes and phases. These signal components add constructively

or destructively, causing fast variations in the received signal strength as the

mobile moves distances of 1-10 centimeters. If there is a direct path between

the transmitter and the receiver, the situation is called line-of-sight (LOS)

propagation, while the scenario when direct wave from the transmitter to the

receiver is blocked is called non-line-of-sight (NLOS) propagation.

If the bandwidth of transmitted signal is small, the arrival time differences of

the incoming reflected signals are small compared to the duration of one channel

symbol period. All reflections arrive essentially at the same time, and all frequen-

cies within the transmission bandwidth are affected in the same way. In this case,

the channel is called frequency non-selective (flat) channel. On the other hand, if
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the transmission bandwidth is high, the arrival time differences of the incoming

radio waves may be significant compared to the duration of one channel symbol

period. In this case, the received signal will consist of a sequence of impulses,

each impulse collecting the reflected waves with small arrival time differences, i.e

signals corresponding to approximately the same propagation path length. As a

consequence, the received signal will spread in time, sometimes over multiple chan-

nel symbol periods, and the frequency response of the channel will vary over the

bandwidth of the transmitted signal. This case corresponds to a frequency selective

channel, whose complex baseband impulse response at time t can be modeled as

[2], [5]

h(t, τ) =
P−1∑
p=0

αp(t)δ(τ − τp(t)), (1.1)

where P is the number of resolvable impulses (also called as the number of paths,

even though the signals contributing to each impulse may come through different

physical propagation paths), αp(t) is the complex amplitude of the p-th impulse

(also called the p-th path), and τp(t) is the p-th delay. Each impulse consists of

the superposition of many incoming signals whose arrival time differences are rela-

tively small, so the magnitudes of the impulses change unpredictably as the mobile

moves due to the continuously changing phase differences, causing signal fading.

In this work, we assume NLOS propagation, which corresponds to the “worst case”

scenario, and in this case, the values of {αp(t)}, for each t, can be modeled as zero

mean, complex Gaussian random variables [4]. Since the magnitude of each im-

pulse (or path gain) αp(t) follows Rayleigh distribution, the adopted fading channel

model is also called Rayleigh fading model. The frequency flat fading model can be

derived from (1.1) by assuming only one impulse, i.e. P = 1. In a multi-antenna

wireless propagation environment, there is a wireless channel corresponding to each
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transmit and receive antenna pair.

In the sequel, we will assume that during the transmission of one frame, there

are no variations in the effects of path loss and shadowing, so they will be assumed

constant, and only the effect of the (possibly time varying) fading will be consid-

ered. Sometimes it will be assumed that the MIMO channel is quasi-static, which

means that it stays constant over the duration one frame period.

1.3 MIMO Capacity

Information theoretic works [8], [9], [10], [11], [12] have promised enormous capacity

increase when using multiple transmit and receive antennas. It was shown that

the capacity of a multiple antenna system grows at least linearly with the number

of transmit antennas, provided that the number of receive antennas is greater than

or equal to the number of transmit antennas [8], [9].

The BLAST architecture [13], [14], [15], [16], [17], [18], [19] has been pro-

posed to achieve or approach the capacity available in MIMO quasi-static, flat

fading channels. The basic idea of the method is to take several independent

data streams as inputs and distribute them over the transmit antennas via spatio-

temporal multiplexing. The data streams may be encoded using some traditional

(one-dimensional) error correcting code, but coding across the transmit anten-

nas is not applied. The V-BLAST system [14], [16] simply transmits separate

data streams through different transmit antennas, while the D-BLAST architec-

ture [13], [18], [19] creates diagonal layers from the data streams. At the receiver

side, the interference caused by the simultaneous transmission of multiple data

streams need to be resolved by a sequence of nulling and canceling steps. The

performance (bit error rate) of such such systems is usually comparable to the
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performance of a single-antenna system, but the data rate the BLAST systems

can offer is considerably higher. Recently many BLAST-like systems have been

proposed by combining BLAST with adaptive modulation [20], per antenna rate

and power control [21], and turbo coding [22], [23].

1.4 Space-Time Coding

The ST coding approach looks at the communication problem from a different

perspective. Instead of attempting to maximize the data rate, the objective is

to improve the performance compared to a single-antenna communication system.

This objective is achieved by developing two-dimensional coding methods, where

the dimensions correspond to different transmit antennas and different time in-

stants. Since there is only one input data stream, instead of attempting to cancel

the interference caused by simultaneous transmission from different transmit an-

tennas, the goal of the ST code construction methods is to design the interference

in such a way that the transmitted symbol sequence could be recovered at the

receiver side as perfectly as possible.

As it is well known, the bit error rate (BER) of a communication system

operated over additive white Gaussian noise (AWGN) channels decreases super-

exponentially with the signal-to-noise ratio (SNR). However, in case of a single-

antenna Rayleigh fading channel, the BER is only inversely proportional to the

average SNR [4], [5], which can be expressed as

BER ≈ 1

c

1

ρ
,

with c being a positive real constant, and ρ denoting the average SNR. This means

that the performance of the communication system degrades considerably com-
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pared to the AWGN case.

This situation can be improved significantly by providing the receiver with

some form of diversity. If multiple replicas of the transmitted signal are sent to

the receiver through independent virtual channels, the probability of simultaneous

fading will be much smaller. The virtual channels may correspod to transmissions

through the same physical channel at different times (time diversity) or different

frequency bands (frequency diversity). Note, however, that if the virtual channels

are highly correlated, the diversity techniques may not result in sigificant perfor-

mance improvement.

A form of time diversity, channel coding combined with interleaving, adds re-

dundancy with a certain algebraic structure that can be exploited to detect and

correct transmission errors [6]. Spatial diversity corresponds to adding redundancy

in the spatial domain by building a system with multiple transmit and/or receive

antennas. In case of ST coding, the diversity is achieved by coding at the trans-

mitter side, so it is also referred to as transmit diversity. The BER of a ST-coded

communication system transmitting over Rayleigh fading channels can be approx-

imated as [59]

BER ≈ 1

c

1

ρD
,

where D, the diversity advantage, describes the asymptotic slope of the BER curve

as the function of the average SNR (in log-log representation), and c, the coding

advantage, describes the vertical shift of the BER curve. In the sequel, these

quantities will be used to characterize and compare the performance of different

ST codes. In case of the quasi-static channel model, the maximum value of D (the

maximum achievable diversity order) is the product of the number of transmit

antennas and the number of receive antennas [59].
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The ST coding methods also assume that the receiver knows the MIMO channel

perfectly. If this information is not available, ST modulation approaches [24], [25],

[26], [27] can be used.

1.4.1 Space-Time Block Coding

The ST block encoder is a memoryless mapping that maps a set of source symbols

to two-dimensional codewords, which are transmitted through different transmit

antennas at different time instants. An important class of ST block codes are

constructed from orthogonal designs. The theory of orthogonal designs, which

focuses on the construction of square matrices from real or complex variables in

such a way that their columns are orthogonal to each other, has a long history

in mathematics [28], [29], [30], [31]. The first transmit diversity scheme using

orthogonal designs was proposed in [32]. The author constructed space-time block

codes for 2 transmit antennas from the 2 by 2 complex orthogonal design. The idea

was extended and further developed in [33], [34], [34], [36], [37]. The importance

of this ST construction method lies in the facts that when transmitted over quasi-

static, flat MIMO channels, these codes can achieve full diversity, and they can also

be decoded in a computationally efficient way by making independent decisions on

the constituting source symbols.

However, it was established that complex orthogonal designs with full symbol

rate and full diversity only exist for 2 transmit antennas [33], so ST codes con-

structed form block-orthogonal (or quasi-orthogonal) designs were proposed [38],

[39], [40], [41], [42] to further increase the transmission rate. Some of these ST

block codes could also achieve full diversity and full symbol rate, but at the price

of increased decoding complexity.
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1.4.2 Space-Time Trellis Coding

In case of ST trellis codes, the encoder consists of a finite state machine and

a memoryless signal mapping. At each discrete time instant, the encoder takes

the current input source symbol and the current encoder state, and based on

this information it moves to the next state and outputs a channel symbol for each

transmit antenna. At the receiver side, the Viterbi algorithm [6], [7] can be used to

decode the transmitted source symbol sequence. The authors of [59] presented code

design rules for 2 transmit antennas, and later works [60], [61], [63], [64] provided

generalizations or codes with improved performance. A variable rate trellis code

construction method was proposed in [65] for fast fading channels combining the

idea of multiple trellis coded modulation with repetition coding. Since one of the

main topics of this dissertation is ST trellis code design, the reader can find a more

detailed description of previuos and related work in Chapters 2 and 3.

The choice between ST block and trellis codes depends largely on the applica-

tion and the parameters of the implemented MIMO system. However, in general,

they can be compared as follows:

• The ST trellis codes have better performance than ST block codes for the

same spectral efficiency (the ST block codes have lower coding advantage).

• The ST block codes have higher decoding complexity. In fact, the minimum

number of encoder states in a full-diversity ST trellis code is exponential in

the number of transmit antennas [33].
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1.5 Space-Frequency Coding

The OFDM modulation (also called as Multicarrier Modulation [43] or Discrete

Multitone [44]) has been adopted by many existing communication systems due to

its advantages. By using cyclic prefix to make the transmitted time-domain sig-

nal periodic, the OFDM modulation transforms the frequency selective wideband

channel to a set of frequency flat fading sub-channels. In [45], it was shown that

the same architecture can be easily generalized to MIMO channels, resulting in

MIMO-OFDM systems.

The objective of the space-frequency (SF) code design is to exploit the diversity

available in frequency-selective MIMO channels. In addition to spatial diversity,

the variations of the channel in the frequency domain can also be exploited, re-

sulting in frequency diversity. In case of SF-coded MIMO-OFDM systems, two-

dimensional coding is applied to encode the source symbols over space (transmit

antennas) and frequency (OFDM tones). The first SF coding scheme was proposed

in [46], in which previously existing ST codes were used by replacing the time do-

main with frequency domain. Later works [47]–[50] also described similar schemes,

i.e., using ST codes directly as SF codes. The resulting SF codes could achieve

only spatial diversity and were not guaranteed to achieve the full (spatial and

frequency) diversity available in the MIMO frequency selective fading channels.

The performance criteria for SF coded MIMO-OFDM systems were derived in

[51]. The ultimate limits on the maximum achievable diversity order were also

established. The authors showed that, in general, existing ST codes cannot ex-

ploit the frequency diversity available in the frequency selective MIMO channels,

and it was suggested that a completely new code design procedure will have to be

developed for MIMO-OFDM systems. Characterizing the performance of MIMO-
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OFDM systems was also considered in [53], and the maximum achievable diversity

order was found to be the same as in [51]. Later in [52], the authors provided a

construction method for a class of full-diversity SF codes by multiplying a part of

the DFT-matrix with the input symbol vectors. A full-diversity SF code construc-

tion method was also proposed in [56], [57]. The SF codes were constructed from

ST codes via a simple repetition mapping. As a consequence, the authors provided

a method to use any previously constructed ST code for full-diversity transmission

over frequency selective MIMO channels.

The idea of coding across multiple OFDM blocks, resulting in space-time-

frequency (STF) codes, was first proposed in [54] for two transmit antennas and

further developed in [55] for multiple transmit antennas. The method described

in [55] can provide full diversity only if the number of encoded OFDM blocks was

not smaller than the number of transmit antennas.

1.6 Thesis Overview and Contributions

The goal of this dissertation is to develop efficient coding and decoding methods

for MIMO wireless communication systems. We achieve this goal by devising ST

trellis code design methods and proposing a fast SF block code decoding algorithm.

In case of ST trellis codes, the efficiency is measured by the energy efficiency of

the resulting codes for a given spectral efficiency and decoding complexity. More-

over, scalability and flexibility are also of importance: the emphasis will be put

on systematic approaches that can provide solutions for many possible system pa-

rameters, such as the number of transmit antennas and the applied modulation

method. In case of the SF code decoding method, the efficiency is measured by

the required computational complexity for a giver BER perfromance.
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In Chapter 2, we adopt the quasi-static flat fading channel model and propose

a systematic design method by exploiting the structure of the state transitions in

the trellis. The method can be used to design ST codes that provide full diver-

sity advantage for an arbitrary number of transmit antennas, arbitrary number of

encoder states and arbitrary memoryless modulations. The design rules for full

diversity advantage do not specify the ST codes completely, offering the possibility

to further optimize for coding advantage. Moreover, we develop a code design pro-

cedure that benefits from this possibility for a certain class of encoders. Based on

the design rules for diversity advantage, we reduce the code construction problem

to a combinatorial optimization problem and propose a computationally efficient

suboptimal solution. To our knowledge, this is the first work that considers sys-

tematic code design for both diversity advantage and coding advantage.

In Chapter 3, we consider the problem of ST trellis code design for correlated

flat fading channels, taking into account both spatial and temporal channel corre-

lation. We focus our attention on the development of systematic ST code design

methods that are flexible and scalable. First, we derive the performance criteria for

a channel model in which the channel changes from channel symbol period to chan-

nel symbol period in a correlated manner, assuming that the space-time correlation

matrix is of full rank. We show that for this transmission scenario, the effect of the

channel correlation and the ST code on the performance can be separated, result-

ing in channel-independent performance criteria. We characterize the performance

of the ST codes by finding exact expressions for the achieved diversity advantage

and coding advantage. Then, we propose a new design criterion and analyze the

properties of the ST trellis codes satisfying the proposed criterion. Finally, we

develop a systematic code construction procedure that jointly considers diversity

13



advantage and coding advantage for an arbitrary number of transmit antennas

and any memoryless modulation. The proposed design method has extremely low

complexity: we provide a closed form solution to the code design problem. To the

best of our knowledge, our method is the first systematic space-time trellis code

design method proposed for non-quasi-static channel models.

In Chapter 4, we propose a computationally efficient decoding algorithm for SF

block codes. We formulate the sphere decoding problem in the complex domain,

which allows us to fully exploit the distance structure of complex signal constel-

lations. We develop a systematic method to transform the decoding problem into

an equivalent representation that is more appropriate for the purpose of sphere de-

coding. Then, we propose a modulation independent sphere decoding framework

by interpreting the sphere decoding problem as a greedy, constrained depth-first

search. Due to the modular structure of the framework, it can be used to construct

a decoding algorithm that can be used with any memoryless modulation, and it can

also be tailored to a particular modulation method by taking full advantage of the

geometric properties of the chosen signal constellation. Finally, for square QAM

and PSK constellations, we propose a fast, nearest neighbor search algorithm that

can considerably reduce the decoding complexity.

Finally, we draw conclusions and discuss some possible future research direc-

tions in Chapter 5.
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Chapter 2

Systematic Space-Time Trellis

Code Design for Quasi-Static

MIMO Channels

2.1 Introduction

The quasi-static, flat fading channel model was the first MIMO channel model

proposed in the literature [58], [59], and it has gained considerable popularity since

then. The model assumes that the channel is frequency flat (no delay spread) and

that the channel stays constant over one frame period. In general, the spatial

correlation between different transmit-receive antenna pairs is also neglected, so

in some sense, the quasi-static, flat model can be regarded as the simplest MIMO

channel model. The performance criteria for this channel model were derived in [58]

and [59], characterizing the ST codes with two quantities: the diversity advantage,

which describes the asymptotic error rate decrease as a function of the signal to

noise ratio (SNR), and the coding advantage, which determines the vertical shift
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of the error performance curve. In [59], the authors proposed design rules for two

transmit antennas to achieve the maximum diversity advantage. They also derived

a lower bound on the complexity of the encoder and the decoder for the desired

diversity advantage and data throughput. This lower bound states that in order

to achieve a diversity advantage of K and transmit one B-ary source symbol per

state transition, the encoder and the decoder must have at least Nmin = BK−1

states. The repetition coded delay diversity scheme described in [60] was the first

systematic design rule for an arbitrary number of transmit antennas. Using this

method, ST codes achieving full diversity advantage can be designed for arbitrary

constellations and encoders with Nmin states. This work also introduced the idea

of zero symmetry to constrain computer search for ST codes with more than two

antennas. In [61], the design problem was transformed into the binary domain. The

code design was based on the finite field counterpart of the ST code performance

criteria for full spatial diversity. The authors proposed code design procedures for

an arbitrary number of transmit antennas and an arbitrary number of states, but

only for BPSK and QPSK constellations. Moreover, the design methods in [60]

and [61] for full diversity advantage uniquely determine the ST codes, not leaving

room to improve the coding advantage.

In this chapter, we propose a systematic design method based on an alternative

approach: we exploit the structure of the trellis to design ST codes that provide

full diversity advantage for an arbitrary number of transmit antennas, arbitrary

number of encoder states (as long as it satisfies the lower bound) and arbitrary

memoryless modulation. Our method can be treated as a generalization of the

results of [59] and [60]. The design rules for full diversity advantage do not specify

the ST codes completely, offering the possibility to further optimize for coding
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advantage.

Moreover, we develop a code design procedure that benefits from this possibility

for the important special case of encoders with Nmin states. Based on the design

rules for diversity advantage, we reduce the code construction problem to a combi-

natorial optimization problem and propose a computationally efficient suboptimal

solution.

The chapter is organized as follows. Section 2.2 will introduce the mathemat-

ical model of the communication system. The performance criteria for ST trellis

codes will also be described in this section. The code construction method will be

developed in Sections 2.3 and 2.4. Section 2.5 will describe specific ST code con-

struction examples, and the simulation results demonstrating the performance of

these codes will be provided in Section 2.6. Finally, we will summarize the chapter

in Section 2.7.

2.2 System Model and Performance Criteria

In this section, the mathematical model of the wireless communication system

under study will be described. The used notation will also be introduced. Then,

we will briefly restate the performance criteria derived in [58] and [59]. These

criteria serve as a basis for the development of our systematic design procedure.

Consider a wireless communication system with K transmit and L receive an-

tennas (the transmit antennas are indexed by k, k ∈ {0, 1, ..., K − 1}, and the

receive antennas are indexed by l, l ∈ {0, 1, ..., L − 1}). The input bit stream is

divided into bs bit long blocks, forming B-ary (B = 2bs) source symbols. The ST

encoder works as a finite state machine with N states: it takes the current bs bit

long source symbol, bt (bt ∈ {0, 1, ..., B − 1}) at discrete time t (t = 0, 1, 2, 3, ....),
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and governed by this input and the current state, St (St ∈ {0, 1, ..., N − 1}), it

moves to the next state, St+1. During this state transition, the encoder outputs

K B-ary channel symbol indices, one for each transmit antenna. We denote by

ik(St, bt) the channel symbol index for transmit antenna k, generated during the

state transition from St when the current input source symbol is bt. We will also

use the channel symbol index vector, defined as

i(St, bt) = [ i0(St, bt), i
1(St, bt), ..., i

K−1(St, bt) ]T .

These channel symbol indices select one of the B different waveforms for each

antenna, and the selected waveforms are transmitted simultaneously through the

transmit antennas. In the sequel, Ω(i) will be the complex baseband vector-space

representation of the ith passband waveform (i ∈ {0, 1, ..., B−1}). Ω(i) will also be

referred to as the ith constellation point or channel symbol. All the constellations

are assumed to be normalized so that the average energy of the constellation is

unity (if the channel symbols are equally likely). Ω(ik(St, bt)) will denote the

constellation point output by antenna k when the current state is St and the

current input is bt. The vector of channel symbols is given by:

c(St, bt) = [ Ω(i0(St, bt)), Ω(i1(St, bt)), ..., Ω(iK−1(St, bt)) ]T .

The transmission medium is assumed to be flat (frequency non-selective), quasi-

static, Rayleigh fading channel, and αkl will represent the path gain from transmit

antenna k to receive antenna l. These path gains are modeled as independent,

complex, zero mean, circularly symmetric Gaussian random variables with unit

variance. Furthermore, some additional assumptions are made to facilitate the

analysis. First, the receiver has knowledge of the αkl propagation coefficients.

Second, the receiver is perfectly synchronized with the transmitter.
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Based on the above assumptions, after down-conversion, matched filtering and

sampling, the received signal at receive antenna l, at discrete time t can be ex-

pressed as [59]

rl
t =

K−1∑

k=0

√
ρ

K
αklΩ(ik(St, bt)) + zl

t = sl
t + zl

t. (2.1)

In (2.1), sl
t and zl

t stand for the received signal and noise components, respectively,

and zl
t’s are independent, complex, zero mean, circularly symmetric Gaussian ran-

dom variables with unit variance. Consequently, the average signal to noise ratio

per source symbol at receive antenna l becomes:

SNRl =
E[|sl

t|2]
E[|zl

t|2]
= ρ. (2.2)

Assume that the previously described transmitter sends T (T > K) B-ary

source symbols to the receiver. The ST encoder, while encoding the data, goes

through the following sequence of states:

S0
b0−→ S1

b1−→ S2
b2−→ . . .

bT−2−→ ST−1
bT−1−→ ST .

In words, the encoder starts in S0, takes the first input bs-tuple, b0, moves to S1,

and so on. As a result of this state transition sequence, the encoder produces the

channel symbol vector sequence:

c(S0, b0), c(S1, b1), . . . , c(ST−1, bT−1).

The above vector sequence can be arranged into a K by T matrix, C:

C = [ c(S0, b0), c(S1, b1), . . . , c(ST−1, bT−1) ].

The decoder, due to decoding errors, goes through a different sequence of states,

Ŝ0
b̂0−→ Ŝ1

b̂1−→ Ŝ2
b̂2−→ . . .

b̂T−2−→ ŜT−1
b̂T−1−→ ŜT ,
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producing the erroneously decoded source symbol sequence {b̂t} and the K by T

channel symbol matrix Ĉ:

Ĉ = [ c(Ŝ0, b̂0), c(Ŝ1, b̂1), . . . , c(ŜT−1, b̂T−1) ].

We can define D, the channel symbol difference matrix as D = C− Ĉ, and

a K by K matrix A as A = DDH. Let A (and D) be of rank m. Since A

is Hermitian and nonnegative definite, its eigenvalues are real and nonnegative.

Let λ1 ≥ λ2 ≥ . . . ≥ λm be the nonzero eigenvalues of A. Given the earlier

described channel model, it can be shown [59] that the probability that the decoder

erroneously decodes Ĉ if C was sent can be upper bounded as:

P (Ĉ|C) ≤
(

m∏
i=1

λi

)−L (
E0

4KN0

)−mL

. (2.3)

The performance criteria [58],[59] were derived to minimize P (Ĉ|C) for a given

SNR:

1. Design for full spatial diversity (rank criterion): The matrix D must be of

full row rank for any distinct C and Ĉ matrices. (Then we have m = K.) In

this case, a diversity advantage of KL has been achieved.

2. Design for coding advantage (determinant criterion): The minimum deter-

minant of A taken over all distinct C and Ĉ matrices must be as large as

possible. If the minimum determinant is γ, then a coding advantage of K
√

γ

has been achieved.
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2.3 Design for Diversity Advantage

2.3.1 Trellis Structure Analysis

The goal of this subsection is to analyze the algebraic structure of the trellis of the

ST encoder and find closed form expressions that relate the state sequence {St} to

the starting state S0 and the input source symbol sequence {bt}. The additions and

the multiplications are assumed to be standard integer operations. The modulo

operation will always be written explicitly to avoid ambiguity.

Assume that the encoder has N = RBK+p−1 states, with R = 2r, B = 2bs ,

bs > 0, p ≥ 0 and 0 ≤ r < bs. Therefore, it satisfies the lower bound of [59] for

desired diversity advantage of K with B-ary source symbols. Any large enough

power of 2 number can be put into this form; the purpose of this representation

is to make the analytical treatment easier. The number N is simply decomposed

into the product of two numbers: the first number, R is less than B, and the other

number is a power of B.

The state transition of the encoder at time t is determined by the previous

state, St−1 (St−1 ∈ {0, 1, . . . , N − 1}), and the previous B-ary input, bt−1 (bt−1 ∈
{0, 1, . . . , B − 1}). Analytically it can be described as:

St = (BSt−1 + bt−1) mod N = B
(
St−1 mod (RBK+p−2)

)
+ bt−1. (2.4)

It is shown in Appendix A that we can unfold this recursion and obtain a closed

form expression for St, 1 ≤ t ≤ K + p− 1:

St = Bt
(
S0 mod (RBK+p−t−1)

)
+

t−1∑
m=0

Bt−1−mbm, (2.5)

and for SK+p:

SK+p = BK+p−1(b0 mod R) +

K+p−1∑
m=1

BK+p−1−mbm. (2.6)
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Figure 2.1: Example ST code for 3 antennas, QPSK

Based on these analytical results, we can deduce some important information

about the error path structure of the trellis. Assume that the first decoding error

occurs at state S0, i.e. the correct and the erroneous paths diverge at S0, and

they merge at some later state. As a consequence of this assumption, we have

S0 = Ŝ0 and b0 6= b̂0. We have no information regarding the rest of the bt’s and

b̂t’s. In this case, (2.5) immediately tells us that for 1 ≤ t ≤ K + p − 1, St 6= Ŝt.

Moreover, from (2.6), it can be seen that SK+p may or may not be equal to ŜK+p,

since b0 mod R may be equal to b̂0 mod R, even though b0 6= b̂0. Thus, we have

the following theorem:

Theorem 2.1: If R = 1 (i.e. r = 0), the shortest error path is exactly K + p

long. If R > 1 (i.e. r > 0), the shortest error path is either K + p long or longer.

For arbitrary p ≥ 0 and 0 ≤ r < bs, the shortest error path is at least K long, i.e.
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the paths diverging at S0 can merge only at SK or later.

2.3.2 Design for Full Diversity

Using formulas (2.5) and (2.6), we will derive design rules that guarantee that the

ST trellis code achieves full diversity advantage. First, we will obtain sufficient

conditions to make the channel symbol difference matrix corresponding to the first

K long error path segment of the first error event full rank. Afterwards, the results

will be extended to arbitrary channel symbol difference matrices.

In the ST encoder, B channel symbol index vectors are assigned to each state,

according to the branches emanating from that state. The current source symbol

selects one of them, and the kth (k = 0, 1, ..., K − 1) index of the chosen vector

determines the constellation point for antenna k. Figure 2.1 depicts an example

ST code for 3 antennas and QPSK constellation (K = 3, B = 4, N = 16). In this

case, if the current state is state 2 and the value of the current source symbol is 3,

the ST encoder selects the 3rd channel symbol index vector, [3, 3, 0]T , and moves

to state 11. The 0th, 1st and 2nd antennas will transmit the channel symbols

corresponding to the indices 3, 3 and 0, respectively.

Suppose that the transmitter sends T (T > K) source symbols. Without loss of

generality, we can assume that the first decoding error event occurs at S0, making

the correct and the decoded paths diverge. For now, we are concerned only about

the first K long segment of all error paths of length K or longer, immediately after

the first error event has occured. Our goal is to construct the K by K channel

symbol difference matrix D1, defined as

D1 = [c(S0, b0)−c(Ŝ0, b̂0), c(S1, b1)−c(Ŝ1, b̂1), . . . , c(SK−1, bK−1)−c(ŜK−1, b̂K−1)],

(2.7)
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in such a way that it is of full rank for any possible correct and erroneous paths

through the trellis. Our method is to make D1 upper triangular with nonzero

diagonal elements. We exclude all ST codes that do not produce upper triangular

D1 matrices, so the resulting ST codes may not be optimal. However, what we

gain is a problem formulation that leads to a simple solution.

The S0 → S1 state transition is special since both the correct and the erroneous

paths start at the same state. The goal is to set the 0th entry of the 0th column of

D1 to a nonzero value and to zero out the rest of the entries in that column. This

can be achieved by the following conditions that form the first half of the design

rules:

(1a) The 0th indices of the channel symbol index vectors at the same state must

be different.

(1b) The remaining indices of the channel symbol index vectors at the same state

must be the same.

In our example, assume that the b0 = 0 (top) path is the correct path and the

b̂0 = 3 (bottom) path is the erroneously decoded path. The channel symbol index

vectors [0, 3, 0]T and [3, 3, 0]T have different 0th indices, but the 1st and 2nd indices

are the same; therefore, the 0th column of the D1 matrix will be [1 + j, 0, 0]T .

For the rest of the state transitions St → St+1, t = 1, 2, ..., K − 1, the objective

is to set the tth entry of the tth column of D1 to a nonzero value and to zero out

all the entries below the tth entry in that column. To facilitate the explanation,

we introduce the following definitions:

Definition 2.1 : A level t group is a collection of all destination states that can

be reached at state transition t from a given S0 starting state through all possible

b0, b1, . . . , bt−1 input sequences.

24



Definition 2.2 : A subgroup of a level t group is a collection of all destination

states that can be reached at state transition t from a given S0 starting state and

a given b0 starting branch through all possible b1, b2, . . . , bt−1 input sequences.

In order to effectively use these definitions in the design procedure, we need

to describe the relationship between the encoder states and the groups and sub-

groups at different levels. Equation (2.5) expresses the state transition at time t,

t = 1, 2, . . . , K − 1, as a function of the starting state, S0, and the source symbol

sequence b0, b1, . . . , bt−1. Because S0 is kept constant in Definition 2.1 for all pos-

sible b0, b1, . . . , bt−1 sequences, we can eliminate the effect of the starting state by

taking modulo Bt of both sides of (2.5). Therefore, the expression St mod Bt will

describe how St depends on the b0, b1, . . . , bt−1 sequence for an arbitrary, but fixed,

S0 starting state. From (2.5), we obtain:

St mod Bt = Bt−1b0 + Bt−2b1 + . . . + Bbt−2 + bt−1. (2.8)

The above quantity can be thought of as a t digit B-ary number. As the input

B-tuples (b0, b1, . . . , bt−1) vary from (0, 0, . . . , 0) to (B − 1, B − 1, . . . , B − 1), the

value of St mod Bt varies from 0 to Bt − 1. Consequently, for t = 1, 2, . . . , K − 1,

any level t group starts at state m such that m mod Bt = 0 and consists of Bt

consecutive states.

Similarly, S0 and b0 are kept constant in Definition 2.2, so the expression St mod

Bt−1 will describe how St changes as a function of b1, b2, . . . , bt−1. From (2.5), we

have:

St mod Bt−1 = Bt−2b1 + Bt−3b2 + . . . + Bbt−2 + bt−1. (2.9)

The above quantity can be thought of as a t− 1 digit B-ary number. As the input

B-tuples (b1, b2, . . . , bt−1) vary from (0, 0, . . . , 0) to (B − 1, B − 1, . . . , B − 1), the

value of St mod Bt−1 varies from 0 to Bt−1 − 1. Therefore, we conclude that for
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Figure 2.2: The group/subgroup structure of the example ST code

t = 1, 2, . . . , K − 1, any subgroup of a level t group starts at state m such that

m mod Bt−1 = 0 and consists of Bt−1 consecutive states.

Since b0 ∈ {0, 1, . . . , B − 1}, by definition every group consists of B subgroups

according to different b0 values. From (2.8), it can be seen that different b0 values

result in disjoint sets of St mod Bt values as the B-tuples (b1, b2, . . . , bt−1) vary

from (0, 0, . . . , 0) to (B − 1, B − 1, . . . , B − 1). Thus, for t = 1, 2, . . . , K − 1, every

level t group consists of B disjoint subgroups. We index the subgroups within a

group by the 0th source symbol, so St belongs to the b0th subgroup and Ŝt belongs

to the b̂0th subgroup of the same level t group.

In the case of the ST code of Figure 1, the level 1 groups consist of 4 consecutive

states, starting at states 0, 4, 8 and 12. The subgroups consist of only one state.

The only level 2 group is comprised of all the 16 states, and its subgroups are made
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up of 4 consecutive states, starting at states 0, 4, 8 and 12. The level 1 and level 2

groups and subgroups of the example ST code are depicted in Figure 2.2 (b) and

(c), respectively.

Because both the correct and the erroneous paths start from the same state

(S0 = Ŝ0), at state transition t, t = 1, 2, . . . , K−1, both the correct path {St} and

the erroneous path {Ŝt} go through states that belong to the same level t group.

This means that if the mth indices of the channel symbol index vectors at states

belonging to any level t group are the same, then the mth entry of the tth column

of D1 will be zero. For example, in Figure 1, states 8 and 11 belong to the same

level 1 group, and the 2nd indices of the channel symbol index vectors [0, 0, 1]T

and [1, 1, 1]T are the same. As a consequence, the 1st column of the D1 matrix

becomes [1− j, 1− j, 0]T .

Since the first decoding error occurs at S0 (b0 6= b̂0), at state transition t,

t = 1, 2, . . . , K − 1, the correct path {St} and the erroneous path {Ŝt} go through

states that belong to different subgroups of the same level t group. We can take

advantage of this fact as follows: if the mth indices of the channel symbol index

vectors at states belonging to different subgroups of the same level t group are

different, then the mth entry of the tth column of D1 will be nonzero. To continue

the example, states 0 and 13 belong to different subgroups of the same (only) level

2 group. The 2nd indices of the channel symbol index vectors [0, 0, 0]T and [0, 2, 2]T

are different, so the 2nd column of the matrix D1 will be [0, 2, 2]T .

Having produced the methods to place zero and non-zero entries into the matrix

D1, we can state the second half of the design rules:

(2a) For t = 1, 2, . . . , K − 1, the tth indices of the channel symbol index vectors

at states belonging to the same subgroup of any level t group must be the
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same, and they must be different from the tth indices of the channel symbol

index vectors at states belonging to any other subgroup of that group.

(2b) For t = 1, 2, . . . , K − 2, the (t + 1)st, (t + 2)nd,..., (K − 1)st indices of the

channel symbol index vectors at states belonging to the same level t group

must be the same. (Note that criterion (2b) is omitted for t = K − 1.)

After making the matrix D1 full rank, the final task is to show that the chan-

nel symbol difference matrix D corresponding to the transmission of all T source

symbols is also of full rank. The matrix D can be decomposed as:

D = [ D1,D2 ], (2.10)

where D1 is defined in (2.7), and D2 is a K by (T − K) matrix. Since D2 is

arbitrary, this description includes the cases when the correct and the decoded

paths diverge and merge several times. From linear algebra, it is well known that

if D1 is of full rank, then D is also of full (row) rank. Consequently, the design

rules will produce codes that provide full diversity advantage.

Figure 2.2 (a) illustrates design rules (1a) and (1b) for the ST code shown in

Figure 2.1. At each sate, the 0th indices of the channel symbol index vectors are

different, and the 1st and 2nd indices are the same. Figure 2.2 (b) shows how the

rules (2a) and (2b) are applied for t = 1. In each subgroup of the level 1 groups,

the 1st indices of the channel symbol index vectors are the same, and they are

different from the 1st indices of the index vectors of any other subgroup of that

group. Moreover, the 2nd indices of the channel symbol index vectors in each level

1 group are the same. Finally, rule (2a) for t = 2 is illustrated in Figure 2.2 (c).

In each subgroup of the only level 2 group, the 2nd indices of the channel symbol

index vectors are the same, and they are different from the 2nd indices of the index
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vectors of the other subgroups.

By observing the group/subgroup structure of the state transitions in the trellis,

we can make the design rules independent of the state evolution in time. The above

design method describes relationships between channel symbol indices of different

antennas at different states. Furthermore, these design rules do not fully determine

the state - channel symbol assignment, providing the possibility to further optimize

for coding gain.

Design rules (1a) and (1b) are similar to the design rules described in [59] for

two transmit antennas. Therefore, our approach can be treated as a generalization

of the method of [59] to an arbitrary number of transmit antennas.

2.4 Design for Coding Advantage

In general, finding the best way to assign channel symbol indices to antennas and

states is not a simple task. If N > Nmin, the shortest error path is longer than K,

so the corresponding code difference matrix does not have any special structure.

As a consequence, expressing the minimum determinant of the code becomes very

difficult. However, in the N = Nmin = BK−1 case (i.e. r = 0 and p = 0), it is

possible to find an efficient method to maximize the coding gain, so from now on,

it is assumed that the encoder has Nmin states.

The channel symbol difference matrix corresponding to the first K long segment

of the error paths after the first decoding error has occured is the matrix D1,

defined in (2.7). It is square and upper triangular, so its determinant is the product

of its diagonal elements:

det(D1) =
K−1∏

k=0

(
Ω(ik(Sk, bk))− Ω(ik(Ŝk, b̂k))

)
. (2.11)
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Let us define the K by K matrix A1 as: A1 = D1D1
H. Then γ1, the determinant

of A1, is

γ1 = det(A1) = det(D1) det(D1)
∗ =

K−1∏

k=0

∣∣∣Ω(ik(Sk, bk))− Ω(ik(Ŝk, b̂k))
∣∣∣
2

. (2.12)

Considering the transmission of all T source symbols, and using the decom-

position of (2.10), the matrix A = DDH, whose minimum determinant is to be

maximized, can be expressed as

A = D1D1
H + D2D2

H = A1 + A2,

where A2 = D2D2
H. By construction, both A1 and A2 are Hermitian and non-

negative definite. To continue the argument, we will use the following theorem

from linear algebra [62]:

Let X and Y be K by K, Hermitian and nonnegative definite matrices.

Moreover, let λ0(X) ≥ λ1(X) ≥ . . . ≥ λK−1(X) denote the real and

nonnegative eigenvalues of X. Then we have the following inequality

for i = 0, 1, . . . , K − 1:

λi(X + Y) ≥ λi(X) + λK−1(Y). (2.13)

In our case, (2.13) becomes:

λi(A1 + A2) ≥ λi(A1) + λK−1(A2) for i = 0, 1, . . . , K − 1.

Since A2 is nonnegative definite, λK−1(A2) ≥ 0. This means that

λi(A1 + A2) ≥ λi(A1) for i = 0, 1, . . . , K − 1. (2.14)

From this, we can conclude that γ, the determinant of A, satisfies the inequality:

γ = det(A) =
K−1∏
i=0

λi(A1 + A2) ≥
K−1∏
i=0

λi(A1) = det(A1) = γ1. (2.15)
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We can fix an arbitrary correct path and pick an arbitrary error path that is

longer than K state transitions. Both this error path and the error path corre-

sponding to the K long error event that starts from the same S0 starting state and

the same b̂0 starting branch go through states that belong to the same subgroups of

the same groups, resulting in D1 matrices with the same diagonal elements (design

rules (1a) and (2a)). Therefore, for any error event that is longer than K state

transitions, it is possible to find a K long error event with the same det(A1) value.

As a consequence of this observation and (2.15), γmin, the minimum determinant of

the code, can be determined by taking into account only the shortest error events:

γmin = min
{Sl,bl},{S′

l
,b′

l
}

l=0,1,...,K−1

K−1∏

k=0

∣∣∣Ω(ik(Sk, bk))− Ω(ik(Ŝk, b̂k))
∣∣∣
2

. (2.16)

The minimum is taken over all possible K long correct and incorrect paths.

The Sk and Ŝk state transition sequences can also be described by making use

of the group/subgroup structure of the trellis. The results of Section 2.3 allow us

to map the first K long segment of the correct and erroneous paths of the first

decoding error event onto different groups and subgroups of states. Toward this

end, we introduce a channel symbol index based notation that does not explicitly

depend on the state transition sequence.

Let i0l , i0l ∈ {0, 1, . . . , B − 1}, be the 0th indices of the channel symbol index

vectors at the same state corresponding to source symbol l (l ∈ {0, 1, . . . , B− 1}).
For simplicity, it is assumed that the 0th indices of the channel symbol index

vectors at different states corresponding to the same source symbol values are the

same. Moreover, let ikl , k = 1, 2, . . . , K − 1, ikl ∈ {0, 1, . . . , B − 1}, denote the

kth indices of the channel symbol index vectors at the states belonging to the lth

subgroup of the same level k group (l ∈ {0, 1, . . . , B − 1}). According to design

31



2
0

1
3

0
3

2
0

1
3

0
2

2
0

1
3

0
 1

2
0

1
3

0
0

2
0

1
2

0
3

2
0

1
2

0
2

2
0

1
2

0
 1

2
0

1
2

0
0

2
0

1
1

0
3

2
0

1
1

0
2

2
0

1
1

0
 1

2
0

1
1

0
0

2
0

1
0

0
3

2
0

1
0

0
2

2
0

1
0

0
 1

2
0

1
0

0
0

ii, iii, iii, iiii

ii, iii, iii, iiii

ii, iii, iii, iiii

ii, iii, iii, iiii

2
1

1
3

0
3

2
1

1
3

0
2

2
1

1
3

0
 1

2
1

1
3

0
0

2
1

1
2

0
3

2
1

1
2

0
2

2
1

1
2

0
 1

2
1

1
2

0
0

2
1

1
1

0
3

2
1

1
1

0
2

2
1

1
1

0
 1

2
1

1
1

0
0

2
1

1
0

0
3

2
1

1
0

0
2

2
1

1
0

0
 1

2
1

1
0

0
0

ii, iii, iii, iiii

ii, iii, iii, iiii

ii, iii, iii, iiii

ii, iii, iii, iiii

2
2

1
3

0
3

2
2

1
3

0
2

2
2

1
3

0
 1

2
2

1
3

0
0

2
2

1
2

0
3

2
2

1
2

0
2

2
2

1
2

0
 1

2
2

1
2

0
0

2
2

1
1

0
3

2
2

1
1

0
2

2
2

1
1

0
 1

2
2

1
1

0
0

2
2

1
0

0
3

2
2

1
0

0
2

2
2

1
0

0
 1

2
2

1
0

0
0

ii, iii, iii, iiii

ii, iii, iii, iiii

ii, iii, iii, iiii

ii, iii, iii, iiii

2
3

1
3

0
3

2
3

1
3

0
2

2
3

1
3

0
 1

2
3

1
3

0
0

2
3

1
2

0
3

2
3

1
2

0
2

2
3

1
2

0
 1

2
3

1
2

0
0

2
3

1
1

0
3

2
3

1
1

0
2

2
3

1
1

0
 1

2
3

1
1

0
0

2
3

1
0

0
3

2
3

1
0

0
2

2
3

1
0

0
 1

2
3

1
0

0
0

ii, iii, iii, iiii

ii, iii, iii, iiii

ii, iii, iii, iiii

ii, iii, iii, iiii

state 0

state 1

state 2

state 3

state 4

state 5

state 6

state 7

state 8

state 9

state 10

state 11

state 12

state 13

state 14

state 15

Figure 2.3: Example ST code template for 3 antennas, 4-ary constellations

rules (1a) and (2a), the relation ikl 6= ikm must hold for any l 6= m. Therefore, the

B-tuple (ik0, i
k
1, . . . , i

k
B−1), k = 0, 1, . . . , K − 1, is an (arbitrary) permutation of the

numbers 0, 1, . . . , B − 1.

Applying the design method of Section 2.3 and using the above index notation,

we can create a “template” ST code. It is called template because the design rules

for full spatial diversity do not specify the codes completely. It contains channel

symbol index templates at each state for each antenna. For the ST code example

of Figure 2.1, this template is shown in Figure 2.3. Here, the 4-tuples (i00, i
0
1, i

0
2, i

0
3),

(i10, i
1
1, i

1
2, i

1
3) and (i20, i

2
1, i

2
2, i

2
3) can be any permutations of the numbers (0,1,2,3).
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The ST code will achieve full diversity advantage for arbitrary permutations. The

objective is to find those permutations that result in maximizing the coding ad-

vantage of the ST code.

Using the simplified notation l = b0 and m = b̂0 (l 6= m), it was shown earlier

that for k = 1, 2, . . . , K − 1, Sk belongs to the lth subgroup and Ŝk belongs to the

mth subgroup of the same level k group. Therefore, using the above defined index

notation, we can make the following substitutions:

ik(Sk, bk) = ikl and ik(Ŝk, b̂k) = ikm, for k = 0, 1, . . . , K − 1. (2.17)

Consequently, the expression for the minimum determinant can be rewritten as:

γmin = min
l,m∈{0,1,...,B−1}

l<m

K−1∏

k=0

∣∣Ω(ikl )− Ω(ikm)
∣∣2 . (2.18)

The l < m condition can be used since the squared distance function is symmetric

in its arguments. The final goal is to maximize the minimum determinant. There-

fore, if ΠB denotes the set of all permutations of the numbers 0, 1, . . . , B − 1, and

σk ∈ ΠB (k = 0, 1, . . . , K−1) stands for a particular permutation (ik0, i
k
1, . . . , i

k
B−1),

then γ∗min, the optimal minimum determinant, can be expressed as:

γ∗min = max
σ0,σ1,...,σK−1

[
min

l,m∈{0,1,...,B−1}
l<m

K−1∏

k=0

∣∣Ω(ikl )− Ω(ikm)
∣∣2

]
. (2.19)

This combinatorial optimization problem can be interpreted as follows. The design

rules for diversity advantage and K permutations of the numbers 0, 1, . . . , B − 1

together uniquely determine the code. The task is to find those permutations that

offer the largest minimum determinant. Because the numbers 0, 1, . . . , B − 1 can

be arranged in B! different ways, the size of the search space is (B!)K . This means

that exhaustive search may be impractical in certain cases. For example, if B = 16

and K = 5, the search has to be done over approximately 4 · 1066 possibilities.
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value binary vector polynomial power power
representation representation representation

0 00 0 0 -
1 01 1 α0 0
2 10 α α1 1
3 11 α + 1 α2 2

Table 2.1: Element representation in GF(4)

To get around this complexity growth, we propose a suboptimal approach that

offers a practical solution. The basic idea is to restrict the search space such that

the resulting complexity is not prohibitive. Toward this end, we define the notion

of the parametric permutation function.

The parametric permutation function is a function that generates a subset of

all possible permutations of the numbers 0, 1, . . . , B − 1. Different parameters

produce different permutations, so the problem will be reduced to a search for the

best parameter. Therefore, the parametric permutation function is required to

have the following properties:

• It must be a bijective map: for any parameter, it must map the set {0, 1, . . . ,
B − 1} onto itself in a one-to-one manner.

• Two different parameters must generate two different permutations.

In the sequel, we will use the notation i2 = ψB(n, i1) for one possible realization

of the parametric permutation function. The value n is the parameter to be opti-

mized (n ∈ {1, 2, . . . , B−1}), and i1 and i2 are the input and output indices, respec-

tively (i1, i2 ∈ {0, 1, . . . , B − 1}). Note that the obvious ψB(n, i1) = (ni1) mod B,

for odd n, is not a good choice because it does not “shuffle” the indices well enough.

The output index is generated according to the following description. The input

index i1 and the parameter n are treated as binary vector representations of two
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i1 n = 1 n = 2 n = 3

0 0 0 0
1 1 2 3
2 2 3 1
3 3 1 2

Table 2.2: The generated permutations

field elements in GF(B)=GF(2bs). These field elements are multiplied together

according to field arithmetic, and the output index i2 will be the binary vector

representation of the product. For example, for B = 4, the field GF(4) can be

built up using α, a root of the primitive polynomial p(x) = x2 +x+1, as shown in

Table 2.1. In this case, the function ψ4(·, ·) will generate the permutations given

in Table 2.2. The table entries are the function values for different input index

and parameter values.

The above example shows two general properties of the function ψB(·, ·). First,

the zero index always maps to itself: ψB(n, 0) = 0. Second, if the parameter is one,

the function value is equal to the input index value: ψB(1, i1) = i1. Since the above

definition of the parametric permutation function exploits the algebraic properties

of the underlying Galois field, it can be easily seen that it has the required proper-

ties. Moreover, the elements of a Galois field can also be represented as powers of a

primitive element, providing the possibility of efficient implementation by turning

the multiplications into modulo B − 1 additions.

Replacing the permutation operation by the parametric permutation function,

the optimization problem reduces to

γ∗min = max
n0,n1,...,nK−1
∈{1,2,...,B−1}

[
min

l,m∈{0,1,...,B−1}
l<m

K−1∏

k=0

|Ω(ψB(nk, l))− Ω(ψB(nk,m))|2
]

. (2.20)

To find γ∗min, we only have to search over (B− 1)K possibilities. In the case of the

B = 16, K = 5 example, the size of the search space will be less than 8 · 105. Once
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the n∗0, n
∗
1, . . . , n

∗
K−1 parameter values that maximize the minimum determinant

have been calculated, the channel symbol indices can be determined as

ikl = ψB(n∗k, l), k = 0, 1, . . . , K − 1, l = 0, 1, . . . , B − 1. (2.21)

2.5 Code Design Examples

This section will provide some examples that demonstrate the code design method

described in the previous sections. First, we will describe relationship between

the repetition coded delay diversity scheme of [60] and our approach. The delay

diversity scheme was chosen as a basis for comparison because, to our knowledge,

this is the only existing procedure that can be used to construct ST trellis codes

for any number of transmit antennas and any constellation. Then, we will give

specific code design examples.

The delay diversity scheme is a special case of our design method. For B = 2

(e.g. the BPSK constellation) and N = Nmin, the two methods are equivalent: the

design rules for full spatial diversity uniquely determine the code. For B > 2, the

delay diversity scheme corresponds to n∗k = 1 (k = 0, 1, . . . , K − 1), which leads

to ikl = l (k = 0, 1, . . . , K − 1, l = 0, 1, . . . , B − 1). In [60], it was shown that, if

∆ denotes the minimum Euclidean distance of the chosen constellation, then the

minimum determinant of the resulting delay diversity ST code will be γD
min = ∆2K .

To characterize the theoretical performance improvement of our method over

the delay diversity ST codes, we will use the relative coding advantage, β, defined

as β = K
√

γ∗min/γ
D
min. This quantity describes the normalized vertical shift between

the two error performance curves as the SNR becomes large.
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Figure 2.4: Example constellations

2.5.1 Code Design for B-ary PSK

In case of B-ary PSK modulation, the squared distance between constellation

points l and m (l,m ∈ {0, 1, . . . , B − 1}) is given by

d2(l, m) = |Ω(l)− Ω(m)|2 = 4 sin2

(
(l −m)π

B

)
. (2.22)

A pictorial representation of the QPSK and 8PSK constellations are shown in

Figure 2.4 (a) and (b). Using (2.22) to express the minimum determinant of the

code, the optimization problem becomes

γ∗min = max
n0,n1,...,nK−1
∈{1,2,...,B−1}

[
min

l,m∈{0,1,...,B−1}
l<m

4K

K−1∏

k=0

sin2

(
(ψB(nk, l)− ψB(nk,m))π

B

)]
.

(2.23)

If this optimization procedure is used for 3 antennas (K = 3) with QPSK

(B = 4, N = 16), and Table 2.2 is used to generate the parametric permuta-

tion function values, then the result of the optimization will be n∗0 = 1, n∗1 = 2
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and n∗2 = 3 with γ∗min = 16. Note that this maximum is not unique: several

other sets of {n∗k} values exist. This is not surprising because of the symmetry

of the QPSK constellation and the commutativity of multiplication. The ob-

tained permutations are: (i00, i
0
1, i

0
2, i

0
3)=(0, 1, 2, 3), (i10, i

1
1, i

1
2, i

1
3)= (0, 2, 3, 1), and

(i20, i
2
1, i

2
2, i

2
3)=(0, 3, 1, 2). These permutations generate the ST code example de-

picted in Figure 2.1. The minimum determinant of the corresponding delay diver-

sity ST code is γD
min = ∆6 = 8, resulting in a relative coding advantage of β = 1.26.

For this particular case, the authors of [63] found a better code (γmin = 32) through

computer search. However, exhaustive search cannot be used to find good ST codes

for a larger number of transmit antennas and larger constellation sizes because of

its computational complexity.

For easy description, we need to find an efficient and concise representation for

our ST codes. In [64], a generator matrix based approach was used. However,

some of our codes belong to a more general class of ST codes because they cannot

be described by generator matrices. To see this, consider the ST code example

of Figure 2.1. The constellation point for antenna 2 is determined by the 2 most

significant bits of the 4 bit state information. Let us denote these two bits by s2

and s3 (s2, s3 ∈ {0, 1}). In order to be able to describe this ST code by a generator

matrix, the function F (s2, s3), defined as

F (s2, s3) = (a2s2 + a3s3) mod 4,

should generate the indices 0,3,1,2 in this order for some a2 and a3 (a2, a3 ∈
{0, 1, 2, 3}). We trivially have F (0, 0) = 0. The F (1, 0) = 3 relation forces a2 to be

3. Similarly, a3 has to be 1, as a consequence of F (0, 1) = 1. Finally, the function

will result in F (1, 1) = 0, which is not the desired value 2. Therefore, this ST code

cannot be put in a generator matrix form. The possibly large number of encoder
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states prevents us from using the trellis diagram, so the channel symbol index

permutations will be used to describe the ST codes. Note that this representation

is unique, and due to the regular structure of the proposed ST codes, it is easy to

design simple encoders with O(KB) hardware complexity.

Using the same procedure, ST codes for 3 transmit antennas (K = 3), 8PSK

(B = 8, N = 64) and 16PSK (B = 16, N = 256) constellations have also been

constructed. In the 8PSK case, the channel symbol index permutations

(i00, i
0
1, i

0
2, i

0
3, i

0
4, i

0
5, i

0
6, i

0
7) = (0, 1, 2, 3, 4, 5, 6, 7)

(i10, i
1
1, i

1
2, i

1
3, i

1
4, i

1
5, i

1
6, i

1
7) = (0, 1, 2, 3, 4, 5, 6, 7)

(i20, i
2
1, i

2
2, i

2
3, i

2
4, i

2
5, i

2
6, i

2
7) = (0, 2, 4, 6, 3, 1, 7, 5)

are one of the possible sets of permutations that maximize the objective function,

yielding the minimum determinant γ∗min = 0.6863. The minimum determinant

of the delay diversity scheme with the same design parameters is γD
min = 0.2010.

These coding advantage values yield β = 1.51. For the 16PSK constellation, our

design method resulted in the ST code given by the channel symbol indices

(i00, i
0
1, i

0
2, i

0
3, i

0
4, i

0
5, i

0
6, i

0
7i

0
8, i

0
9, i

0
10, i

0
11, i

0
12, i

0
13, i

0
14, i

0
15) =

= (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

(i10, i
1
1, i

1
2, i

1
3, i

1
4, i

1
5, i

1
6, i

1
7i

1
8, i

1
9, i

1
10, i

1
11, i

1
12, i

1
13, i

1
14, i

1
15) =

= (0, 2, 4, 6, 8, 10, 12, 14, 3, 1, 7, 5, 11, 9, 15, 13)

(i20, i
2
1, i

2
2, i

2
3, i

2
4, i

2
5, i

2
6, i

2
7i

2
8, i

2
9, i

2
10, i

2
11, i

2
12, i

2
13, i

2
14, i

2
15) =

= (0, 4, 8, 12, 3, 7, 11, 15, 6, 2, 14, 10, 5, 1, 13, 9).

The minimum determinant of this code is γ∗min = 0.110105, while the delay diversity

construction gives γD
min = 0.003529. The relative coding advantage is β = 3.15.
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K N permutations γ∗min γD
min decoding

depth

2 4 P1, P1 4 4 25
4 64 P1, P1, P2, P3 32 16 25
6 1024 P1, P1, P2, P2, P3, P3 256 64 25
8 214 P1, P1, P1, P1, 1024 256 35

P2, P2, P3, P3

10 218 P1, P1, P1, P1, P2, 8192 1024 45
P2, P2, P3, P3, P3

Table 2.3: ST codes for QPSK modulation

The reduced computational complexity of the proposed design procedure al-

lowed us to construct ST codes for a large number of transmit antennas. Table 2.3

contains the brief description of the codes designed for QPSK constellation. The

symbols P1, P2 and P3 denote the permutations (0,1,2,3), (0,2,3,1) and (0,3,1,2),

respectively. The permutations are assigned to transmit antennas from left to

right. According to this notation, the 3 antenna ST code example of Figure 2.1

can be described as: P1, P2, P3. The γ∗min and γD
min values are also shown.

2.5.2 Code Design for Asymmetric QPSK

The next two examples employ constellations that are not used in current wireless

communication systems, but they can illustrate the flexibility of the proposed

design method. The first ST code was constructed for 4 transmit antennas (K = 4)

and asymmetric QPSK modulation (B = 4, N = 64). The pictorial representation

of the asymmetric QPSK constellation can be observed in Figure 2.4 (c). The

parameter α, which is the angle between the signal points and the real axis, was

set to π/8 (rad). The Euclidean distances between two arbitrary constellation

points cannot be expressed in a closed form, but they can be easily calculated. The

minimum distance of the constellation is ∆ = 2 sin α = 0.7654. The optimization
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procedure results in

(i00, i
0
1, i

0
2, i

0
3) = (0, 1, 2, 3)

(i10, i
1
1, i

1
2, i

1
3) = (0, 1, 2, 3)

(i20, i
2
1, i

2
2, i

2
3) = (0, 2, 3, 1)

(i30, i
3
1, i

3
2, i

3
3) = (0, 3, 1, 2)

permutations with γ∗min = 4.6863. The minimum determinant of the delay diversity

scheme is γD
min = 0.1177, so a relative coding advantage of β = 2.51 is achieved.

2.5.3 Code Design for 4ASK

We also designed a ST code for 4 transmit antennas (K = 4), and 4ASK con-

stellation (B = 4, N = 64), shown in Figure 2.4 (d). The minimum distance

of the normalized constellation was ∆ =
√

4/5. The squared distance between

constellation points l and m (l, m ∈ {0, 1, 2, 3}) can be expressed as:

d2(l,m) = |Ω(l)− Ω(m)|2 = ∆2(l −m)2.

The ST code design method found the same permutations as for the asymmetric

QPSK case. The minimum determinant of the code is γ∗min = 1.6384, and the delay

diversity method yields γD
min = 0.4096. The resulting relative coding advantage is

β = 1.41.

2.5.4 Discussion

The definition of the relative coding advantage allows us to predict the performance

improvement before performing any simulation. If we compare the β values in the

3 antenna case for B-ary PSK, we can see that as the number of constellation
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points (B) increases, the relative coding advantage also increases, and, therefore,

more significant improvement is expected.

Based on the relative coding advantage values of the 4 antenna ST codes for

QPSK, 4ASK and asymmetric QPSK modulations, improvement comparison can

be made for a fixed constellation size (B = 4). The β values suggest that the pro-

posed QPSK ST code will perform a little better than the delay diversity scheme,

and the improvement will be more pronounced in the case of the 4ASK codes.

Finally, the asymmetric QPSK ST code (whose actual performance depends on

the value of α) seems to offer the largest improvement.

Due to the structure of the proposed ST codes, the minimum determinants are

functions of product distances. The code design method tries to assign channel

symbol indices to antennas at different states in such a way that the minimum

value of the product distances is as large as possible. The minimum determinant

of the delay diversity construction is only a function of the minimum distance of

the constellation. Therefore, if the maximum distance of the chosen constellation

is much larger than the minimum distance, our design method can exploit the

additional degrees of freedom effectively, producing ST codes that perform much

better than the delay diversity scheme. On the other hand, if the distances in the

constellation have similar magnitudes, the proposed design method may not result

in significant improvement.

2.6 Simulation Results

To illustrate the performance of the codes designed using the above described

method, we show some simulation results. We compare our approach with the

delay diversity scheme of [60], since, to our knowledge, this is the only method
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Figure 2.5: Delay diversity scheme with QPSK
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Figure 2.6: 3 transmit antennas with QPSK
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that can be used to to construct ST codes for any number of transmit antennas

and any memoryless constellation. The simulated communication system had one

receive antenna. The source symbols were transmitted in frames of length 130,

and the Viterbi algorithm (ML sequence detection) with decoding depth of 20

state transitions was used to decode the received signals. For each frame, the path

gains between the transmit antennas and the receive antenna were modeled as

independent, complex, zero mean, circularly symmetric Gaussian random variables

with unit variance.

Since the frame error probability depends on the length of the frame and it does

not seem very informative, we present probability of bit error curves as functions of

the average signal to noise ratio (SNR) per source symbol at the receive antenna.

In the sequel, the expression coding gain will refer to the difference (in dB) of

transmit energies to achieve the same probability of bit error value. Both the

coding advantage and the coding gain give information about the performance

improvement, but the coding advantage is a theoretical quantity characterizing the

vertical shift of the error performance curve, while the coding gain is experimental

and it describes the horizontal shift.

The repetition coded delay diversity of [60] is a special case of our design rules.

Figure 2.5 shows the performance of this scheme for different number of transmit

antennas (K = 2, 3, 4 and N = 4, 16, 64, respectively) and QPSK modulation.

We observe that the codes indeed provide different spatial diversity advantages

since the steepness of the bit error rate curves is different. The rest of the figures

compare the performance of the delay diversity construction and our approach

using the example codes described in the previous section. Figure 2.6 depicts the

results for 3 transmit antennas and QPSK modulation. The two probability of bit
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Figure 2.7: 3 transmit antennas with 8PSK
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Figure 2.8: 3 transmit antennas with 16PSK
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Figure 2.9: 4 transmit antennas with asymmetric QPSK
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Figure 2.10: 4 transmit antennas with 4ASK
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error curves are shifted versions of each other, as expected. Approximately 0.4-0.5

dB coding gain is observed over the delay diversity scheme.

Figure 2.7 shows the bit error rate curves of a 3 transmit antenna system with

8PSK modulation. At low SNR, the two error performance curves are close to each

other, and they behave according to the expectations at medium and high SNRs.

This phenomenon can be explained as follows. The definition of coding advantage

[59] is based on an upper bound on the Q(x) Gaussian tail probability function,

and this bound is loose at low SNR. Moreover, the large number of transmission

errors and the small minimum distance of the constellation may prevent the Viterbi

algorithm with finite decoding depth from working properly at low SNR. The

simulation shows that the performance improvement is more pronounced; at higher

SNR, more than 1 dB coding gain can be achieved.

The performance of the ST code for 3 antennas and 16PSK constellation can be

observed in Figure 2.8. Our ST code yields 2-2.5 dB coding gain compared to the

delay diversity scheme. Figures 2.9 and 2.10 depict the bit error rate curves for the

4 antenna ST codes using asymmetric QPSK and 4ASK modulation, respectively.

The first figure shows approximately 3 dB coding gain from medium SNR, and the

second figure demonstrates 2 dB improvement over the delay diversity construction.

Since the number of states is exponential in the number of transmit antennas, it

is not possible to decode the ST trellis codes designed for a large number of transmit

antennas using ML sequence detection (Viterbi algorithm). Therefore, we chose a

suboptimal tree decoding algorithm developed for convolutional coding and trellis

coding: the M-algorithm [7]. This algorithm uses a tree structure to evaluate the

metrics (in our case: the Euclidean distances) for the allowable channel symbol

sequences. At each stage, it keeps at most M partial paths with the best metrics.
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Figure 2.11: 4 antennas, QPSK, suboptimal decoding
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Figure 2.12: ST codes for QPSK modulation
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Thus, the decoding complexity is O(M), which is independent of the number of

encoder states.

Figure 2.11 shows the performance of the 4 antenna, QPSK ST code for ML

decoding and for suboptimal decoding. The bit error curve of the 3 antenna, QPSK

ST code with ML decoding is also included for comparison. It can be observed

that reducing the computational complexity (reducing the value of M) results in

performance degradation.

Finally, the simulation results for the ST codes described in Table 2.3 are de-

picted in Figure 2.12. For 2 and 4 antennas, the ML decoding algorithm was used,

and for the 6, 8 and 10 antenna cases, the ST codes were decoded by the subopti-

mal M-algorithm. The decoding complexity was kept approximately constant by

setting M = 256. The used decoding depth values can be found in the last column

of Table 2.3. The results show that as the N/M ratio increases, the performance

loss increases.

2.7 Chapter Summary

Having observed the group/subgroup structure of the state transitions, we pro-

posed systematic design rules for ST trellis codes that achieve full spatial diversity.

For encoders having Nmin states, we developed a code construction method that

allows for ST code design for both diversity advantage and coding advantage. Due

to the low complexity of the proposed design method, ST codes for a large num-

ber of antennas were also constructed. Based on the theoretical coding advantage

values and the simulation results, we can make the following observations.

First, if the ratio of the maximum and the minimum distances of the chosen

constellation is large, the additional optimization for coding advantage results in

49



codes that substantially outperform the codes that were designed only for diversity

advantage.

Second, if the M-algorithm is used to decode the ST codes with constant de-

coding complexity in a quasi-static Rayleigh fading environment, increasing the

number of transmit antennas will provide diminishing returns. The choice of the

number of transmit antennas will depend on the actual allowed maximum compu-

tational complexity.
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Chapter 3

Systematic Space-Time Trellis

Code Design for Correlated

MIMO Channels

3.1 Introduction

Most of the existing ST trellis code construction methods have assumed ideal

channel models: either quasi-static fading or fast fading, without considering the

effect of spatial or temporal correlation. For the quasi-static channel model, the

authors of [59] proposed design rules for two transmit antennas to achieve the

maximum achievable diversity advantage. Later works [60], [61], and Chaper 2 of

this thesis described systematic code design methods for an arbitrary number of

transmit antennas.

The first ST trellis code construction method for the fast fading channel model

was described in [66]. ST codes for 2 transmit antennas and QPSK modulation

were designed using the idea of signal set partitioning. In [67], the design of ST
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codes for fast fading channels was also considered. The authors found ST codes for

2 transmit antennas and QPSK and 8PSK modulations through computer search.

For the quasi-static channel model, the authors of [68] investigated the achiev-

able diversity order as a function of spatial correlation, taking into account some

physical propagation parameters. The problem of code design for correlated fad-

ing channels was addressed in [70], and general performance criteria were derived

for space-time-correlated Rayleigh fading channels. In [71], it was assumed that

the channel stays constant for a number of channel symbol periods equal to the

number of transmit antennas. The performance criteria were obtained for this

channel model, and hand crafted trellis codes were proposed combining multiple

trellis coded modulation with Alamouti’s scheme [32].

In [72], characterizing the performance of space-time codes over space-time-

correlated Rayleigh fading channels was also considered. The minimum diversity

order achievable over all space-time correlation matrices of a given rank was defined

as the measure of robustness. The relationship between the robustness (diversity)

and the rank of the space-time correlation matrix was investigated, and upper and

lower bounds on the achievable diversity were derived. However, exact results on

the achievable diversity advantage and results on the coding advantage were not

presented.

In this chapter, we consider the problem of ST trellis code design, taking into

account both spatial and temporal channel correlation. As ad-hoc code design

methods and computer search methods can only provide point-solutions in the de-

sign space, and the computational complexity of exhaustive search becomes pro-

hibitive as the number of transmit antennas and the constellation size increase,

we focus our attention on the development of systematic ST code design methods
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that are flexible and scalable.

First, we derive the performance criteria for a channel model in which the chan-

nel changes from channel symbol period to channel symbol period in a correlated

manner, assuming that the space-time correlation matrix is of full rank. We show

that for this transmission scenario, the effect of the channel correlation and the

ST code on the performance can be separated, resulting in channel-independent

performance criteria. Our result implies that as long as the correlation matrix is

of full rank, it does not matter what the correlation matrix actually is from the

viewpoint of code design, and the ST code design problem for correlated channels

can be reduced to the code design problem for fast fading channels. We character-

ize the performance of the ST codes by finding exact expressions for the achieved

diversity advantage and coding advantage.

Then, we propose a new design criterion and analyze the properties of the ST

trellis codes satisfying the proposed criterion. Finally, we develop a systematic

code construction procedure that jointly considers diversity advantage and coding

advantage for an arbitrary number of transmit antennas and any memoryless mod-

ulation. The proposed design method has extremely low complexity: we provide

a closed form solution to the code design problem.

The rest of the chapter is organized in the following way. Section 3.2 introduces

the mathematical model of the communication system and the notation. The

performance criteria is derived in Section 3.3. Section 3.4 describes the proposed

design criterion and its properties. The ST code design method is developed in

Section 3.5. Section 3.6 contains the discussion, and Section 3.7 provides the

simulation results. The summary is provided in the last section.
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3.2 System Model and Notation

Consider a wireless communication system with K transmit and L receive antennas

(the transmit antennas are indexed by k, k ∈ {0, 1, . . . , K − 1}, and the receive

antennas are indexed by l, l ∈ {0, 1, . . . , L− 1}). The input bit stream is divided

into bs bit long blocks, forming B-ary (B = 2bs) source symbols. At discrete

time t (t = 0, 1, . . . , T − 1), the ST encoder takes the current source symbol,

bt (bt ∈ {0, 1, . . . , B − 1}), and outputs K B-ary channel symbol indices. We

denote the channel symbol index for antenna k at time t by ikt . The channel symbol

index vector takes the form: it = [ i0t , i
1
t , . . . , i

K−1
t ]T . The channel symbol indices

are mapped onto channel symbols (or constellation points) by the modulators and

transmitted through the transmit antennas. Ω(i) will represent the constellation

point corresponding to channel symbol index i (For example, in case of B-ary PSK,

Ω(i) = exp(j2πi/B), where j =
√−1.). All the constellations are assumed to be

normalized so that the average energy of the constellation is unity (if the channel

symbols are equally likely). ck
t = Ω(ikt ) will denote the constellation point output

by antenna k at time t. We will also use the channel symbol vector, defined as:

ct = [ c0
t , c

1
t , . . . , c

K−1
t ]T .

The transmission medium is assumed to be a flat (frequency non-selective),

correlated Rayleigh fading channel. αk,l(t) will represent the path gain between

transmit antenna k and receive antenna l at time t. These path gains are modeled

as complex, zero mean, Gaussian random variables with unit variance, and are

assumed to be known by the receiver. Based on the above assumptions, after

down-conversion, matched filtering and sampling, rl
t, the received signal at receive
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antenna l at discrete time t, can be expressed as

rl
t =

K−1∑

k=0

√
ρ

K
αk,l(t)c

k
t + zl

t. (3.1)

The receiver noise, denoted by zl
t, is taken from samples of independent, complex,

zero mean, Gaussian random variables with unit variance. The average SNR per

source symbol at receive antenna l will be defined as SNRl = ρ.

Due to decoding errors, the receiver may decode a different sequence of channel

symbols. The erroneously decoded channel symbol for transmit antenna k at time

t will be denoted by ĉk
t , and the vector of decoded channel symbols at time t will

be given by ĉt = [ ĉ0
t , ĉ

1
t , . . . , ĉ

K−1
t ]T .

In the sequel, the notation diag(a1, a2, . . . , aN) will be used to represent a di-

agonal matrix with scalar elements a1, a2, . . . , aN along the main diagonal. The

entries in the vectors, and the rows and columns of the matrices will be indexed

from 0. All vectors are assumed to be column vectors, unless mentioned otherwise.

3.3 Performance Criteria

In this section, we derive the performance criteria for space-time correlated Rayleigh

fading channels. The criteria are based on an upper bound on the pairwise error

probability [70], derived for a general transmission scenario in which the received

signal vector can be expressed as

r =

√
ρ

K
Γα + z. (3.2)

In (3.2), Γ denotes the matrix of sent channel symbols, α stands for the complex,

zero mean, Gaussian path gain vector with correlation matrix R = E(ααH), and

z denotes the receiver noise vector consisting of complex, zero mean, independent,
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Gaussian random variables unit variance. It can be shown [70] that the probability

that the maximum likelihood decoder erroneously decodes the channel symbol

matrix Γ̂ if Γ was sent can be upper bounded as

P (Γ̂|Γ) ≤
(
2r−1
r−1

) (
ρ
K

)−r

Πr
i=1γi

, (3.3)

where r and γi’s are the rank and the nonzero eigenvalues of the matrix ∆R∆H,

respectively, and ∆ is the channel symbol difference matrix, defined as ∆ = Γ− Γ̂.

The performance criteria are obtained by evaluating (3.3) when the received

signal is described by (3.1). Toward this end, we can define the matrix Γk =

diag(ck
0, c

k
1, . . . , c

k
T−1), and the row vectors

rl = [rl
0, r

l
1, . . . , r

l
T−1],

αk,l = [αk,l(0), αk,l(1), . . . , αk,l(T − 1)], and

zl = [zl
0, z

l
1, . . . , z

l
T−1].

Using these quantities, the LT by 1 received signal vector r = [r0, r1, . . . , rL−1]T is

given by (3.2), with the LT by KLT channel symbol matrix

Γ =




Γ0 Γ1 . . . ΓK−1 0 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0 Γ0 Γ1 . . . ΓK−1 . . . 0 0 . . . 0

. . .

0 0 . . . 0 0 0 . . . 0 . . . Γ0 Γ1 . . . ΓK−1




,

(3.4)

the LT by 1 noise vector z = [z0, z1, . . . , zL−1]T , and the KLT by 1 path gain

vector

α = [ α0,0, α1,0, . . . , αK−1,0, α0,1, α1,1, . . . , α0,L−1, α1,L−1, . . . , αK−1,L−1 ]T .

The correlation matrix R has KLT rows and KLT columns, and it is assumed

to be of full rank (i.e. its eigenvalues are real and positive). Defining the matrix
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Γ̂k = diag(ĉk
0, ĉ

k
1, . . . , ĉ

k
T−1), the erroneously decoded channel symbol matrix, Γ̂,

can be expressed similarly to (3.4), resulting in the LT by KLT channel symbol

difference matrix ∆.

Assume that for τ time instants t0, t1, . . . , tτ−1, the sent and the erroneously de-

coded channel symbol vectors are different, i.e. ct− ĉt 6= 0 for t ∈ {t0, t1, . . . , tτ−1},
and for the rest of the time instants, they are the same. Therefore, the sent and

decoded channel symbol vectors corresponding to the times t 6∈ {t0, t1, . . . , tτ−1}
will produce all zero rows and columns in the ∆ channel symbol difference ma-

trix. These rows and columns can be eliminated from the analysis in the follow-

ing way. For each t 6∈ {t0, t1, . . . , tτ−1}, rows t, t + T, t + 2T, . . . , t + (L − 1)T

and columns t, t + T, t + 2T, . . . , t + (KL − 1)T are removed from the matrix

∆, producing a new Lτ by KLτ channel symbol difference matrix, ∆′. ∆′

has a structure similar to (3.4), but the matrices Γk are replaced with ∆′k =

diag(ck
t0
− ĉk

t0
, ck

t1
− ĉk

t1
, . . . , ck

tτ−1
− ĉk

tτ−1
). Note that ∆′ has full row rank.

In addition, for each t 6∈ {t0, t1, . . . , tτ−1}, rows and columns t, t + T, t +

2T, . . . , t + (KL − 1)T must also be removed from R, resulting in the KLτ by

KLτ matrix R′. Since only all zero rows and columns have been deleted from ∆,

the nonzero eigenvalues of ∆R∆H and ∆′R′∆′H are the same. It is shown in

Appendix B that the relation

r∏
i=1

γi = det(∆′R′∆′H) ≥ det(Λmin(Lτ)) det(∆′∆′H) (3.5)

holds, where Λmin(Lτ) is a Lτ by Lτ diagonal matrix with the Lτ smallest eigen-

values of R along the diagonal. Since R is positive definite, det(Λmin(Lτ)) is

strictly positive. Moreover, ∆′ has full row rank, so det(∆′∆′H) is also strictly

positive. Consequently, the matrices ∆R∆H and ∆′R′∆′H are both of rank Lτ .
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Combining (3.3) with (3.5), and recognizing that

det(∆′∆′H) =
τ−1∏
i=0

||cti − ĉti||2L,

where ||x|| =
√

xHx, we arrive at the upper bound

P (Γ̂|Γ) ≤
( ρ

K

)−Lτ
(

2Lτ − 1

τ − 1

)
1

det(Λmin(Lτ))

τ−1∏
i=0

||cti − ĉti||−2L. (3.6)

The performance criteria now can be formulated to minimize the maximum

value of P (Γ̂|Γ):

1. Design for diversity advantage (distance criterion): The minimum number

of time instants when the correct and the decoded channel symbol vectors are

different (the minimum value of τ) taken over all possible correct and erroneously

decoded channel symbol vector sequences must be maximized.

2. Design for coding advantage (product criterion): The minimum of the norm

products

δ =
τ−1∏
i=0

||cti − ĉti||2

taken over all possible correct and erroneously decoded channel symbol vector

sequences must be maximized.

Note that the these performance criteria are the same as the performance cri-

teria proposed for fast (independently) fading channels [59]. This is not surprising

since in case of independent fading, the matrices R, R′ and Λmin(Lτ) become iden-

tity matrices, and (3.6) simplifies to a form similar to the upper bound derived in

[59]. The relationship between the two upper bounds can be established by the

inequality (
2n− 1

n− 1

)
< 4n, for n = 1, 2, 3, . . . , (3.7)

showing that (3.6) is tighter than the bound given in [59].
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In the above derivation, the matrix R was assumed to have full rank. If the

magnitudes of the correlation values E
[
αk1,l1(t1)α

∗
k2,l2

(t2)
]

diminish fast enough as

|k1 − k2|, |l1 − l2|, and |t1 − t2| increase, this assumption will be true. This corre-

sponds to the condition that the magnitude of the correlation decays fast enough

as the transmit and receive antenna separation and the time separation increase.

If this condition holds, the space-time code design problem for correlated channels

can be reduced to the code design problem for fast fading channels. Moreover, the

correlation only causes coding advantage loss, and it is possible to achieve full di-

versity advantage. Here we define full diversity as the level of diversity achievable

by a communication system having K transmit and L receive antennas operating

in fast (independent) fading environment. However, if this condition is not satis-

fied, the correlation matrix may become rank deficient, causing loss of diversity

advantage. In this case, the analysis can be performed by deleting more rows and

columns from R and ∆. In this chapter, we assume that R is of full rank.

3.4 A Design Criterion for Trellis Codes

This section proposes a new design criterion that is based on the distance criterion

described in the previous section. Since the design criterion is specific to trellis

codes, it is necessary to extend the notation to explicitly show the dependence of

the channel symbols on the state transitions.

The ST trellis encoder works as a finite state machine with N states: at discrete

time t, it takes the current source symbol bt, and governed by this input and

the current state, St (St ∈ {0, 1, . . . , N − 1}), it moves to the next state, St+1.

ik(St, bt) = ikt will stand for the channel symbol index for transmit antenna k

produced by the encoder during the state transition from St through the branch
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corresponding to bt. The channel symbol index vector it will become

i(St, bt) = [ i0(St, bt), i
1(St, bt), . . . , i

K−1(St, bt) ]T ,

and the channel symbol vector ct will be written as

c(St, bt) = [ Ω(i0(St, bt)), Ω(i1(St, bt)), . . . , Ω(iK−1(St, bt)) ]T .

Similarly, ĉt = c(Ŝt, b̂t) will be the erroneously decoded channel symbol vector at

time t. This notation emphasizes that in general, the state sequences corresponding

to the correct and the erroneously decoded paths (i.e. {St} and {Ŝt}) are different,

and so are the encoded source symbol sequence {bt} and the decoded source symbol

sequence {b̂t}.
The design criterion was developed for encoders having Nmin = BK−1 states,

so from now on it will be assumed that the encoder has Nmin states. The proposed

design criterion (uniqueness criterion) is: Every channel symbol index vector must

be unique. That is:

(a) The channel symbol index vectors assigned to different branches emanating

from the same state must be different.

(b) Any channel symbol index vector assigned to any state must be different

from any channel symbol index vector assigned to any other state.

Each channel symbol index vector contains K B-ary symbols, so there are BK

different channel symbol index vectors. Since there are B branches emanating from

each state and the encoder is assumed to have Nmin states, we need exactly BK

different channel symbol index vectors. Therefore, it is possible to assign channel

symbol index vectors to state transitions according to the uniqueness criterion.

The following two subsections will analyze the properties of the ST codes that

satisfy the proposed criterion.
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3.4.1 Diversity Advantage

Assume that the first decoding error occurs at t = t0, so the correct and decoded

paths diverge at this point (i.e. St0 = Ŝt0 and bt0 6= b̂t0). The two paths are

assumed to merge later at time t = t0 + τ , resulting in a τ -long error event. As a

consequence of criterion (a), the channel symbol vectors corresponding to the two

paths diverging at St0 will be different. Moreover, as a result of criterion (b), the

channel symbol vectors corresponding to the correct and the decoded paths going

through different states will be different. Therefore, for t = t0, t0 +1, . . . , t0 +τ−1,

we have c(St, bt)−c(Ŝt, b̂t) 6= 0. From the performance criteria described in Section

3, one can conclude that any τ -long error event will achieve a diversity advantage

of τL. In case of multiple error events, the total diversity advantage will be the

sum of the diversity advantages of the individual error events. Consequently, the

minimum diversity advantage of the ST code is determined by the shortest error

event. It was established in Chapter 2 that for ST encoders having Nmin states,

the shortest error event is K state transitions long, so the ST code is guaranteed

to achieve a diversity advantage of KL.

3.4.2 Error Event Probability

In this section, we will derive an upper bound on the τ -long error event probability,

i.e. the probability that at a given discrete time instant, a decoding error occurs,

resulting in an error event that is τ state transitions long.

Using the union bound, the τ -long error event probability, which is the proba-

bility of the union of the τ -long error events, can be upper bounded as

Pτ ≤
∑
Γ

∑

Γ̂τ

P (Γ̂τ |Γ)P (Γ). (3.8)
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In (3.8), the first summation is over all possible sent channel symbol matrices Γ,

and the second summation is over all possible erroneously decoded channel symbol

matrices Γ̂τ corresponding to τ -long error events for a particular Γ. Assuming that

the decoding error occurs at time t0, for t = t0, t0 + 1, . . . , t0 + τ − 1, at least one

coordinate of the channel symbol vectors c(St, bt) and c(Ŝt, b̂t) will be different.

Therefore, if we denote the minimum distance of the chosen constellation by d, the

squared norms of their differences can be lower bounded as

||c(St, bt)− c(Ŝt, b̂t)||2 ≥ d2 for t = t0, t0 + 1, . . . , t0 + τ − 1. (3.9)

Combining (3.6) with (3.7) and (3.9), we obtain an upper bound on the pairwise

error probability:

P (Γ̂τ |Γ) <
1

det(Λmin(Lτ))

( ρ

4K

)−Lτ

d−2Lτ . (3.10)

Defining γmin, the minimum determinant taken over all possible τ values, as

γmin = min
1≤τ≤T−1

det(Λmin(Lτ)), (3.11)

the pairwise error probability can be further upper bounded:

P (Γ̂τ |Γ) <
1

γmin

( ρ

4K

)−Lτ

d−2Lτ . (3.12)

Since the upper bound (3.12) does not depend on Γ̂τ , (3.8) can be rewritten as:

Pτ <
1

γmin

∑
Γ

N(Γ̂τ )

(
ρd2

4K

)−Lτ

P (Γ), (3.13)

where N(Γ̂τ ) is the number of τ -long error paths for a given correct path. N(Γ̂τ )

can be strictly upper bounded by Bτ , so the upper bound simplifies to:

Pτ <
1

γmin

∑
Γ

Bτ

(
ρd2

4K

)−Lτ

P (Γ). (3.14)
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state 0000,111,222,333

state 1121,232,303,010

state 2202,313,020,131

state 3323,030,101,212

state 4112,223,330,001

state 5233,300,011,122

state 6310,021,132,203

state 7031,102,213,320

state 8220,331,002,113

state 9301,012,123,230

state 10022,133,200,311

state 11103,210,321,032

state 12332,003,110,221

state 13013,120,231,302

state 14130,201,312,023

state 15211,322,033,100

Figure 3.1: Example ST code for 3 antennas, 4-ary modulation

Finally, recognizing that P (Γ) is the only term that depends on Γ, and that the

probability mass function of Γ sums to unity, the final expression for the upper

bound on the node error probability becomes:

Pτ <
1

γmin

(
ρd2

4K L
√

B

)−Lτ

. (3.15)

From (3.15), one can see that the probability that a τ -long error event occurs

decreases at least exponentially with τ . Consequently, at high SNR, the shortest

error events will dominate; the longer error paths will have negligible contribution

to the error event probability. (Note that we assumed that the trellis is finite, so

the range of the τ values is constrained by the length of the trellis, the time when

the decoding error occurs and the length of the shortest error event.)
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3.5 The Design Method

In the ST encoder, B channel symbol index vectors are assigned to each state,

according to the branches emanating from that state. The current source symbol

selects one of them, and the kth (k = 0, 1, . . . , K − 1) coordinate of the chosen

vector determines the constellation point for antenna k. Figure 3.1 depicts an

example ST code for 3 antennas and any 4-ary constellation (K = 3, B = 4,

N = 16). In this case, if the current state is state 2 and the value of the current

source symbol is 3, the ST encoder selects the 3rd channel symbol index vector,

[1, 3, 1]T , and moves to state 11. The 0th, lst and 2nd antennas will transmit the

channel symbols corresponding to the indices 1, 3 and 1, respectively.

This section addresses the problem of assigning channel symbol index vectors

to state transitions. The most important objective is to maximize the diversity

advantage, so the ST codes are required to satisfy the uniqueness criterion. The

remaining freedom can be used to increase the value of the minimum norm product

(δ). Since the available BK channel symbol index vectors can be arranged in

(BK)! different ways, the computational complexity of exhaustive search becomes

prohibitive, as the number of transmit antennas and the constellation size increase.

Therefore, we propose an approach that does not guarantee optimality, but is

simple and flexible. The basic idea behind the method is that it attempts to

maximize the minimum norm product corresponding to the shortest error events

by maximizing the number of nonzero coordinates in the channel symbol difference

vectors, c(St, bt) − c(Ŝt, b̂t). Since the shortest error events achieve the minimum

diversity advantage, it is a reasonable objective to maximize the norm product of

these error events. Moreover, it was shown in Section 3.4.2 that at higher SNR,

the shortest error events will dominate the performance of the ST codes.

64



Since the ST encoder has BK−1 states, any state S (S ∈ {0, 1, . . . , BK−1 −
1}) can be uniquely represented as a K − 1 digit B-ary number with digits

l1, l2, . . . , lK−1 (lk ∈ {0, 1, . . . , B − 1}):

S = BK−2lK−1 + BK−3lK−2 + . . . + Bl2 + l1. (3.16)

The proposed design rules are:

1. The 0th coordinate of the channel symbol index vector (the channel symbol

index for the 0th transmit antenna) corresponding to input b (b ∈ {0, 1, . . . , B−1})
at state S is determined as:

i0(S, b) = (b + lK−1 + lK−2 + . . . + l1) mod B. (3.17)

2. The rest of the coordinates (the channel symbol indices for the rest of the

transmit antennas) are calculated as:

ik(S, b) = (i0(S, b) + lk) mod B for k = 1, 2, . . . , K − 1. (3.18)

By making use of the identity

(
n∑

i=1

αi mod β

)
mod β =

(
n∑

i=1

αi

)
mod β, (3.19)

the second design rule can be put in the alternative form:

ik(S, b) = (b + lK−1 + lK−2 + . . . + l1 + lk) mod B. (3.20)

Theorem 3.1: The ST codes produced by the above described construction

method satisfy the uniqueness criterion for any B-ary constellation.

Proof: The proof is given in two steps.

(a) From (3.17), it can be seen that for a given state S (given l1, l2, . . . , lK−1

values) and different b input values, the value of i0(S, b) will be different. Therefore,
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the channel symbol index vectors assigned to the same state are different in at least

one (the 0th) coordinate.

(b) Let us pick two arbitrary states S1 and S2 (S1 6= S2), and one channel

symbol index vector assigned to a branch emanating from each state. If the 0th

coordinates of the index vectors are different, then the statement is proven. If they

are the same, then we have i0(S1, b1) = i0(S2, b2) for some b1, b2 ∈ {0, 1, . . . , B−1}.
The states S1 and S2 can be uniquely expressed as

S1 = BK−2lK−1 + BK−3lK−2 + . . . + Bl2 + l1

S2 = BK−2mK−1 + BK−3mK−2 + . . . + Bm2 + m1,

with lk,mk ∈ {0, 1, . . . , B − 1}. S1 6= S2, so lk 6= mk must hold for at least one k

value. Since the kth (k = 1, 2, . . . , K− 1) coordinates of the channel symbol index

vectors are determined according to (3.18), we will have ik(S1, b1) 6= ik(S2, b2) for

at least one k value. Therefore, the channel symbol index vectors assigned to

different states are different in at least one coordinate. 2

As an example, consider the ST code shown in Figure 3.1. Since B = 4, state

S = 6 can be represented as S = Bl2 + l1 with l2 = 1 and l1 = 2. The channel

symbol indices corresponding to the 2nd branch (b = 2) emanating from state 6

are determined as:

i0(S, b) = (b + l2 + l1) mod B = 1,

i1(S, b) = (i0(S, b) + l1) mod B = 3,

i2(S, b) = (i0(S, b) + l2) mod B = 2.

Therefore, the channel symbol index vector assigned to this state transition will

be [1, 3, 2]T .
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The following theorem describes the number and the location of the nonzero

coordinates in the channel symbol difference vectors corresponding to the shortest

error events in case of the proposed design rules. According to the theorem, for

each correct path, there are B−2 K-long error paths that produce as many nonzero

coordinates as possible, and there is one K-long error path that produces one zero

coordinate in K − 1 channel symbol difference vectors.

Theorem 3.2: Assume that the correct and the erroneously decoded paths

diverge at S0 and merge at SK (i.e. S0 = Ŝ0, b0 6= b̂0, and SK = ŜK). Then, for

any B ≥ 2, the channel symbol difference vector c(S0, b0)− c(Ŝ0, b̂0) contains only

nonzero entries. If b̂0 = (b0 + B/2) mod B, then for t = 1, 2, . . . , K − 1, the tth

coordinate of the vectors c(St, bt)−c(Ŝt, b̂t) is zero, and the rest of the coordinates

are nonzero. For each correct path, there is exactly one such K-long error path.

The remaining B − 2 K-long error paths will produce channel symbol difference

vectors having only nonzero coordinates for t = 1, 2, . . . , K − 1.

Proof: First, consider the state transition S0 → S1. In the proof of Theorem

1, it has been shown that the 0th coordinates of the channel symbol index vectors

assigned to the same state are different, so we have i0(S0, b0) 6= i0(Ŝ0, b̂0). Since

S0 = Ŝ0 and b0 6= b̂0, design rule (3.20) yields the relationship ik(S0, b0) 6= ik(Ŝ0, b̂0)

for k = 1, 2, . . . , K − 1. Therefore, the vector c(S0, b0) − c(Ŝ0, b̂0) contains only

nonzero entries.

The next step is to analyze the rest of the state transitions St → St+1 for

t = 1, 2, . . . , K−1. In Chapter 2, a closed form expression for SK was derived as a

function of the starting state, S0, and the input symbol sequence b1, b2, . . . , bK−1.

If N = Nmin, from (2.6) we have

SK = BK−2b1 + BK−3b2 + . . . + BbK−2 + bK−1 =
K−1∑
m=1

BK−1−mbm. (3.21)
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Since the error path is K state transitions long, we have SK = ŜK . Equation

(3.21) is a unique representation for SK , so the relation bt = b̂t must hold for

t = 1, 2, . . . , K − 1. Moreover, since the source symbol b0 can take on B different

values, there are exactly B paths that start at S0 and end at SK . This means

that there are exactly B − 1 K-long error paths for a given correct path. The

state transition sequence for t = 1, 2, . . . , K − 1 was also described in Chapter

2 (Equation (2.5)) as a function of the starting state, S0, and the input symbol

sequence b0, b1, . . . , bt−1:

St = Bt
(
S0 mod (BK−t−1)

)
+

t−1∑
m=0

Bt−1−mbm. (3.22)

Comparing (3.22) and (3.16), we can express the state transitions corresponding

to the correct and erroneously decoded paths:

St = BK−2lK−1 + BK−3lK−2 + . . . + Btlt+1 + Bt−1lt + Bt−2lt−1 + . . . + l1

Ŝt = BK−2lK−1 + BK−3lK−2 + . . . + Btlt+1 + Bt−1l̂t + Bt−2lt−1 + . . . + l1

for some lK−1, lK−2, . . . , lt+1 values, with lt = b0, l̂t = b̂0 and lk = bt−k = b̂t−k

for k = 1, 2, . . . , K − 1. In the above two expressions, only the terms lt and

l̂t are different, so the design rule (3.17) ensures that i0(St, bt) 6= i0(Ŝt, b̂t) for

t = 1, 2, . . . , K−1. Thus, the 0th coordinates of the vectors c(St, bt)−c(Ŝt, b̂t) are

nonzero for t = 1, 2, . . . , K − 1.

Using the notation at = lK−1 + lK−2 + . . . + lt+l + lt−1 + . . . + l1, the kth

(k = 1, 2, . . . , K−1) coordinates of the channel symbol index vectors corresponding

to the correct and the erroneously decoded paths at time t (t = 1, 2, . . . , K − 1)

will be

ik(St, bt) = (bt + at + lt + lk) mod B,

ik(Ŝt, b̂t) = (b̂t + at + l̂t + lk) mod B, (3.23)
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as a consequence of design rule (3.20). If k 6= t, the only different terms in the

summations of (3.23) are lt and l̂t, so ik(St, bt)) 6= ik(Ŝt, b̂t). If k = t, using that

lt = b0 and l̂t = b̂0, the channel symbol indices in (3.23) can be rewritten as

ik(St, bt) = (bt + at + 2b0) mod B,

ik(Ŝt, b̂t) = (b̂t + at + 2b̂0) mod B. (3.24)

Since bt = b̂t for t = 1, 2, . . . , K − 1, ik(St, bt) will be equal to ik(Ŝt, b̂t) if and

only if |b̂0 − b0| is a multiple of B/2. (Note that B is a power of 2, so B/2 is

always integer and a power of 2.) Since b0 and b̂0 take on values from the set

{0, 1, . . . , B− 1}, this can only happen if b̂0 = (b0 +B/2) mod B. For each correct

path (each b0), there is only one K state transitions long erroneous path (b̂0) with

this property. In this case, for t = 1, 2, . . . , K−1, the tth coordinate of the vectors

c(St, bt) − c(Ŝt, b̂t) will be zero, and the rest of the coordinates will be nonzero.

For the remaining B − 2 K-long error paths, all the coordinates will be nonzero.

2

The next theorem characterizes the performance of the 2 antenna PSK ST

trellis codes designed by our code construction procedure in the case of the quasi-

static fading channel model. It states that these codes also achieve full spatial

diversity in quasi-static fading environment.

Theorem 3.3: The ST trellis codes designed by the proposed method for

2 transmit antennas and B-ary PSK modulation satisfy the rank criterion [59]

derived for quasi-static fading channels.

Proof: Assume that the correct and the decoded paths diverge at state S0

(i.e. S0 = Ŝ0 and b0 6= b̂0). Since the shortest error event is K state transitions

long, the 2 paths can only merge at state SK or later. Assuming that the 2 paths

merge at state ST+K for some T ≥ 0 and considering the K = 2 case, we have
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ST+2 = ŜT+2. The basic idea behind the proof is to show that the channel symbol

difference vectors corresponding to t = 0 (when the 2 paths diverge) and t = T +2

(when the 2 paths merge) form a linearly independent set. We will do this by

proving that the matrix D2, defined as

D2 =




d0
0 d0

T+2

d1
0 d1

T+2


 , (3.25)

where dk
t = Ω(ik(St, bt)) − Ω(ik(Ŝt, b̂t)), is of full rank for all possible T + 2 long

correct and erroneously decoded paths.

The 0th column of D2 can be determined easily, recognizing that the 2 antenna

ST encoder has B states and expressing the first erroneously decoded source sym-

bol, b̂0, as b̂0 = (b0 + ∆b) mod B for some ∆b ∈ {1, 2, . . . , B − 1}. Using design

rules (3.17), (3.20) and the identity (3.19), and assuming B-ary PSK modulation,

we obtain

d0
0 = ej 2π

B
(S0+b0)

(
1− ej 2π

B
∆b

)

d1
0 = ej 2π

B
(2S0+b0)

(
1− ej 2π

B
∆b

)
. (3.26)

Note that the modulo operation can be omitted because of the periodicity of the

complex exponentiation.

The first column of D2 is determined as follows. It is shown in Appendix C

that for encoders having Nmin, states, the state transition ST+K , T ≥ 0, can be

expressed as

ST+K =
T+K−1∑
m=T+1

BT+K−1−mbm. (3.27)

For K = 2, (3.27) simplifies to ST+2 = bT+1. Since the correct and the erroneous

paths merge at ST+2, we have ST+2 = bT+1 = ŜT+2 = b̂T+1. Moreover, the 2

paths do not merge before time T + 2, so state ŜT+1 can be written as ŜT+1 =
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number of
TX antennas 2 3 4

BPSK 16 64 256
QPSK 4 8 16
8PSK 0.3431 0.0345 0.0035
16PSK 0.0232 2.4 · 10−5 -
4ASK 0.6400 0.5120 0.4096

Table 3.1: Minimum determinant values

(ST+1 + ∆S) mod B for some ∆S ∈ {1, 2, . . . , B − 1}. As a result, applying design

rules (3.17), (3.20) and the identity (3.19), and assuming B-ary PSK modulation,

we arrive at

d0
T+2 = ej 2π

B
(ST+1+bT+1)

(
1− ej 2π

B
∆S

)

d1
T+2 = ej 2π

B
(2ST+1+bT+1)

(
1− ej 2π

B
2∆S

)
. (3.28)

The matrix D2 is rank deficient if and only if its determinant is zero, i.e.

d0
0d

1
T+2 = d1

0d
0
T+2. (3.29)

Substituting (3.26) and (3.28) into (3.29) and simplifying the expression, the zero

determinant condition becomes

ej 2π
B

ST+1

(
1− ej 2π

B
2∆S

)
= ej 2π

B
S0

(
1− ej 2π

B
∆S

)
. (3.30)

After taking squared magnitudes of both sides of (3.30) and simplification, we

obtain

cos

(
2π

B
2∆S

)
= cos

(
2π

B
∆S

)
. (3.31)

Since B is a power of 2 and ∆S takes on values from the set {1, 2, . . . , B − 1}, the

two sides of (3.31) cannot be equal. Therefore, the determinant of D2 cannot be

zero, so the ST code satisfies the rank criterion. 2
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We have not been able to prove this property for an arbitrary number of trans-

mit antennas and any memoryless modulation, but we have verified it using com-

puter simulations for some ST codes constructed by our method. Table 3.1 shows

the minimum determinant values of the ST codes designed for 2, 3 and 4 transmit

antennas, and BPSK, QPSK, 8PSK, 16PSK and 4ASK constellations. Since the

values of the minimum determinants decay fast with the constellation size, the ST

codes designed by previously existing methods [59], [60], [61], [63], and the method

described in Chapter 2 may outperform the proposed ST codes in quasi-static fad-

ing environment. However, Theorem 3.3 and Table 3.1 suggest that if a temporally

evolving channel becomes constant for a short time period (for example a vehicle

stops at a red light), the proposed ST codes are still able to deliver the available

(in this case only spatial) diversity.

3.6 Discussion

In order to achieve a diversity advantage of KL, there must be at least K time

instants when the sent and the decoded channel symbol vectors are different. Thus,

the shortest error event must be at least K state transitions long. This means that

for a B-ary modulation (B branches emanating from each state), the encoder must

have at least Nmin = BK−1 states. Consequently, our ST codes achieve the desired

diversity level with the minimum possible trellis complexity.

Since the diversity does not depend on the dimensionality of the channel symbol

vectors, it is possible to design ST codes that can achieve a diversity advantage

of KL with encoders having less than K transmit antennas. However, our design

criterion provides extra performance gain in addition to the achieved minimum

diversity level. The uniqueness criterion guarantees that the probability of the
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error events decreases exponentially with their lengths. For a ST code that does

not satisfy this criterion, it is possible that the probability of a very long error

event (many bit errors) and a very short error event (a few bit errors) are in the

same order of magnitude, causing serious performance loss. On the other hand, the

uniqueness criterion ensures that the probability of the long error events decays

much faster than the probability of the short error events, as the SNR increases.

From Section 4, it can be seen that for encoders having Nmin states, in order to

satisfy the uniqueness criterion, the channel symbol vectors must have at least K

coordinates, so the encoder must have at least K transmit antennas.

3.7 Simulation Results

To illustrate the performance of the codes obtained by the proposed method, we

present some simulation results. The source symbols were transmitted in frames of

length 130, and the Viterbi algorithm with decoding depth of 20 state transitions

was used to decode the received signals. For the fast fading channel model, the path

gains between the transmit and the receive antennas were independent, complex,

zero mean, Gaussian random variables with unit variance at each discrete time

instant.

In the correlated fading case, the path gains were generated according to the

statistical model described in [74]. The base station (BS) was the transmitter and

the mobile terminal (MT) was the receiver. Both the BS and the MT were assumed

to have a uniform, linear array of isotropic antennas, and the MT was surrounded

by a ring of scatterers. The model parameters were: dB - BS antenna separation,

dM - MT antenna separation, D - distance between the BS and the MT, R - radius

of the scatterer ring, Ns - number of scatterers, β - direction of the BS antenna
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Figure 3.2: Geometric model for correlated fading simulations

array, γ - direction of the MT antenna array, σ - direction of the MT movement,

v - the magnitude of the MS speed, fc - the carrier frequency (or λc - the carrier

wavelength), and Ts - the channel symbol period.

The geometry of the model is shown in Figure 3.2 for two adjacent BS an-

tennas (BS0, BS1) and two adjacent MT antennas (MT0, MT1). The ith (i =

0, 1, . . . , Ns − 1) scatterer was at an angle θi from the middle point of the MT an-

tenna array. For each frame, the scatterer angles were randomly generated in the

range [−π, π] with uniform distribution. The effect of scatterer i was modeled as

multiplication of the incident signal by a scattering coefficient Si. The scattering

coefficients were modeled as independent, complex, zero mean, Gaussian random

variables with variance 1/Ns. Assuming that the arrival time differences between

the signals coming from different scatterers are negligible compared to one channel
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Figure 3.3: ST code for 2 antennas, QPSK

5 6 7 8 9 10 11 12 13 14 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

2TX/2RX antennas, QPSK

A
ve

ra
ge

 B
it 

E
rr

or
 R

at
e

Average SNR [dB]

High correlation  
Low correlation   
Fast fading       

Figure 3.4: ST code for 2 antennas, QPSK
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symbol period (i.e. flat fading), the path gain between transmit antenna k and

receive antenna l at discrete time t (t = 0, 1, . . .) was calculated as

αk,l(t) =
Ns−1∑
i=0

Sie
j2πfD cos(θi−σ)Tste−j 2π

λc
(dk

1(θi)+dl
2(θi)), (3.32)

where fD (fD = v/λc) is the maximum Doppler shift, dk
1(θi) is the distance between

transmit antenna k and scatterer i, and dl
2(θi) is the distance between scatterer i

and receive antenna l. It can be easily seen that for each k, l and t, αk,l(t) is a

complex, zero mean, Gaussian random variable with unit variance.

During the simulations, we used the following parameter values: D = 1km,

R = 20m, Ns = 20, β = 3π
4

rad, γ = π
4

rad, σ = 3π
4

rad, and v = 70km/h. Three

cases were considered: (a) high correlation (Ts = 50µs, fc = 900MHz, dB = 5λc,

dM = 0.6λc), (b) low correlation (Ts = 500µs, fc = 2GHz, dB = 25λc, dM = 5λc),

and (c) no correlation (fast fading). Note that the value of dM is significant only

if the MT has multiple receive antennas.

We present probability of bit error curves as functions of the average SNR per

source symbol at the receive antennas. Figure 3.3 depicts the performance of the

ST code designed by our method for 2 transmit antennas and QPSK constellation

(K = 2, B = 4, N = 4) with 1 receive antenna. The bit error rate curves for

the same code with 2 receive antennas are shown in Figure 3.4. Both curves

demonstrate that the spatio-temporal correlation has a significant impact on the

performance. Moreover, it can be observed that in the low correlation case, the bit

error probability curve becomes approximately parallel to the fast fading bit error

probability curve at high SNR. Therefore, they achieve the same diversity level,

validating our analysis.

Since we are not aware of any other code construction method for space-time

correlated channels, we compare our method with the ST codes of [66], [67] de-
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τ 2 3 4 5 6
δτ 24 32 64 128 256

δτ [63] 16 32 96 128 256

Table 3.2: Minimum norm products for 2 antennas, QPSK

signed for fast fading channels, and the ST code of [63] designed for quasi-static

fading channels. These ST codes represent point-solutions in the design space, and

they are used to verify the performance of the codes obtained via the proposed sys-

tematic construction method in the special cases where previously known solutions

exist.

Figure 3.5 shows the performance of the ST codes constructed for a 2 transmit

antenna system and QPSK modulation (K = 2, B = 4, N = 4) with 1 receive

antenna. All of these codes satisfy the uniqueness criterion. It is observed that all

codes have essentially the same performance, with the ST code from [63] being a

little better in the high correlation case and being a little worse in the fast fading

case. Note that our systematic design method resulted in a ST code that achieves

the same performance as the ST code of [67], which was found by exhaustive

search. The theoretical performance of the above codes was also compared. Table

3.2 shows the minimum norm product values δτ for the τ -long error events. The

entries in the second row of the table correspond to the ST codes of [66], [67]

and our method, while the third row contains the δτ values for the ST code of

[63]. The table entries were obtained by performing computer search. These δτ

values predict the similar performance of the methods described in [66], [67] and

the proposed approach, along with the slightly worse performance of the ST code

of [63] at high SNR.

The bit error rate curves for 3 transmit antennas and QPSK modulation (K =

3, B = 4, N = 16) with 1 receive antenna are depicted in Figure 3.6. Our code (the
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Figure 3.7: ST codes for 3 antennas, 8PSK
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Figure 3.8: ST codes for 4 antennas, 4ASK
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τ 3 4 5 6

δτ 384 384 2304 6144

δτ [63] 216 576 1728 2880

Table 3.3: Minimum norm products for 3 antennas, QPSK

ST code shown in Figure 3.1) is compared to the ST code described in [63]. These

codes also satisfy the uniqueness criterion. The performance of the two codes is

almost identical, and the bit error curves for the fast fading channel model and for

the low correlation channel model are approximately parallel at high SNR. The ST

code of [63], also found by computer search, performs slightly better in the high

correlation case, which is expected since this code was designed for quasi-static

channels. The minimum norm product values for the proposed method are given

in the second row of Table 3.3, and the third row contains the values for the ST

code given in [63]. The theoretical norm product values confirm the tendencies

observed in Figure 3.6.

The performance of our ST code constructed for 3 transmit antennas and 8PSK

modulation (K = 3, B = 8, N = 64) with 2 receive antennas is shown in Figure

3.7. The bit error rate curves of our 4 antenna 4ASK ST code (K = 4, B = 4,

N = 64) with 1 receive antenna can be observed in Figure 3.8. The behavior of

the curves are similar to that of the 2 and 3 transmit antenna cases. To the best

of our knowledge, no ST codes have been published that we could compare these

codes against.
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3.8 Chapter Summary

We derived the performance criteria for space-time correlated flat Rayleigh fading

channels, and we developed a systematic ST trellis code design method for an

arbitrary number of transmit antennas and any memoryless modulation. Based on

the theoretical and experimental results, we can draw the following conclusion.

If the space-time channel is not heavily correlated (i.e. the space-time corre-

lation matrix is of full rank), the space-time code design problem for correlated

channels can be reduced to the code design problem for fast fading channels, and

it is possible to achieve the diversity level available in fast fading environment.

Moreover, for communication systems having K transmit and L receive antennas,

the space-time correlated channel model does not limit the maximum achievable

diversity level to KL, as in the case of the quasi-static channel model. By increas-

ing the number of encoder and decoder states (increasing the length of the shortest

error event), arbitrarily high diversity order can be achieved.

The ST trellis codes constructed by the proposed method were also compared

to existing ST codes that represent point-solutions in our design space. The simu-

lations showed that our systematic design procedure results in codes that have the

same performance as the codes previously found by computer search, so our codes

are expected to perform very well in cases where exhaustive computer search is not

feasible. We also constructed ST trellis codes for 3 and 4 transmit antennas and

8PSK and 4ASK modulations. For these design parameters and non-quasi-static

channel models, no other ST trellis codes exist in the literature.
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Chapter 4

Fast Decoding of Space-Frequency

Block Codes

4.1 Introduction

The recently proposed space-time (ST) and space-frequency (SF) coded multiple-

input-multiple-output (MIMO) systems have promised considerable performance

improvement over the single-antenna systems. However, the computational com-

plexity of the maximum likelihood (ML) decoding algorithm may hamper the

widespread use of such systems, so the development of low complexity ST and

SF decoding algorithms is a problem of paramount importance.

Computationally efficient decoding algorithms have only been proposed for

decoding ST block codes in quasi-static, flat fading environment [32], [33], [76]. For

ST block codes transmitted over temporally evolving channels and for SF block-

coded MIMO-OFDM systems, where the channel changes along the frequency axis,

low complexity decoding algorithms still do not exist in the literature.

The sphere decoding algorithm was introduced in [75] assuming a single-antenna,
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real-valued fading channel model. Later results [76] [77] [79], generalized the algo-

rithm to complex valued MIMO systems. In [80], the sphere decoding algorithm

was applied to equalize uncoded MIMO systems. All of these works considered the

transmission of uncoded channel symbols (i.e no dependence among the channel

symbols transmitted at different times from different transmit antennas), or ST

coded systems that can be transformed into equivalent uncoded systems, assumed

that the channel is quasi-static and formulated the sphere decoding problem in the

real domain, so the proposed algorithms can only be used with modulation meth-

ods that can be decomposed into real and imaginary parts (for example, square

QAM).

In this chapter, we propose a computationally efficient decoding algorithm for

SF block codes. We formulate the sphere decoding problem in the complex domain,

which allows us to fully exploit the distance structure of complex signal constel-

lations. We develop a systematic method to transform the decoding problem into

an equivalent representation that is more appropriate for the purpose of sphere de-

coding. Then, we propose a modulation independent sphere decoding framework

by interpreting the sphere decoding problem as a greedy, constrained depth-first

search. Due to the modular structure of the framework, it can be used to construct

a decoding algorithm that can be used with any memoryless modulation, and it can

also be tailored to a particular modulation method by taking full advantage of the

geometric properties of the chosen signal constellation. Finally, for square QAM

and PSK constellations, we propose a fast, nearest neighbor search algorithm that

can considerably reduce the decoding complexity.

The organization of this chapter is as follows. Section 4.2 will introduce the

system model and the used notation. Section 4.3 will provide the problem formu-
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lation. An overview of the sphere decoding approach will be provided in Section

4.4, and this section will also summarize the state of the art. Section 4.5 will de-

scribe the proposed algorithm, and Section 4.6 will show and discuss the simulation

results, and Section 4.7 will summarize the content of this chapter.

4.2 System Model and Notation

Consider a SF-coded MIMO-OFDM system having K transmit antennas, L re-

ceive antennas and M sub-carriers, with M being a multiple of K. Suppose that

the frequency selective fading channels between each pair of transmit and receive

antennas have P independent delay paths and the same power delay profile. The

MIMO channel is assumed to be constant over each OFDM block period. The

channel impulse response from transmit antenna k to receive antenna l at time τ

is modeled as

hk,l(τ) =
P−1∑
p=0

αk,l(p)δ(τ − τp), (4.1)

where τp is the delay and αk,l(p) is the complex amplitude of the p-th path between

transmit antenna k and receive antenna l. The αk,l(p)’s are modeled as zero-mean,

complex Gaussian random variables with variances E[|αk,l(p)|2] = δ2
p. The powers

of the P paths are normalized such that
∑P−1

p=0 δ2
p = 1. From (4.1), the frequency

response of the channel is given by

Hk,l(f) =
P−1∑
p=0

αk,l(p)e−j2πfτp . (4.2)

We assume that the MIMO channel is spatially uncorrelated, i.e. the channel taps

αk,l(p) are independent for different indices (k, l).

The input bit stream is divided into b bit long segments, creating B-ary (B = 2b)

source symbols. The encoder forms M/K source symbol blocks, each containing
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ns source symbols. Source symbol si ∈ {0, 1, . . . , B − 1}, i = 0, 1, . . . , ns − 1. is

mapped onto a complex channel symbol (or constellation point) xi according to

xi = Ω(si), i = 0, 1, . . . , ns − 1,

where the function Ω(.) represents the modulation operation. The average energy

of the constellation will be denoted by Eavg.

Then, the SF encoder forms two-dimensional, square codewords from the chan-

nel symbols. The SF codeword corresponding to the t-th (t = 0, 1, . . . ,M/K − 1)

source symbol block can be expressed as a K by K matrix C:

C =




c1[Kt] c2[Kt] · · · cK−1[Kt]
c1[Kt + 1] c2[Kt + 1] · · · cK−1[Kt + 1]

...
...

. . .
...

c1[Kt + K − 1] c2[Kt + K − 1] · · · cK−1[Kt + K − 1]


 , (4.3)

where ck[i] denotes the channel symbol transmitted over the i-th sub-carrier by

transmit antenna k. We assume that each ck[i] is either zero, or a channel symbol

or a negative and/or complex conjugate of a channel symbol corresponding to a

source symbol in the appropriate source symbol block.

At the receiver, after matched filtering, removing the cyclic prefix, and applying

FFT, the received signal corresponding to the t-th source symbol block at sub-

carrier Kt + m (m = 0, 1, . . . , K − 1) and receive antenna l is given by

yl[Kt + m] =
K−1∑

k=0

Hk,l[Kt + m]ck[Kt + m] + nl[Kt + m], (4.4)

where Hk,l[i] = Hk,l(i∆f) is the channel frequency response at the i-th sub-carrier

between transmit antenna k and receive antenna l, ∆f = 1/T is the sub-carrier

separation in the frequency domain, and T is the OFDM symbol period. We

assume that the channel state information Hk,l[i] is known at the receiver, but not

at the transmitter. In (4.4), nl[i] denotes the additive complex Gaussian noise at
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the i-th sub-carrier at receive antenna l. The noise samples nl[i] are assumed to

be independent for different l’s and i’s.

In the sequel, we will focus our attention on decoding a single block, so a

simplified notation will be used by dropping the block index:

yl[m] =
K−1∑

k=0

Hk,l[m]ck[m] + nl[m], (4.5)

for m = 0, 1, . . . , K − 1. The noise samples nl[m] are assumed to have zero mean

and variance 1/(ργ), where the scaling factor γ is defined as

γ =
b

K2

1

Eavg

,

so ρ will be the signal to noise ratio per bit at each sub-carrier at each receive

antenna.

The above formulation can also be used to decode space-time block codes trans-

mitted over quasi-static or temporally evolving flat fading channels. In that case,

the frequency domain (the dimension along the index m) needs to be replaced

by the discrete time domain, and Hk,l[m] will be the path gain between transmit

antenna k and receive antenna l at time m.

In the sequel, the notation ||.|| will stand for the Frobenius norm of a vec-

tor or a matrix. The functions Re{.} and Im{.} extract the real and imaginary

parts,respectively, of a complex quantity.

4.3 Problem Formulation

In general, SF coding introduces spatial and frequency-domain dependence among

the code symbols ck[i] within a code block C. For example, in case of the 2 × 2

orthogonal design [32]

C =

[
x0 x1

−x∗1 x∗0

]
, (4.6)
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the channel symbols transmitted from different transmit antennas and through

different sub-carriers are clearly related. However, to be able to use a sphere de-

coder (to be able to make sequential decisions on the sent signal coordinates), it is

necessary to transform the received signal to an equivalent signal representation,

where the coordinates of the sent signal vector are independent. We have chosen

orthogonal and block-orthogonal designs of square size to construct SF codes since

in case of those codes, the transformation can be carried out easily. Orthogonal and

block-orthogonal designs can ensure that the code difference matrix correspond-

ing to any two distinct codewords have full rank [33], [41], achieving full spatial

diversity (a diversity order of KL). For 2, 3 and 4 transmit antennas, they can

also provide full symbol rate (1 symbol per sub-channel per channel use). They

cannot achieve full spatial and frequency diversity (a diversity order of KLP ) [51].

However, full-diversity SF codes can be constructed from orthogonal designs via a

mapping [56] [57], and this issue will be considered later in this section.

4.3.1 Two Transmit Antenna Case

For 2 transmit antennas (K = 2), the 2 × 2 orthogonal design (4.6) with symbol

rate 1 (ns = K = 2). is used to construct SF codes. From (4.5), the received signal

at receive antenna l can be expressed as

yl[0] = H0,l[0]x0 + H1,l[0]x1 + nl[0], and

yl[1] = −H0,l[1]x∗1 + H1,l[1]x∗0 + nl[1]. (4.7)

By taking the complex conjugate of the second line of (4.7), we obtain

y∗l [1] = −H∗
0,l[1]x1 + H∗

1,l[1]x0 + n∗l [1],
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so the transformed equivalent received signal vector yl = [ yl[0], y∗l [1] ]T for receive

antenna l can be rewritten in matrix-vector form as

yl = Hlx + nl,

where x = [ x0, x1 ]T is the transmitted channel symbol vector, nl = [ nl[0], n∗l [1] ]T

is the equivalent noise component, and Hl is defined as

Hl =

[
H0,l[0] H1,l[0]
H∗

1,l[1] −H∗
0,l[1]

]
.

By collecting the received signal and noise components corresponding to different

receive antennas in KL×1 vectors as y = [yT
0 , . . . ,yT

L−1]
T , and n = [nT

0 , . . . ,nT
L−1]

T ,

the equivalent received signal can be expressed as

y = Hx + n, (4.8)

where the KL×K matrix H is the equivalent channel matrix, defined as

H =




H0
...

HL−1


 . (4.9)

Note that the above described equivalent representation has the following prop-

erties that are important from the viewpoint of the sphere decoding algorithm.

First, the coordinates of the noise vector n are independent, zero mean, complex

Gaussian random variables with variance 1/(ργ). Second, the coordinates of the

x vector are independent. Third, the matrix H has at least as many rows as

columns, independently of the number of receive antennas. Fourth, since the en-

tries in the matrix H are complex, zero mean, Gaussian random variables and we

have assumed that the MIMO channel is spatially independent, the matrix H has

full (column) rank with high probability.
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4.3.2 Four Transmit Antenna Case

In case of 4 transmit antennas (K = 4), we have adopted the full-rank block

orthogonal design [41]

C =




x0 x1 x2e
jφ x3e

jφ

−x∗1 x∗0 −x∗3e
−jφ x∗2e

−jφ

x2e
jφ x3e

jφ x0 x1

−x∗3e
−jφ x∗2e

−jφ −x∗1 x∗0


 , (4.10)

which provides a symbol rate 1 (ns = K = 4). In (4.10), the channel symbols xi

are taken from the same constellation, and the rotation angle φ is chosen in such

a way that it can ensure the full rank of the code difference matrix for any two

distinct code matrices. The value of the optimal angle that maximizes the coding

advantage depends on the used constellation. Proceeding similarly to Section

4.3.1, the equivalent received signal vector for receive antenna l can be obtained

as yl = [ yl[0], y∗l [1], yl[2], y∗l [3] ]T , and the equivalent noise vector becomes nl =

[ nl[0], n∗l [1], nl[2], n∗l [3] ]T . The result is the matrix equation yl = Hlx + nl with

x = [ x0, x1, x2, x3 ]T and the matrix Hl, defined as

Hl =




H0.l[0] H1,l[0] H2,l[0]ejφ H3,l[0]ejφ

H∗
1,l[1] −H∗

0,l[1] H∗
3,l[1]ejφ −H∗

2,l[1]ejφ

H2,l[2] H3,l[2] H0,l[2]ejφ H1,l[2]ejφ

H∗
3,l[3] −H∗

2,l[3] H∗
1,l[3]ejφ −H∗

0,l[3]ejφ


 .

The y and n vectors are formed similarly to the 2 transmit antenna case, and the

equivalent received signal is given by (4.8), with the KL ×K equivalent channel

matrix H formatted according to (4.9). All the properties of H described in Section

4.3.1 also hold. Note that to make the decoding process easier, the effect of the

constellation rotation has been included in the equivalent channel matrix.

The full-rate SF code that achieves full spatial diversity for 3 transmit antennas

(K = 3) can be easily obtained from the 4× 4 block-orthogonal design by deleting

one column from the code matrix C, yielding a SF code with symbol rate 1 (ns = 4).
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The resulting equivalent channel model is very similar to the 4 transmit antenna

case, the only difference is that the entries in the matrices Hl corresponding to the

deleted transmit antenna index will be zero. For example, if the last column of C

is deleted (antenna index three), Hl becomes

Hl =




H0.l[0] H1,l[0] H2,l[0]ejφ 0
H∗

1,l[1] −H∗
0,l[1] 0 −H∗

2,l[1]ejφ

H2,l[2] 0 H0,l[2]ejφ H1,l[2]ejφ

0 −H∗
2,l[3] H∗

1,l[3]ejφ −H∗
0,l[3]ejφ


 .

4.3.3 Full-Diversity SF Codes

To our knowledge, full-rate (symbol rate 1) and full-diversity (diversity order of

KLP ) SF codes have not been proposed yet. In [56] [57], a method was proposed to

construct full-diversity SF codes from full-rank ST codes via a repetition mapping,

trading off data rate for performance. It was shown that by repeating each row of

the ST code matrix p times (p ≤ P ), a diversity order of KLp can be achieved. For

instance, for MIMO channels with at least two independent delay paths (P ≥ 2),

the SF code given in (4.6) achieves a diversity of 2L, while the repetition coded

SF code

C =




x0 x1

x0 x1

−x∗1 x∗0
−x∗1 x∗0


 (4.11)

can achieve a diversity order of 4L. Now we demonstrate that this construction

can also be transformed into an equivalent representation that is convenient for

sphere decoding through a simple K = 2, L = 1 example with repetition 2. In this

case, the equivalent received signal vector becomes y = [ y0[0], y0[1], y∗0[2], y∗0[3] ]T ,

and the equivalent noise component is n = [ n0[0], n0[1], n∗0[2], n∗0[3] ]T . Then, the

equivalent received signal vector can be expressed as in (4.8), with the channel
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symbol vector x = [ x0, x1 ]T and the equivalent channel matrix

H =




H0,0[0] H1,0[0]
H0,0[1] H1,0[1]
H∗

1,0[2] −H∗
0,0[2]

H∗
1,0[3] −H∗

0,0[3]


 .

The generalization for 3 and 4 transmit antennas, more receive antennas and rep-

etitions is straightforward.

4.4 Sphere Decoding

From communication perspective, the sphere decoding problem can be formulated

as follows. Assume that for a communication system, the received M × 1 signal

vector y can be expressed as

y = Hx + n,

where x is the M×1 sent complex signal vector taken from a finite set X , H is the

M × N complex channel matrix, assumed to be known by the receiver, and n is

the M × 1 zero mean, white, complex Gaussian receiver noise vector. We assume

that M ≥ N , the coordinates of x are independent and H is of full column rank

(rank N). In case of the SF-coded MIMO-OFDM systems, we have M = KL and

N = ns.

The maximum likelihood decoding amounts to finding the vector x̂ML such

that

x̂ML = arg min
x∈X

||y −Hx||2.

Unfortunately, in some cases, this can only be performed by exhaustive search

over the elements of X , which may result in prohibitively high computational

complexity. To alleviate this computational burden, sphere decoding was proposed

[75] [76] [77] [78] [79] [80], where the decoder tries to identify a subset of X that
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results in noiseless received signal vectors that lie within a hyper-sphere of radius r

centered around the the actually received (noisy) signal vector. Then, the decoder

only searches over this subset to find the signal vector that is closest to the center

point. More formally:

1) Find all vectors x ∈ X satisfying ||y −Hx||2 ≤ r2.

2) Declare the code vector minimizing ||y −Hx||2 to be the decoded code

vector.

The basic idea behind the method is to transform the quantity ||y −Hx||2 in such

a form that the decisions on the coordinates of x can be made sequentially. An

implementation of the algorithm [79] [80] proceeds in the following way. First, the

problem is expressed in the real domain:

yR = HRxR + nR,

where yR = [Re{yT}, Im{yT}]T , xR = [Re{xT}, Im{xT}]T , nR = [Re{nT}, Im{nT}]T ,

and the 2M × 2N real matrix HR is defined as

HR =

[
Re{H} −Im{H}
Im{H} Re{H}

]
.

It is assumed that the coordinates of xR are integers (i.e. the set X contains

points from a 2-dimensional square lattice). Then, the the zero-forcing solution

zR = H+
RyR is found, where H+

R is the pseudo-inverse of HR, defined as H+
R =

(HT
RHR)−1HT

R. The vector zR can also be thought of as a vector that contains the

coordinates of the received signal point yR with respect to the lattice generated

by HR. Since ||y −Hx||2 = ||yR −HRxR||2 can be rewritten as [80]

||yR −HRxR||2 = ||HR(zR − xR)||2 + ||yR||2 − ||HRzR||2,
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the sphere decoding problem can be expressed in a different form: Find all vectors

xR that satisfy ||HR(zR − xR)||2 ≤ r′2 with r′2 = r2 − ||yR||2 + ||HRzR||2. The

next step is to calculate the real Cholesky (or QR) decomposition of the matrix

HT
RHR, yielding a 2N × 2N upper triangular matrix RR with positive diagonal

entries such that RT
RRR = HT

RHR. By taking advantage of the relationship

||HR(zR − xR)||2 = (zR − xR)THT
RHR(zR − xR) =

= (zR − xR)TRT
RRR(zR − xR) = ||RR(zR − xR)||2,

and obtaining a 2N × 2N matrix QR = {Qk,l} from the entries of the matrix

RR = {Rk,l} as

Qk,l =





R2
k,k if k = l

Rk,l

Rk,k
otherwise,

(4.12)

||HR(zR − xR)||2 can be expressed as [75]

||HR(zR − xR)||2 =
2N−1∑

k=0

Qk,k

(
zk − xk +

2N−1∑

l=k+1

Qk,l(zl − xl)

)2

. (4.13)

In (4.13), xk and zk (k = 0, 1, . . . , 2N − 1) denote the k-th coordinates of xR

and zR, respectively. The next step is to define the quantities Tk and αk (k =

0, 1, . . . , 2N − 1) recursively as follows:

Tk =





r′2 for k = 2N − 1

Tk+1 −Qk+1,k+1(αk+1 − xk+1)
2 for k = 2N − 2, 2N − 3, . . . , 0,

(4.14)

and

αk = zk +
2N−1∑

l=k+1

Qk,l(zl − xl). (4.15)

The quantity Tk can be thought of as the modified partial sphere constraint for

xk given x2N−1, x2N−2, . . . , xk+1, and αk can be interpreted as the k-th received
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signal component given x2N−1, x2N−2, . . . , xk+1. The algorithm that finds all pos-

sible values of xk satisfying the sphere constraint assuming that Tk+1, αk+1 and

x2N−1, x2N−2, . . . , xk+1 have already been determined can be described as [75]:

1) Calculate Tk and αk according to (4.14) and (4.15).

2) Find all values of xk such that (αk−xk)
2 ≤ Tk/Qk,k. Since xk are assumed

to be integers, the range for the possible values of xk will be constrained as

Lk ≤ xk ≤ Uk, where

Lk =

⌈
αk −

√
Tk

Qk,k

⌉
, and Uk =

⌊
αk +

√
Tk

Qk,k

⌋
.

The size of the used constellation (i.e. the maximum and minimum values

of xk) will also limit the range. Now, starting form the lower bound Lk and

finishing at the upper bound Uk, it is easy to enumerate only those xk values

that satisfy the current partial constraint.

Therefore, to find all xR vectors satisfying the sphere constraint, we start with the

last coordinate, x2N−1, and enumerate all admissible values it can take on using

steps 1) and 2). Then, we move one level further, and for each x2N−1 value, we

go over all possible values of x2N−2 in a recursive manner. By repeating the same

procedure, we reach the last level, making decisions on x0.

Once a valid xR vector is found, the sphere radius can be adjusted so that the

point HRxR would lie exactly on the surface of the new sphere:

r′2 = T2N−1 − T0 + Q0,0(α0 − x0)
2.

Then, the search continues from x2N−1 again, making sure that each xR vector is

only considered once. By shrinking the sphere, further complexity reduction can

be achieved, as the algorithm excludes some of the xR vectors that would generate
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HRxR vectors lying further away from the center than the signal point found most

recently. Since we are looking for the closest signal point, this step does not result

in any performance degradation.

The algorithm proposed in [79] suggested further improvement. It is based on

the observation that if the algorithm can find a signal vector xR such that the

corresponding HRxR vector is very close to the center yR, most of the candidate

xR vectors can be eliminated without enumerating them by decreasing the sphere

radius. Therefore, the algorithm at level k enumerates all possible values of xk,

sorts them according to the metric dk = (αk−xk)
2 and explores the search space in

this order (the xk closest to αk is searched first). If a valid xR vector is found, the

partial constraints Tk and the bounds Lk and Uk for k = 2N − 1, 2N − 2, . . . , 0 are

reevaluated, and at all levels, the candidate solutions not satisfying the new partial

constraints can be easily eliminated. When the algorithm terminates, the most

recently found xR vector is declared as the decoded signal vector. This approach

cannot guarantee that the first xR that is found is the closest signal point as it

makes greedy decisions at each level, but most of the time it can significantly

reduce the search space.

Note that the algorithm in [79] assumed that ||yR−HRxR||2 = ||HR(zR−xR)||2,
so it can only be used in the M = N case. On the other hand, the authors of

[80] fixed the radius of the sphere, so the algorithm presented here is actually a

combination of those in [79] and [80].

The decoding problem for the M < N case was considered in [77], [78] for full

row-rank channel matrices. By calculating the general Cholesky factorization of

the matrix HT
RHR, a sphere decoding algorithm similar to the one described above

can be formulated. However, the resulting RR matrix will have zero entries Rk,l = 0
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for k = 2M, 2M + 1, . . . , 2N − 1, so the last 2(N −M) diagonal entries of the Q

matrix will also be zero. (The Qk,l, k 6= l, values for k = 2M, 2M+1, . . . , 2N−1 are

by definition zero.) As a consequence, for k = 2M, 2M + 1, . . . , 2N − 1, the lower

bounds Lk become−∞ and the upper bounds Uk become +∞, requiring exhaustive

search along those signal coordinates. This means that if N is considerably larger

than M , the decoding complexity may become impractically high, so it is more

desirable to formulate the problem in such a way that the resulting dimensions

would yield M ≥ N .

4.5 The Proposed Algorithm

Despite the recent advances in sphere decoding described in the previous section,

the existing methods have some disadvantages. Most decoding approaches were

formulated in the real domain, limiting their use in cases where the applied com-

plex constellation can be decomposed into the product of two real constellations

(for example, square QAM). Moreover, as a result of real domain processing, at

each stage, only one-dimensional projections of the constellation are available, so

the algorithm cannot take full advantage of the distance properties of the two-

dimensional constellation. The only complex-domain sphere decoding algorithm

was described in [23]. This work considered iterative (turbo) decoding in a MIMO

system where linear ST mapping was combined with an outer channel code, and

the idea of the sphere detector was used to approximate the log-likelihood ratio in

a computationally efficient way. The proposed approach was specific to PSK mod-

ulation, or modulations that can be decomposed into PSK modulations. Finally,

the most efficient previously proposed algorithm [79] enumerates all possible xk

values that satisfy the current partial constraint, and then sorts them. Since most
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candidate values will be eliminated during the decoding process, enumerating and

sorting them creates unnecessary computational overhead.

Motivated by these observations, in this work, we propose a general framework

for decoding SF block codes constructed from orthogonal and block-orthogonal

designs. The framework is formulated in the complex domain, and it can be used

with any memoryless modulation method. To achieve flexibility, we also propose

a decoding algorithm that does not utilize any information about the used con-

stellation, so it can decode SF codes using any memoryless modulation. Moreover,

to maximize computational efficiency, we propose a fast searching algorithm that

fully takes advantage of the chosen modulation method and avoids the overhead

caused by unnecessary enumeration and searching.

We have divided the description of the algorithm into two stages. The first

stage, the preprocessing stage, calculates the zero forcing solution vector, the

Cholesky factorization, and produces the needed quantities for the searching stage.

The second stage actually performs the search for the decoded channel symbol vec-

tor.

4.5.1 The Decoding Algorithm I: Preprocessing Stage

The task of this stage is similar to the computations described in the first part of

Section 4.4. The main difference is that now all quantities involved are complex.

First, we calculate the complex Cholesky factorization of the matrix HHH,

obtaining an N × N complex, upper triangular matrix R = {Rk,l} with real and

positive entries along the main diagonal. A possible implementation of the decom-

position algorithm will be given later for the purpose of complexity analysis. Then,

the zero-forcing solution z = H+y needs to be calculated. Note that this can be
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done more efficiently than the straight calculation z = (HHH)−1HHy. Calculating

the vector z is equivalent to finding a vector z such that

HHHz = HHy. (4.16)

By defining a vector b as b = HHy, and using the Cholesky decomposition HHH =

RHR, (4.16) can be rewritten as

RHRz = b.

As a consequence, the vector z can be obtained as follows.

1) Calculate b = HHy.

2) Solve the lower triangular system RHw = b for w.

3) Solve the upper triangular system Rz = w for z.

Since steps 2) and 3) only require back substitution (O(N2) operations), the matrix

inversion or the Gaussian elimination (both O(N3) operations) can be avoided, so

the complexity is reduced. In case of problems of small size (for example, 2 transmit

antennas), the difference is not significant, but for larger systems, considerable

complexity reduction can be achieved. The final step is to compute the modified

radius

r′2 = r2 − ||y||2 + ||Hz||2,

and the N ×N complex Q = {Qk,l} matrix according to (4.12).

Complexity Analysis

This subsection compares the computational complexities of the real and complex

implementations of the preprocessing stage in terms of the number of real floating
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Algorithm Number of Number of Num. of Num. of
component additions multiplications divisions sq. roots

Calculating the
HHH matrix 4MN2 − 2N2 4MN2 0 0
Calculating the
Cholesky fact. 1

3
(2N3+3N2+N) 1

3
(2N3+6N2+4N) N N

Calculating
b = HHy 4MN − 2N 4MN 0 0
Solving two
triang. systems 4N2 − 4N 4N2 − 4N 4N 0
Calculating the
radius r′2 4MN + 2M 4MN + 4M 0 0
Calculating the
Q matrix 0 N N2−N 0

Table 4.1: Number of real operations for the complex implementation

L = COMPLEX CHOLESKY(A)
1. for i = 0, 1, . . . , N − 1
2. for k = i, i + 1, . . . , N − 1
3. vk = Ak,i

4. end for
5. for k = 0, 1, . . . , i− 1
6. for l = i, i + 1, . . . , N − 1
7. vl = vl − L∗i,k · Ll,k

8. end for
9. end for

10. x = 1/
√

vi

11. for l = i, i + 1, . . . , N − 1
12. Ll,i = x · vl

13. end for
14. end for

Table 4.2: The implemented complex Cholesky decomposition algorithm
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point operations. We provide the exact number of real additions (and subtrac-

tions), multiplications, divisions and square root operations per code block.

Let us have a take a closer look at the complex implementation first, assuming

that the M × N matrix H is given. Table 4.1 summarizes the necessary number

of real operations for each component of the preprocessing stage. One complex

addition was counted as two real additions, and one complex multiplication was

counted as four real multiplications and two real additions. Since in the prepro-

cessing stage, complex quantities are divided only by real quantities, one complex

division was counted as two real divisions. The square root operation was applied

only to real quantities. One squared magnitude operation was counted as two real

multiplications and one real addition.

The first step is to calculate the matrix HHH. This is followed by the complex

Cholesky decomposition algorithm, presented in Table 4.2. The algorithm is a sim-

ple extension of the ”Gaxpy” version of the real Cholesky decomposition algorithm

[83]. The input of the algorithm is an N ×N complex Hermitian, positive definite

matrix A = {Ak,l}, so in our case A = HHH. The output is an N ×N complex,

lower triangular matrix L = {Lk,l} with real and positive entries along the main

diagonal satisfying LLH = A. The upper triangular R is obtained as R = LH.

The complex vector v = {vk} serves as temporary storage. If A is positive defi-

nite, the quantity vi in line 10. is always positive and real, so the (numerical) rank

deficiency of HHH can be checked by checking whether vi is zero between lines 9.

and 10. Having calculated the Cholesky decomposition, we need to calculate the

b vector, and solve two N ×N complex triangular systems to obtain the vector z.

Finally, the radius r′2 and the entries of the Q matrix need to be calculated.

The computational complexity of the real implementation can be determined
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Algorithm Number of Number of Num. of Num. of
component additions multiplications divisions sq. roots

Calculating the
HT

RHR matrix 8MN2 − 8N2 8MN2 0 0
Calculating the
Cholesky fact. 4

3
(N3 −N) 1

3
(4N3+6N2+2N) 2N 2N

Calculating
bR = HT

RyR 4MN − 2N 4MN 0 0
Solving two
triang. systems 4N2 − 2N 4N2 − 2N 4N 0
Calculating the
radius r′2 4MN + 2M 4MN + 4M 0 0
Calculating the
QR matrix 0 2N 2N2 −N 0

Table 4.3: Number of real operations for the real implementation

similarly. In this case, all operations are real, but the HR matrix has 2M rows

and 2N columns. The algorithm of Table 4.2 can also be used to produce the

real Cholesky decomposition of A = HT
RHR by replacing N by 2N , using real

operations and ignoring the complex conjugation in line 7. The number of real

operations for the real implementation is given in Table 4.3.

Comparing the operation counts in Tables 4.1 and 4.3, it is apparent that the

complex implementation of the preprocessing stage has lower computational com-

plexity. Taking into account only the dominant terms MN2 and N3, the complex

version requires about half of the number of real additions and multiplications.

The complex implementation needs N2 + 4N real divisions per code block, while

the real implementation needs 2N2 + 5N , approximately twice as many. Finally,

the number of square root operations for the complex version is exactly the half of

that for the real version. In summary, by implementing the preprocessing stage in

the complex domain, for each operation, the operation count can be approximately

halved compared to the real implementation.
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4.5.2 The Decoding Algorithm II: Searching Stage

Following similar arguments to those described in Section 4.4, the sphere equation

can be expressed as

||H(z− x)||2 =
N−1∑

k=0

Qk,k

∣∣∣∣∣ zk − xk +
N−1∑

l=k+1

Qk,l(zl − xl)

∣∣∣∣∣

2

, (4.17)

where xk and zk denote the k-th (k = 0, 1, . . . , N − 1) coordinates of the vectors x

and z, respectively. The quantities Tk and αk, k = 0, 1, . . . , N − 1, are now defined

as:

Tk =





r′2 for k = N − 1

Tk+1 −Qk+1,k+1|αk+1 − xk+1|2 for k = N − 2, N − 3, . . . , 0,

(4.18)

and

αk = zk +
N−1∑

l=k+1

Qk,l(zl − xl) = zk +
N−1∑

l=k+1

Qk,l∆l, (4.19)

where ∆k = zk − xk is defined for computational convenience.

The task of the search stage is to go over the coordinates of x sequentially and

enumerate only those xk values that satisfy the current partial constraint. However,

since the objective is to devise a sphere decoding framework that can be used with

an arbitrary constellation, the coordinates xk may take on any complex value. As

a consequence, the method described in Section 4.4 cannot be used to find upper

and lower bounds on the values of xk. Moreover, the original sphere decoding

algorithm [75] was derived from an algorithm that was designed for finding the

shortest vector in a lattice [81]. In our case, the xk values are not integers, so the

set of vectors {Hx} does not form a lattice.

To get around the above problems, we provide an alternative interpretation

for the sphere decoding algorithm. We abandon the lattice concept and look at
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Figure 4.2: The flowchart of the decoding algorithm
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sphere decoding as a discrete optimization problem. The objective function to be

minimized is ||y −Hx||2 over all x ∈ X vectors. The search space to be explored

can be represented by a tree, as shown in Figure 4.1 in case of the N = 2, B = 4

example. From the root of the node (level k = 1), there are B branches leading to

B nodes corresponding to the different values of the source symbol s1, forming the

0th level (k = 0) of the tree. The source symbol values s1 are mapped to channel

symbols according to x1 = Ω(s1). For each value of s1, there are B possible values

of the source symbol s0, forming the last (-1st) level of the tree. The corresponding

channel symbol is x0 = Ω(s0). The tree levels have been indexed in such a way that

at level k, the possible values of sk (and xk) are enumerated. If we do not take the

sphere constraint into account, exploring all the leaf nodes of the tree corresponds

to exhaustive search. However, at level k, the partial constraint Tk eliminates

some of the branches, so those branches will not have to be explored. Moreover,

by finding a valid candidate x (visiting one of the leaf nodes), may also result in

further search space reduction, as the radius of the sphere can be decreased. This

suggests that the tree should be explored in a depth-first manner. The dummy

constraint T−1 represents the “surplus” constraint value after a candidate solution

has been found, and its value will be used to decrease the sphere radius. Finally, by

exploring the nodes at level k in the order of the increasing metrics dk = |αk−xk|2,
we perform a greedy search on the tree. For these reasons, the proposed sphere

decoding algorithm can be interpreted as a greedy, constrained, depth-first search

algorithm.

The flowchart of the algorithm can be observed in Figure 4.2. The branching

points have been numbered for easier explanation. The variable k indexes the

levels (the depth) of the tree and the coordinates of the x vector. The variable
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d indicates the direction of the search. If its value is “DOWN”, then the node

currently being explored is visited for the first time: it was reached from a parent

node from above. It the value of d is “UP”, the current node has been visited

before, and it was reached again from a child node below. The two cases need to

be handled differently since the list of possible xk values is generated only when a

node at level k is visited for the first time.

The algorithm starts at the root of the tree, and initializes the necessary vari-

ables. We begin the exploration with the last coordinate, xN−1. The variable nc

counts the number of candidate solutions that have been generated (the number

of times the tree-search reaches the bottom level). Then, we enter the main loop

of the algorithm. At point (#1), the level index k is checked. If it is non-negative,

the bottom level of the tree has not been reached yet, so we need to continue

the exploration. At point (#2), the algorithm checks whether d=”DOWN”, i.e.

whether the current node is visited for the first time. If so, the current value of αk

is calculated, and then the function SYMLIST generates the list of possible source

symbols sk,i, whose corresponding channel symbols xk,i = Ω(sk,i) satisfy the nor-

malized partial constraint |αk−xk,i|2 ≤ Tk/Qk,k. The SYMLIST function takes αk

and the normalized partial constraint Tk/Qk,k as inputs and produces 3 outputs.

The first output, nk (0 ≤ nk ≤ B), is the number of symbols satisfying the current

partial constraint, so there will be nk branches emanating from the current node.

The second output is the symbol list sk = [ sk,0, sk,1, . . . , sk,nk−1 ]T , and the vector

dk = [ dk,0, dk,1, . . . , dk,nk−1 ]T whose coordinates are the metrics dk,i = |αk − xk,i|2.
The symbols in sk are ordered according to increasing dk,i values. The last step of

this block is to initialize the k-th symbol pointer, pk, to point to the first element

of sk.
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At point (#3), the algorithm checks whether there are any symbols on the list.

If there is at least one, we take the first source symbol from the list, calculate

the corresponding channel symbol, update the current ∆k value, determine the

partial constraint for the next level, and move one level down on the tree. Since

the direction was previously set to ‘DOWN”, there is no need to change it. If there

are no symbols on the list, we reach to point (#4), where we check the current

level. If it is the top level (k = N − 1), the algorithm terminates without solution.

If it is not the top level, we change directions and move back up to the parent node

of the current node to continue the search.

If the direction is “UP” at point (#2), the current node has been visited before.

In this case, we reach point (#5) to check whether all source symbols (all branches

emanating from this node) have been explored. If there are source symbols left

on the list, we increment the symbol pointer pk to point to the next symbol, take

the next source symbol from the list, calculate the corresponding channel symbol,

update the current ∆k value, determine the partial constraint for the next level,

and move one level down on the tree. Since we change direction, the value of d

has to be set to “DOWN”. If there are no source symbols left on the list, we get

to point (#6) to check whether we are at the top level (k = N − 1). If so, the

algorithm terminates. If the value of nc is zero, no solution was found, otherwise

the algorithm was able to find at least one x vector satisfying the sphere constraint.

If the algorithm has not reached the top level yet, it moves one level up to the

parent node to continue the search. The value of d was previously set to “UP”, so

we do not need to change it.

Finally, if the value of k becomes negative at point (#1), we have reached the

bottom level, so a valid candidate solution x has been found. Since the radius is
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n = UPDATE(n, d, T )
1. i = 0
2. while di ≤ T & i < n
3. i = i + 1
4. end for
5. return(i)

Table 4.4: The implemented UPDATE algorithm

reduced each time a candidate solution is found, the last x vector is the best solu-

tion (i.e. closest to the center) so far, so the corresponding source symbol vector is

saved by overwriting the previous solution. Then, all partial constraint values are

adjusted such that the last found solution satisfies the constraints with equality

(the “surplus” partial constraint is subtracted from each partial constraint). The

source symbol lists are also modified by the UPDATE function, which keeps only

those source symbols on the list whose corresponding dk metric values satisfy the

new partial constraints. Since the symbols are ordered according to the corre-

sponding dk values, this can be done simply by changing the value of nk at each

level. The implemented UPDATE function is shown in Table 4.4. It simply goes

over the coordinates di of the metric vector d until it encounters one that does

not satisfy the constraint T or reaches the end of the list. The symbol “&” here

stands for the logical AND operation. After updating the constraints and possibly

reducing the search space by shortening the symbol lists, the algorithm increments

the number of candidate solutions found (nc), and moves back up on the tree to

the parent node of the current leaf node to continue the search.

Note that the functions SYMLIST and UPDATE have been extracted from the

flowchart to keep the presentation simple, but they need not be implemented as

functions to reduce the overhead caused by function calls and returns.

Since the algorithm makes decisions based on variables that are functions of
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(s,d,n) = SYMLIST(α, T )
1. n = 0
2. for s = 0, 1, . . . , B − 1
3. x = Ω(s)
4. d = |α− x|2
5. if d > T
6. continue
7. end if
8. i = 0
9. while di ≤ d & i < n

10. i = i + 1
11. end while
12. n = n + 1
13. for j = n− 2, n− 3, . . . , i
14. dj+1 = dj

15. sj+1 = sj

16. end for
17. di = d
18. si = s
19. end for
20. return(s,d,n)

Table 4.5: The implemented modulation-independent symbol list generation algo-
rithm
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random quantities, it is very hard to calculate its computational complexity ac-

curately. Other researchers could only determine approximate asymptotic results

[81] on the order of the number of operations, or provide formulas for the approxi-

mate complexity that can only be evaluated numerically [82]. Both works assumed

lattice structure, i.e. the coordinates of x were integers, which is not true in our

case. Moreover, asymptotic results on the order of the operations are not appro-

priate for the comparison of two sphere decoding algorithms, as they may hide

any constant factors, and the dimensionality of the problem (the values M and N)

remains strictly bounded. Therefore, we have chosen simulation based complexity

comparison by counting the number of operations and averaging them over a large

number of experiments.

The algorithm of Figure 4.2 is only a general framework that performs a greedy,

constrained, depth-first search. The heart of the algorithm is the function SYM-

LIST, which creates the source symbol list. The efficiency of the sphere decoding

algorithm largely depends on the efficiency of this function. Moreover, by using

different implementations of the SYMLIST function, the general framework can be

tailored to the particular properties of the chosen constellation. In the following

subsections, this possibility will be explored further.

4.5.3 Modulation-Independent Search

First, we assume that there is no information available on the used constellation, so

we have to develop an algorithm that would work with any memoryless modulation

method. In this case, to create the source symbol list, we need to enumerate all

possible source symbols, and sort the ones that satisfy the partial constraint, and

put them onto the symbol list. The algorithm shown in Table 4.5 does exactly this
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using the idea of the insertion sort algorithm [84]. The inputs are the value of α

and the partial constraint T , and the outputs are n, the number of symbols on the

list, the symbol list s = [ s0, s1, . . . , sn−1 ]T , and the corresponding metric list d =

[d0, d1, . . . , dn−1 ]T . The algorithm goes over all possible source symbols, calculates

the corresponding channel symbols and checks whether the partial constraint T is

satisfied. If not, the “continue” instruction jumps to line 19. and the execution

continues with the next iteration on s. If the constraint is satisfied, the source

symbol s is inserted into the list s according to the corresponding d metric. Lines

8-11. find the place of the new entry on the list, and the location is the value of

i. Then, the number of items on the list gets incremented, and all elements on

the list from the i-th position are shifted to accommodate the new symbol (lines

13-16.). Finally, the new symbol and the corresponding metric are inserted into

the list.

This algorithm is not expected to perform very well, as it does not take advan-

tage of the geometry of the used constellation. However, even without any infor-

mation on the applied modulation method, the computational complexity can be

significantly reduced compared to the ML decoding algorithm, and this version of

the algorithm can be used as a baseline system for the algorithms to be presented

in the next subsections.

4.5.4 A Search Method for PSK

The authors of [23] considered the problem of calculating the log-likelihood ratio

in an efficient way for iterative decoding. They applied the idea of sphere decoding

to limit the number of bit sequences to search over. The problem of finding all

signal points of a PSK constellation that lie closer to the point α than a threshold
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T was solved in the following way.

Assume that the used modulation method is B-ary PSK, so the modulation

mapping is given by

x = Ω(s) = rejφ = rej( 2π
B

s+δ), s ∈ {0, 1, . . . , B − 1}. (4.20)

In (4.20), r is the radius of the constellation (usually unity), and δ is the rotation

angle of the constellation (usually zero). The average energy of the constellation

is Eavg = r2. By calculating the magnitude and angle of α as

rα = |α|

φα = arc tan(Im{α},Re{α}),

where arc tan(.,.) is the four-quadrant arcus tangent function, the constraint on

the signal point x can be expressed as [23]

|α− x|2 = r2 + r2
α − 2rrα cos(φ− φα) ≤ T,

which yields the condition

cos(φ− φα) ≥ η =
1

2rrα

(r2 + r2
α − T ).

If η > 1, there are no signal points satisfying the partial constraint, and if η < −1,

all signal points satisfy the constraint. If −1 ≤ η ≤ 1, those signal points lie inside

the circle with center point α and radius
√

T that satisfy

|φ− φα| ≤ arc cos(η).

Therefore, the search can be restricted as [23]

L ≤ s ≤ U,
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where the lower bound L and the upper bound U are given by

L =

⌈
B

2π
(φα − arc cos(η)− δ)

⌉
, and

U =

⌊
B

2π
(φα + arc cos(η)− δ)

⌋
. (4.21)

Based on the above discussion, a sphere decoding algorithm can be obtained by

using the framework of Figure 4.2 and by constructing a SYMLIST function similar

to that in Table 4.5:

1) Calculate the bounds L and U according to (4.21).

2) Go over all source symbols s between L and U and insert them into the

symbol list one by one according to the metric |α− x|2.

4.5.5 The Fast Search Method

Since the real implementation of the sphere decoding algorithm works with the

one-dimensional projections of the two-dimensional constellation, sorting the one-

dimensional signal values at two different levels cannot guarantee that the two-

dimensional signal values will be sorted according to the correct order. This sug-

gests that only a complex implementation can take full advantage of the geometry

of the used constellation.

Moreover, the previously proposed, most efficient sphere decoding approach

[79] enumerates all signal points x satisfying the partial constraint at all levels,

and then sorts them. However, it was observed through simulations that most of

the time, the first candidate solution x found by the greedy tree search is actually

the ML solution, so only one leaf node is explored during the decoding of one SF

code block with high probability. This phenomenon is hard to show analytically, as
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the value of αk at level k depends on not only the received signal and the channel

state, but also the previous decisions made on xN−1, xN−2, . . . , xk+1. Nonetheless,

this means that enumerating and sorting all signal points that satisfy the partial

constraints at all levels is redundant because most source symbols on the symbol

lists get eliminated via radius reduction and the subtrees corresponding to their

values will never be explored.

To further improve the computational efficiency of the sphere decoding algo-

rithm, we propose a fast search approach by making the most probable case more

efficient. The proposed fast search algorithm essentially combines the enumera-

tion and sorting stages by performing nearest neighbor search at each tree level.

Therefore, the symbol list generation algorithm SYMLIST enumerates only a few

nearest signal points x to α and ignores the signal points that are further away.

Then, for those few signal points, the algorithm checks whether they satisfy the

current partial constraint one by one. As a consequence, we can avoid the unnec-

essary enumeration and sorting operations. At low SNR, this approach may cause

performance degradation, but at higher SNR, it is possible to gain considerable

complexity reduction and still achieve the ML decoding performance.

Square QAM Modulation

If the used constellation is a B-ary square QAM, it is most convenient to decompose

the complex quantities to real and imaginary parts. However, at each level, the

decision on the complex symbols is made taking both the real and imaginary parts

into account, as opposed to the real implementation of Section 4.4, where the

decisions on the real and imaginary parts of the symbols are made separately at

different tree levels.
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Figure 4.3: The fast QAM search algorithm

The source symbol s is then the concatenation of its real and imaginary parts

as: s = (sR, sI), sR, sI ∈ {0, 1, . . . ,√B − 1}, and the complex channel symbol

corresponding to this source symbol is

x = Ω(s) =

(
sR −

√
B − 1

2

)
+ j

(
sI −

√
B − 1

2

)
.

The average energy of the constellation is Eavg = B−1
6

. For the simplicity of the

explanation, we neglect the edge effects, and assume that the point α falls in a

region where it has four neighboring signal points, as shown in Figure 4.3. The

basic idea of the fast search method is to identify these four constellation points

efficiently by exploiting the geometrical properties of the QAM constellation. The

first step is to express the value of α in the coordinate system of the real and

imaginary parts of the source symbols as

sR
α = Re{α}+

√
B − 1

2
, and sI

α = Im{α}+

√
B − 1

2
.

Then, the source symbols corresponding to the four neighboring constellation

points can be identified easily. For example, in Figure 4.3, the source symbol

115



(s,d,n) = SYMLIST(α, T )
1. n = 0

2. sR
α = Re{α}+

√
B−1
2

3. sI
α = Im{α}+

√
B−1
2

4. cR
2 =

⌊
sR

α

⌋
, cI

2 =
⌊
sI

α

⌋
5. cR

0 = cR
2 + 1, cI

0 = cI
2 + 1

6. cR
1 = cR

2 , cI
1 = cR

0

7. cR
3 = cR

0 , cI
3 = cI

2

8. s̃R
α = sR

α − cR
2

9. s̃I
α = sI

α − cI
2

10. i = 0
11. if s̃R

α > 0.5
12. i = i + 2
13. end if
14. if s̃I

α > 0.5
15. i = i + 1
16. end if
17. for k = 0, 1, 2, 3
18. l = Oi,k

19. x = Ω(cl)
20. d = |α− x|2
21. if d ≤ T
22. sn = cl

23. dn = d
24. n = n + 1
25. end if
26. end for
27. return(s,d,n)

Table 4.6: The implemented QAM-specific symbol list generation algorithm
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c0 = (cR
0 , cI

0) corresponding to the upper right signal point can be obtained as

cR
0 =

⌈
sR

α

⌉
, and cI

0 =
⌈
sI

α

⌉
,

which is also the source symbol whose corresponding channel symbol is the closest

to α, so assuming that it satisfies the partial constraint, this source symbol should

be the first on the symbol list. After determining the 4 source symbols ci =

(cR
i , cI

i ), i = 0, 1, 2, 3, that correspond to the 4 nearest neighbors of α, we need to

determine the order in which they should be put on the list. This could be done,

for example, by sorting them according to the metric values |α−Ω(ci)|2. However,

our simulations have shown that the actual order of the symbols is not important

as long as the source symbol corresponding to the closest signal point (the greedy

solution) is the first on the list. Therefore, we have implemented a lookup table

based approximate sorting algorithm. The space between the neighboring QAM

constellation points is divided into 4 quadrants, as shown by the dashed lines in

Figure 4.3. If, for example, sα falls into the shadowed quadrant, it is apparent that

the closest signal point is the one that corresponds to the source symbol c0, and

the signal point furthest away is the one that corresponds to the source symbol c2.

Based only on this information, the order between c1 and c3 cannot be decided,

but in this case, we arbitrarily set the order to be c0, c1, c3, c2.

The source symbol list generating algorithm implementing the nearest neighbor

search is shown in Table 4.6. First, the number of elements on the symbol list is

initialized, and the value of sα = (sR
α , sI

α) is calculated. Lines 4-7. determine

the source symbols corresponding to the 4 nearest constellation points. In lines

8-9., the fractional parts of sR
α and sI

α are calculated. These values are used to

determine which quadrant the value sα falls in. Lines 10-16. determine the index

of the quadrant, stored in the variable i. Then, we go over all 4 source symbols,

117



in the order determined by the quadrant index i. The order of the source symbols

is stored in a lookup table, given by the matrix O = {Oi,k} as

O =




2 3 1 0
1 2 0 3
3 0 2 1
0 1 3 2


 .

For each source symbol, the algorithm calculates the corresponding channel symbol

and checks whether the partial constraint is satisfied. If so, the symbol and the

corresponding metric value are put on the list. Note that the symbols on the list

will not be perfectly ordered some of the time. However, the algorithm ensures

that the source symbol corresponding to the closest constellation point to α will

always be the first.

As can be seen, the algorithm avoids the enumeration of all channel symbols

satisfying the partial constraint and avoids the sorting operation altogether. More-

over, many floating point operations have been replaced by integer operations,

further reducing the complexity.

PSK Modulation

In case of B-ary PSK, the modulated complex channel symbol is determined by

(4.20). The idea is similar to the square QAM case: we identify the source symbols

corresponding to the two closest signal points to α without enumerating all that

satisfy the partial constraint. As the first step, we express α in the coordinate

system of the source symbols, which is an angular coordinate system:

sα =
B

2π
φα − δ,

where φα is the angle of α, given by

φα = arc tan(Im{α},Re{α}).
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(s,d,n) = SYMLIST(α, T )
1. n = 0
2. φα = arc tan(Im{α},Re{α})
3. sα = B

2π
φα − δ

4. c0 = bsαc
5. c1 = dsαe
6. s̃α = sα − c0

11. if s̃α > 0.5
12. i = 0
13. else
15. i = 1
16. end if
17. for k = 0, 1
18. l = Oi,k

19. x = Ω(cl)
20. d = |α− x|2
21. if d ≤ T
22. sn = cl

23. dn = d
24. n = n + 1
25. end if
26. end for
27. return(s,d,n)

Table 4.7: The implemented PSK-specific symbol list generation algorithm
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Now we can easily determine the two source symbols c0 and c1 corresponding to the

nearest neighbors of sα by rounding up and down its value. For easy explanation,

the edge effect will not be considered, so c0 and c1 are assumed to be in the set

{0, 1, . . . , B − 1}. If they fall outside, we can easily map them back by adding

or subtracting B to/from their values. Then, s̃α, the fractional part of sα is

calculated to determine which neighbor is the closest to α and the source symbol

corresponding to the closest signal point is put on the list first, provided that it

satisfies the partial constraint. The pseudo-code implementing the PSK-specific

symbol list generation algorithm with fast nearest neighbor search is shown in

Table 4.7. In case of this algorithm, the matrix O = {Oi,k} governing the order of

the source symbols is defined as

O =

[
1 0
0 1

]
.

4.6 Simulation Results

To illustrate the performance of the proposed sphere decoding algorithms, we pro-

vide some simulation results. The simulated communication system had 2 transmit

antennas (K = 2) and two receive antennas (L = 2). The 2× 2 orthogonal design

(4.6) was adopted as a SF code, and the equivalent received signal model (4.8)

was used for the sphere decoding algorithm with M = KL = 4 and N = ns = 2.

The OFDM modulation had 128 sub-carriers with an OFDM symbol period of

128µs. The frequency selective MIMO channel was modeled by the COST 207

Typical Urban, 6-ray power delay profile [3]. The channel was assumed spatially

uncorrelated and constant over one OFDM symbol period. For all sphere decoding

algorithms, the initial radius r was set to 10 to ensure ML performance.
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Algorithm Number of Number of Number of Number of
component additions multiplications divisions square roots

Calculating the
HHH matrix 72 64 0 0
Calculating the
Cholesky decomp. 10 16 2 2
Calculating
b = HHy 28 32 0 0
Solving two
triang. systems 8 8 8 0
Calculating the
radius r′2 40 48 0 0
Calculating the
Q matrix 0 2 2 0

TOTAL 158 170 12 2

Table 4.8: Number of real operations for the complex implementation, M=4, N=2

Algorithm Number of Number of Number of Number of
component additions multiplications divisions square roots

Calculating the
HT

RHR matrix 96 128 0 0
Calculating the
Cholesky decomp. 8 20 4 4
Calculating
bR = HT

RyR 28 32 0 0
Solving two
triang. systems 12 12 8 0
Calculating the
radius r′2 40 48 0 0
Calculating the
QR matrix 0 4 6 0

TOTAL 184 244 18 4

Table 4.9: Number of real operations for the real implementation, M=4, N=2
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4.6.1 Preprocessing Stage

Since the computational complexity of the preprocessing stage is independent of

the applied modulation method, it will be discussed separately from the searching

stage. The number of real operations for the complex implementation to decode

one code block (two source symbols) is given in Table 4.8. The entries in the

table were obtained by substituting M = 4 and N = 2 into the formulas of Table

4.1. Similarly, Table 4.9 contains the operation counts for the real implementation

based on Table 4.3. The operation count values show that considerable complexity

reduction can be achieved by implementing the preprocessing stage in the complex

domain, even for small M and N values. Especially the number of necessary

multiplications and square root operations can be reduced significantly. The total

number of floating point operations (FLOPs), including additions, multiplications,

divisions and square roots, is 342 for the complex version, while the FLOP count

is 450 for the real version. For problems of larger size (larger K and L), even more

pronounced complexity reduction is expected based on Tables 4.1 and 4.3. Note

that in this particular case, the computational cost of the Cholesky decomposition

is negligible. This is due to the small size (2× 2) of the matrix to be decomposed.

4.6.2 Searching Stage

We have simulated 3 different systems. The first used 16 QAM modulation, the

second used 64 QAM, and the third used 16 PSK-QAM modulation. The latter

modulation method will be described in detail later. We have counted the number

of different operations and averaged them over a large number (105 − 106) of ex-

periments, and we use the average operation counts to compare the computational

complexities of the searching stages of different decoding algorithms. The obtained
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Figure 4.4: The bit mapping for the 16 QAM constellation

numbers may be implementation dependent, but they can be used to estimate the

potential advantages and disadvantages of different decoding approaches. In the

operation counts, we always compare the number of real operations. The complex

operations were counted according to the method described in Section 4.5.1. In

addition, one floating point comparison was counted as one addition. Some algo-

rithms also used transcendent functions, such as arcus tangent and arcus cosine;

these operations are counted separately. The floating point operation (FLOP)

count includes all additions, multiplications, divisions, square roots, comparisons

and transcendent function evaluations.

16 QAM

The first set of experiments were conducted with 16 QAM modulation. The used

bit mapping is depicted in Figure 4.4. The signal points were labeled with bits

according to a one-dimensional Gray mapping along the real and imaginary axes,

and the bits were combined such that the imaginary bits occupied the most sig-

nificant bits and the real bits occupied the least significant bits. The non-natural
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Figure 4.5: Bit error rate of the decoding algorithms with 16 QAM
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Num. of Num. of Num. of Num. of Num. of
Algorithm additions multipl. divisions sq. roots FLOPS nc

ML decoding 10496 10240 0 0 20736 256
Sphere decoding
algorithm of [79] 127.5 36.2 8.1 8.1 179.7 1.00
Sphere decoding,
modulation indep. 302.8 74.7 4.0 0 381.6 1.00
Sphere decoding,
fast search 75.3 26.1 4.0 0 105.4 1.00

Table 4.10: Number of operations for the 16 QAM case

bit mapping makes the decoding algorithm a little more complicated; nonetheless,

the earlier described algorithms can easily be used with minor modification. Note

also that the bit mapping operations involve only integer quantities, so they will

not affect the floating point operation counts.

We compared four different decoding algorithms: the ML decoding algorithm

(performing exhaustive search), the real-domain sphere decoding algorithm de-

scribed in [79], the complex-domain sphere decoding algorithm with modulation

independent symbol list generation method of Section 4.5.3, and the complex-

domain sphere decoding algorithm with QAM-specific, fast-search-based symbol

list generation method of Section 4.5.5. Figure 4.5 shows the average bit error rate

curves as the function of the average signal-to-noise (SNR) ratio. It is apparent

from the figure that all sphere decoding approaches have the same performance as

the ML decoding in the SNR range of interest. The average number of FLOPs per

decoded code block is depicted in Figure 4.6. The ML complexity is left out for

the clarity of the figure. Table 4.10 provides a more detailed break-down of the

number of operations. Since the variations of the operation counts is minimal at

different SNR values, we only present the average operation counts averaged over

the SNRs in the simulated range. Here the computational complexity of the ML
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decoding is also presented for comparison. The values of the FLOPs were obtained

by averaging the sums of the different operation counts. The value nc (defined in

Section 4.5.2 for one code block) is the average number of evaluated candidate

solutions, i.e. the average number of times a leaf node of the tree is reached during

the search.

Based on the data provided in the Figures 4.5, 4.6 and the Table 4.10, we can

make several observations. First, by using a sphere decoder, the computational

complexity of the SF decoder can be reduced by orders of magnitude without per-

ceptible performance loss in the meaningful bit error rate range. Second, if we

compare table 4.10 with Table 4.8, we can deduce that the computational cost

of the sphere decoding algorithms is dominated by the preprocessing stage. This

observation is very interesting because it contradicts the observation of [75], where

it was found that the searching stage has higher complexity. However, in that

case the greedy tree search and the fast nearest neighbor symbol list generation

algorithms were not implemented. Third, in case of the sphere decoding algo-

rithms, the average value of nc is always one if rounded to 2 digits. Its actual

value is slightly greater that one. Since the probability of a decoding failure is

negligible (during the large number of experiments it never happened), the value

of nc never took on the value 0. This means that with high probability, the first

candidate solution found by the greedy search was actually the ML solution, and

due to the radius shrinking step, the ML solution excluded all the other candidate

solutions from the search. As a consequence, the greedy solution is found optimal

(in ML sense) most of the time. Fourth, the modulation independent symbol list

generating algorithm did not take advantage of the special properties of the QAM

constellation, so its complexity was worse than the 2 other QAM-specific sphere
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Num. of Num. of Num. of Num. of Num. of
Algorithm additions multipl. divisions sq. roots FLOPS nc

ML decoding 167936 163840 0 0 331776 4096
Sphere decoding
algorithm of [79] 183.6 48.5 8.1 8.1 248.3 1.00
Sphere decoding,
modulation indep. 1707.6 273.1 4.1 0 1984.8 1.00
Sphere decoding,
fast search 76.1 26.3 4.0 0 106.4 1.00

Table 4.11: Number of operations for the 64 QAM case

decoding approaches, as expected. However, we would like to point out that even

without any knowledge about the used constellation, significant complexity reduc-

tion could be achieved compared to ML decoding. It is also worth mentioning

the despite its relatively high FLOP count, the modulation-independent decoder

could achieve very low division count and it did not use any square root operations.

Finally, by using the proposed complex sphere decoding framework and the fast,

QAM-specific nearest neighbor search algorithm to generate the symbol lists, we

could get rid of the unnecessary enumerations and sorting operations, and consid-

erable complexity reduction was achieved compared to the algorithm of [79]. We

observe about 40-41reduction in the average number of FLOP counts throughout

the simulated SNR range. Moreover, the average number of divisions was halved,

and the the proposed algorithm did not use square root operations at all.

64 QAM

The performance of the communication system was also simulated with 64 QAM

modulation. The bit mapping for the 64 QAM was obtained as a product of two

one-dimensional Gray mapping, similarly to the 16 QAM case. The bit error rate

curves of the 4 schemes can be observed in Figure 4.7. All algorithms achieve the
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ML performance in the simulated SNR range. The average number of FLOPs as

a function of the SNR is shown in Figure 4.8, and Table 4.11 contains the detailed

operation counts for aech algorithm averaged over the simulated SNR range.

The tendencies observed here are similar to those of the 16 QAM case. The

complexity reduction achieved by sphere decoding is much more pronounced, which

is due to the increased constellation size. However, comparing Tables 4.11 and 4.10,

we observe that the complexities of the algorithm of [79] and the modulation inde-

pendent decoding approach have increased with the constellation size increase. The

authors of [75] provided an asymptotic upper bound on the complexity that was

independent of the constellation size, suggesting that the actual complexity does

not change with the constellation size either. However, this statement is only true

when the sphere radius is small, so it can limit the number of signal point falling

inside the sphere. In our case, the algorithm stars with a large radius (r = 10) to

ensure ML performance, so at the early stages of the algorithm, more signal pints

are enumerated and sorted, increasing the computational complexity. However,

due to the radius reduction step, the complexity increase is not exponential. In

case of the algorithm of [79], this increase is moderate (about 38% increase in the

overall FLOP count), but for the modulation independent decoding algorithm, it

is more pronounced, as a consequence of enumerating all constellation points at

each level of the tree-search. The complexity of the fast QAM-specific nearest

neighbor search method did not change with the constellation size increase. This

is intuitively expected since the number of nearest neighbor signal points of an

arbitrary point in the QAM constellation does not change as its size increases. As

a consequence, the achieved complexity reduction of the fast search algorithm is

more significant than in the 16 QAM case: the average FLOP count was reduced
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Figure 4.9: The bit mapping for the 16 PSK-QAM constellation

to about 43% of the FLOP count of the algorithm in [79]. The computational com-

plexity of the preprocessing stage still dominates that of the fast nearest neighbor

search algorithm.

16 PSK-QAM

The last experiment was conducted with 16 PSK-QAM modulation. The constel-

lation corresponding to this modulation method is shown in Figure 4.9. The 16

PSK-QAM constellation is made up of two PSK constellations. In case of natural

bit mapping, the inner PSK signal points can be generated by (4.20) with r = 1,

δ = 0 and B = 8. The outer constellation points are determined by the same

equation with r = cos(π/8) +
√

3 sin(π/8) = 1.5867, δ = π/8 and B = 8. We

also used a bit mapping that consists of 2 one-dimensional Gray bit mappings for

the two PSK constellations with different MSBs. The average energy of the con-

stellation is Eavg = 1.7588, its minimum distance is dmin = 2 sin(π/8) = 0.7654,

and its peak-to-average ratio is PAPR = 1.43. (For comparison, the 16 QAM

constellation has the following values: Eavg = 2.5, dmin = 1 and PAPR = 1.8.)
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N. of N. of Num. of Num. of Num. of Num. of
Algorithm add. mult. divisions sq. roots tran. op. FLOPS nc

ML dec. 10496 10240 0 0 0 20736 256
Sphere dec.
alg. of [23] 310.8 86.3 8.1 2.0 2.1 409.3 1.00
Sphere dec.,
mod. indep. 326.0 75.0 4.0 0 0 405.0 1.00
Sphere dec,
fast search 73.9 30.2 8.0 0 2.0 114.1 1.00

Table 4.12: Number of operations for the 16 PSK-QAM case

Four different decoding approaches were compared: the ML decoding algo-

rithm, the algorithm constructed using the method of [23] described in section

4.5.4, the proposed sphere decoding algorithm with modulation independent sym-

bol list generation and the proposed sphere decoding algorithm with fast, nearest

neighbor search.

The PSK-specific search method of [23] (Section 4.5.4) can easily adapted for

the 16 PSK-QAM modulation. When creating the symbol list, we simply go over

both the inner and the outer circles, calculate the lower and upper bounds and

insert the source symbols on the list. In case of the proposed fast nearest neighbor

search, the algorithm described in Section 4.5.5 can also be modified easily. Now

there will be 4 nearest neighbor signal points, 2 on the inner circle and 2 on the

outer circle, and we will have 2 partial symbol lists that need to be merged. We

simply compared the metric values of the first elements on these partial lists, and

inserted the partial list with the smaller metric onto the symbol list first. This

approach does not guarantee the right ordering all the time, but it was found that

as long as the symbol with the smallest metric is the first, the order of the rest of

the symbols is not important.

The average bit error rate curves of the above mentioned decoding methods
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Figure 4.10: Bit error rate of the decoding algorithms with 16 PSK-QAM
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are depicted in Figure 4.10. It is apparent that all sphere decoding approaches

perform as well as the ML decoding algorithm. Moreover, comparing Figures 4.5

and 4.10, we can see that performance of the 16 PSK-QAM modulation is about

1dB worse than the 16 QAM modulation, as expected. The average number of

FLOPS per code block as the function of the SNR is shown in Figure 4.11, and

the detailed operation counts averaged over the simulated SNR range are given

in Table 4.12. The average number of transcendent function evaluations has been

added to the table, as some of the decoding algorithms calculate arcus tangent and

arcus cosine values.

There are two important observations to be made. First, the constellation in-

dependent search performs slightly better than the search method of [23], which

takes the special properties of the PSK constellation into account. The reason for

this phenomenon is the fact that the latter method is computationally much more

expensive than the search method of [79] proposed for QAM modulation. (If we

compare Tables 4.12 and 4.10, we can see that the complexity of the modulation

independent decoding method is approximately the same for both 16 QAM and

16 PSK-QAM.) However, for constellations of larger size built from PSK constel-

lations, the method of [23] is expected to have lower computational complexity

than the modulation independent decoding algorithm. Second, the proposed fast

nearest neighbor search algorithm achieved a much more pronounced complexity

reduction. The average number of FLOPs was reduced to about 28% of the FLOPs

of the decoding method of [23].
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4.7 Chapter Summary

We proposed a computationally efficient SF block code decoding algorithm based

on the principles of sphere decoding. We formulated the decoding problem in the

complex domain and developed a modulation independent decoding framework

by interpreting sphere decoding as a greedy, constrained depth-first tree search

algorithm. We combined this flexible decoding framework with a modulation in-

dependent symbol list generationa algorithm, and two modulation-specific symbol

list generation algorithms that perform nearest neighbor signal point search.

By formulating the sphere decoding problem in the complex domain, we could

devise a decoding algorithm that can be used with any memoryless modulation

method. Moreover, the proposed fast QAM- and PSK-specific decoding algorithms

could avoid the unecessary enumerationg and sorting operations, resulting in sig-

nificant decoding complexity reduction without any perfromance penalty. For ex-

ample, in case of 64 QAM, the average FLOP count per code block was reduced to

about 43%, and in case of 16 PSK-QAM, the average FLOP count per code block

was only 28% of that of the best previously known decoding algorithm.
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Chapter 5

Conclusions and Future Research

In this thesis, we have examined and explored different aspects of improving the

efficiency of multi-antenna wireless communication systems. Specifically, we have

proposed two systematic space-time trellis code construction methods for 2 differ-

ent channel models: the quasi-static and the space-time correlated, flat Rayleigh

fading channel models.

For quasi-static channels, we proposed systematic design rules to ensure full

diversity by observing and analyzing the group/subgroup structure of the state

transitions. We also developed a code construction method that allows for ST

code design for both diversity advantage and coding advantage. The flexibility

of the method allows us to construct ST codes for an arbitrary number of trans-

mit antennas and any memoryless modulation. Due to the low complexity of the

proposed design method, ST codes for a large number of antennas were also con-

structed. The main conclusion from this work is the following. If the ratio of the

maximum and the minimum distances of the chosen constellation is large, our code

design method results in codes that substantially outperform the codes that were

designed only for diversity advantage.
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For the space-time correlated channel model, we derived the performance cri-

teria and developed a systematic ST trellis code design method for an arbitrary

number of transmit antennas and any memoryless modulation. The insight we

have gained from this work is as follows. First, if the space-time channel is not

heavily correlated (i.e. the ST correlation matrix is of full rank), the space-time

code design problem for correlated channels can be reduced to the code design

problem for fast fading channels. Second, it is possible to devise systematic ST

code design methods that result in codes that perform very well compared to codes

obtained via computer search. Third, due to the flexibility of the proposed method,

we could construct codes for system parameters for which no other ST trellis codes

exist in the literature.

Finally, we proposed a computationally efficient SF block code decoding algo-

rithm based on the principles of sphere decoding. We formulated the decoding

problem in the complex domain and developed a modulation independent decod-

ing framework by interpreting sphere decoding as a greedy, constrained depth-

first tree search algorithm. We combined this flexible decoding framework with

a modulation independent symbol list generation algorithm, and two modulation-

specific symbol list generation algorithms that perform nearest neighbor signal

point search. By avoiding the unnecessary enumerating and sorting operations,

our algorithm resulted in significant decoding complexity reduction without any

performance penalty.

Based on the research results presented in this dissertation, there are several

research directions that can be further investigated:
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• Channel estimation issues: In this thesis, we have assumed that the

perfect channel state information is always available at the receiver side.

However, this assumption is not practical, as the channel estimation algo-

rithms can only estimate the MIMO channel with some degree of inaccuracy.

Therefore, one possible future direction could be to address various channel

estimation issues in connection with ST code design. The first step would be

to investigate the effect of channel estimation error on the performance. We

can build an analytical framework to model the channel estimation error and

derive expressions that characterize how the performance (diversity advan-

tage and coding advantage) degrades due to channel estimation errors. We

can also devise code design methods that are robust to channel estimation

errors. This would involve deriving new ST code performance criteria taking

the channel estimation error explicitly into account by averaging over not

only the channel statistics, but also the estimation error statistics. Then,

we could identify the important factors that determine the code performance

and devise a code construction method that would result in ST codes that

perform close to the limits dictated by the channel estimation error. Finally,

we can consider the development of joint decoding and channel estimation

algorithms. In traditional systems, the channel estimation and data trans-

mission phases are separate. The transmitter first sends a (relatively) long

training sequence, and the receiver estimates the channel. Then, the data

transmission takes place, assuming that the channel does not change during

the transmission of the data block. One possible way to improve the efficiency

of the system could be to combine the training and data transmission stages,

by observing that based on the decoded data, the receiver can calculate the

137



transmitted signal, and improve the channel estimate. This approach is also

useful for channel tracking when the channel is time varying.

• ST code design for correlated channels: During our research described

in Chapter 3, we only considered MIMO channels with full-rank space-time

correlation matrices. In this case, the effect of code design and and the

correlation on the performance could be separated, and channel-independent

code design methodology could be developed. However, in most real-world

situations, the space-time correlation matrix is rank deficient, so the code

design cannot be separated from the channel. This means that the code

design will depend on the correlation matrix. As a consequence, it may be

worthwhile to explore the following research issues. First, we can derive the

ST code performance criteria assuming rank-deficient space-time correlation

matrices and devise code design methods taking the correlation matrix into

account. Moreover, since the code will depend on the channel correlation,

as the mobile moves, the channel changes between the transmitter and the

receiver, so the ST code used for communication will also have to be changed.

As a consequence, a small-bandwidth feedback channel from the receiver

to the transmitter is necessary to inform the transmitter which ST code

should be used. This implies the task of designing a system that realizes this

feedback communication by answering the following questions: 1.) What

kind of information should be sent back? 2.) How many different sets of

ST codes should be used and stored in the transmitter and the receiver, and

when should they be used? 3.) Is it possible to design robust ST codes, in the

sense that one code could guarantee a certain performance over a multitude

of channel conditions?

138



• Fast SF decoding: The sphere decoding approach presented in this work

assumed that the equivalent channel matrix H is of full rank. This is a stan-

dard assumption in the literature, but in most practical situations, the exis-

tence of spatial correlation may make this assumption invalid. This means

that some of the diagonal elements of the Cholesky factor R will be zero,

so exhaustive search will have to be performed over the coordinates of the

channel symbol vector x corresponding to those elements. In case of very low-

rank channel matrices, the exhaustive search may incur prohibitively large

decoding complexity, so the development of new decoding approaches that

can avoid the above problem is an important future direction. Moreover, the

sphere decoding algorithm has only been proposed by theoretical papers, so

it would be interesting to design a fast VLSI architecture that implements

it. The Cholesky decomposition algorithm can be replaced by QR decompo-

sition, and the existing VLSI systolic array architectures can be tailored to

the needs of this algorithm. The bulk of the work would consist of the imple-

mentation of the searching stage by identifying and exploiting the available

parallelism and developing multi-processor or pipelined architectures with

modular and regular structure.
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Appendix A

State Transition Equation I

We will prove (2.5) by induction. Using (2.4), the first state change can be ex-

pressed easily:

S1 = B
(
S0mod(RBK+p−2)

)
+ b0.

Assume that the formula holds for St−1, formally:

St−1 = Bt−1(S0 mod (RBK+p−t)) +
t−2∑
m=0

Bt−2−mbm.

It only remains to show that the above described relationship also holds for St.

Using the symbol Q to denote RBK+p−2, St can be expressed as:

St = B (St−1modQ) + bt−1 = B
([

Bt−1
(
S0mod(RBK+p−t)

)

+
t−2∑
m=0

Bt−2−mbm

]
mod Q

)
+ bt−1.

By applying the identity

(
n∑

i=1

ai

)
mod b =

(
n∑

i=1

ai mod b

)
mod b,
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the above expression becomes

St = B
([

(Bt−1
(
S0mod(RBK+p−t)

)
) mod Q

+
t−2∑
m=0

(Bt−2−mbm) mod Q
]

mod Q
)

+ bt−1.

Recognizing that for any 0 ≤ n ≤ K + p− 2 and S ∈ {0, 1, ..., N − 1}

(BnS)mod(RBK+p−2) = Bn
(
Smod(RBK+p−2−n)

)
,

the state transition equation can be rewritten as

St = B
([

Bt−1
((

S0mod(RBK+p−t)
)
mod(RBK+p−t−1)

)

+
t−2∑
m=0

(Bt−2−mbm) mod Q
]

mod Q
)

+ bt−1.

The next step is to make use of the following simple result: if b ∈ {0, 1, . . . B − 1}
then for any 0 ≤ n < K + p− 2:

(Bnb)mod
(
RBK+p−2

)
= Bnb.

This allows for further simplification:

St = B
([

Bt−1
((

S0mod(RBK+p−t)
)
mod(RBK+p−t−1)

)

+
t−2∑
m=0

Bt−2−mbm

]
mod Q

)
+ bt−1.

Now we use the fact that if S ∈ {0, 1, ..., N − 1} and 0 ≤ n ≤ K + p− 1:

(
Smod(RBK+p−n)

)
mod (RBK+p−n−1) = S mod (RBK+p−n−1),

and we can obtain the following form:

St = B

([
Bt−1

(
S0 mod (RBK+p−t−1)

)
+

t−2∑
m=0

Bt−2−mbm

]
mod Q

)
+ bt−1.
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Finally, the identity

(Bnx + Bn−1b0 + Bn−2b1 + . . . + bn−1) mod (RBK+p−2) =

= Bnx + Bn−1b0 + Bn−2b1 + . . . + bn−1

that holds for bi ∈ {0, 1, ..., B−1}, 0 < n ≤ K+p−2, and x ∈ {0, 1, ..., RBK+p−2−n−
1} will give us the final step that completes the proof:

St = B
(
Bt−1

(
S0 mod (RBK+p−t−1)

)
+

∑t−2
m=0 Bt−2−mbm

)
+ bt−1 =

= Bt
(
S0 mod (RBK+p−t−1)

)
+

∑t−1
m=0 Bt−1−mbm.

The closed form expression for SK+p can be derived using similar ideas.

142



Appendix B

Lower Bound on the Determinant

of ∆′R′∆′H

For simplicity, we assume that R is p by p, R′ is m by m, and ∆′ is n by m, with

p ≥ m ≥ n. In our case, p = KLT , m = KLτ and n = Lτ . Let us denote the

positive and real eigenvalues of R by λ1 ≥ λ2 ≥ . . . ≥ λp. Using the singular value

decomposition, ∆′ can be expressed as ∆′ = X[Σ 0]YH, where X is an n by n

unitary matrix, Y is an m by m unitary matrix, Σ is an n by n diagonal matrix

with the singular values along the diagonal, and 0 is an n by (m−n) zero matrix.

The matrix R′ admits the spectral decomposition R′ = UΛ′UH, with an m by m

unitary matrix U, and a diagonal matrix Λ′ = diag(λ′1, λ
′
2, . . . , λ

′
m). The quantities

λ′1 ≥ λ′2 ≥ . . . ≥ λ′m are the real eigenvalues of R′. We can define Z, the m by m

unitary matrix, as Z = YHU and partition Z into an n by m matrix Z1, and an

(m− n) by m matrix Z2 as Z =
[
Z1
Z2

]
. The matrix Q = ZΛ′ZH will have the same

eigenvalues as R′. If Q is partitioned as Q =
[
Q11 Q12

Q21 Q22

]
, where Q11 = Z1Λ

′Z1
H is

143



an n by n principal submatrix of Q, ∆′R′∆′H can be expressed as

∆′R′∆′H = XΣQ11Σ
HXH. (B.1)

Since ∆′ has full row rank, the matrix Σ has full rank. Using Fisher’s inequality

[62], it can be easily verified that Q11 also has full rank. Moreover, all matrices on

the right hand side of (B.1) are n by n. As a consequence, we have the relationship

det(∆′R′∆′H) = det(Q11) det(ΣΣH) det(XXH) = det(Q11) det(∆′∆′H). (B.2)

To obtain a lower bound on det(Q11), we use Cauchy’s interlacing theorem [73]

(also known as the inclusion principle [62]), stated as follows: Let Q be an m by

m Hermitian matrix with real eigenvalues λ′1 ≥ λ′2 ≥ . . . ≥ λ′m. Furthermore,

let Q11 be an n by n (m ≥ n) principal submatrix of Q, with real eigenvalues

µ1 ≥ µ2 ≥ . . . ≥ µn. Then we have

λ′i ≥ µi ≥ λ′m−n+i, for i = 1, 2, . . . , n.

Moreover, since R′ is a principal submatrix of R, we can apply Cauchy’s interlacing

theorem to obtain

λi ≥ λ′i ≥ λp−m+i, for i = 1, 2, . . . , m.

Therefore, if we form the diagonal matrix Λmin(n) from the n smallest eigenvalues

of R (i.e. Λmin(n) = diag(λp−n+1, λp−n+2, . . . , λp)), we obtain the bound

det(Q11) ≥ det(Λmin(n)). (B.3)

Note that (B.3) also shows that Q11 has full rank. Finally, combining (B.2) with

(B.3) yields (3.5).
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Appendix C

State Transition Equation II

We will prove (3.27) by induction. In Chapter 2, closed form expressions that

relate the state sequence {St} to the starting state S0 and input source symbol

sequence {bt} up to the length of the shortest error event were derived. In case of

encoders having Nmin states, from (2.6), the expression for SK becomes

SK =
K−1∑
m=1

BK−1−mbm, (C.1)

showing that the statement is true for T = 0. Assume that the formula holds for

T − 1, i.e.

ST+K−1 =
T+K−2∑

m=T

BT+K−2−mbm. (C.2)

The state transition at time t can also be expressed recursively as a function of

the previous state St−1, and the previous source symbol bt−1 (Chapter 2, Equation

( 2.4)) as

St = B
(
St−1 mod (BK−2)

)
+ bt−1. (C.3)

Using (C.3) for t = T +K, and combining it with (C.2), we arrive at (3.27), proving

that the formula also holds for T .
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