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As the use of multimedia editing tools increases, people become questioning the

authenticity of multimedia content. This is specially a big concern for authorities,

such as law enforcement, news reporter and government, who constantly use multi-

media evidence to make critical decisions. To verify the authenticity of multimedia

content, many forensic techniques have been proposed to identify the processing

history of multimedia content under question. However, as new technologies emerge

and more complicated scenarios are considered, the limitation of multimedia foren-

sics has been gradually realized by forensic researchers. It is the inevitable trend

in multimedia forensics to explore the fundamental limits. In this dissertation, we

propose several theoretical frameworks to study the fundamental limits in various

forensic problems.

Specifically, we begin by developing empirical forensic techniques to deal with

the limitation of existing techniques due to the emergence of new technology, com-

pressive sensing. Then, we go one step further to explore the fundamental limit



of forensic performance. Two types of forensic problems have been examined. In

operation forensics, we propose an information theoretical framework and define

forensicability as the maximum information features contain about hypotheses of

processing histories. Based on this framework, we have found the maximum number

of JPEG compressions one can detect. In order forensics, an information theoreti-

cal criterion is proposed to determine when we can and cannot detect the order of

manipulation operations that have been applied on multimedia content.

Additionally, we have examined the fundamental tradeoffs in multimedia anti-

forensics, where attacking techniques are developed by forgers to conceal manipula-

tion fingerprints and confuse forensic investigations. In this field, we have defined

concealability as the effectiveness of anti-forensics concealing manipulation finger-

prints. Then, a tradeoff between concealability, rate and distortion is proposed and

characterized for compression anti-forensics, which provides us valuable insights of

how forgers may behave under their best strategy.



FUNDAMENTAL LIMITS IN MULTIMEDIA FORENSICS AND
ANTI-FORENSICS

by

Xiaoyu Chu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor K. J. Ray Liu, Chair/Advisor
Professor Min Wu
Professor Gang Qu
Professor Piya Pal
Professor Lawrence C. Washington



c⃝ Copyright by
Xiaoyu Chu

2015



Dedication

To my parents.

ii



Acknowledgments

First of all, I would like to express the deepest gratitude to my advisor, Prof.

K. J. Ray Liu. I can still remember the excitement I had when I first received a reply

from someone I admire. His approval brought back my confidence in my darkest

time and made me feel that I had finally found someone who can really appreciate

my talent. At that moment, I decided to myself that I will follow this person no

matter what. Over the passed five years, I have had distractions, immaturity and

doubt. But he never gave up on me. His consideration, encouragement and guidance

have made me accomplish so much that I could never foresee when I first came to

this state. Without him, this dissertation would never be possible.

I would like to thank other members of my dissertation committee, Prof. Min

Wu, Prof. Qu Gang, Prof. Piya Pal, and Prof. Lawrence Washington, for their

precious time and effort serving on my committee. I would like to specially thank

Prof. Min Wu for her guidance when I was her teaching assistant and her reference

during my job applications.

Thanks should also be given to all members in Signal and Information Group

for their friendship and assistance. I would like to specially thank Prof. Matthew

Stamm, Dr. Yan Chen, and Dr. Wan-Yi Lin for their enormous help in both research

and life. I also wish to give my thanks to Feng Han, Wei Guan, Yang Gao, and

Zhuang-Han Wu, with whom I feel like having a family here.

Most of all, I would like to give my greatest appreciation to my parents. They

are always there for me and unconditionally provide the strongest support to my

iii



study and research. My persistence and enthusiasm for new challenges are directly

due to them. To my dearest parents I dedicate this dissertation.

iv



Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Compressive Sensing Forensics (Chapter 2) . . . . . . . . . . . 5
1.2.2 Fundamental Limits in Operation Forensics (Chapter 3) . . . 6
1.2.3 Fundamental Limits in Order Forensics (Chapter 4) . . . . . . 7
1.2.4 Fundamental Tradeoffs in Compression Anti-forensics (Chap-

ter 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Compressive Sensing Forensics 10
2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Compressive Sensing Overview . . . . . . . . . . . . . . . . . . 15
2.1.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Compressive Sensing Fingerprints . . . . . . . . . . . . . . . . . . . . 20
2.3 Compressive Sensing Detection . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Zero Ratio Detection Scheme . . . . . . . . . . . . . . . . . . 27
2.3.2 Distribution-based Detection Scheme . . . . . . . . . . . . . . 30

2.4 Detecting Compressive Sensing in Digital Images . . . . . . . . . . . 34
2.4.1 Compressive Sensing Fingerprints in Digital Images . . . . . . 35
2.4.2 DWT Coefficient Distribution Models . . . . . . . . . . . . . . 39
2.4.3 Compressive Sensing Detection . . . . . . . . . . . . . . . . . 40

2.5 Measurement Number Estimation . . . . . . . . . . . . . . . . . . . . 45
2.6 Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.1 Sparse Signals in the Presence of Noise . . . . . . . . . . . . . 49
2.6.2 Nearly Sparse Signals and Nearly Sparse Signals in the Pres-

ence of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6.3 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6.4 Estimator of the Number of Compressive Measurements . . . 59

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Fundamental Limits in Operation Forensics 64
3.1 Information Theoretical Framework . . . . . . . . . . . . . . . . . . . 67

3.1.1 Channel between Multimedia States and Features . . . . . . . 67
3.1.2 Forensicability . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1.3 Expected Perfect Detection . . . . . . . . . . . . . . . . . . . 75

3.2 Information Theoretical Modeling for JPEG Compression Forensics . 78
3.2.1 Background on JPEG Compression Forensics . . . . . . . . . . 78
3.2.2 DCT Coefficients Feature Model . . . . . . . . . . . . . . . . . 80
3.2.3 Forensicability for JPEG Compression Forensics . . . . . . . . 83

v



3.3 Data-Driven Results and Analysis . . . . . . . . . . . . . . . . . . . . 87
3.3.1 Verification of Observation Noise Model . . . . . . . . . . . . 89
3.3.2 Forensicability Calculation . . . . . . . . . . . . . . . . . . . . 91
3.3.3 Estimation Error Probability Lower Bound . . . . . . . . . . . 93
3.3.4 Maximum Number of Detectable Compressions . . . . . . . . 98
3.3.5 Quality Factor Patterns having the Highest and Lowest Foren-

sicabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.3.6 Optimal Strategies for Forgers and Investigators . . . . . . . . 104
3.3.7 Forensicabilities for Image Outliers . . . . . . . . . . . . . . . 107

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Fundamental Limits in Order Forensics 112
4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.1.1 Order of Operations May Not be Detectable . . . . . . . . . . 115
4.1.2 Information Theoretical Model for Multiple Hypotheses Esti-

mation Problems . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2 Information Theoretical Criteria . . . . . . . . . . . . . . . . . . . . . 122

4.2.1 Mutual Information Criterion to Obtain the Best Estimator . 123
4.2.2 Information Theoretical Criteria for Multiple Hypotheses Es-

timation Problems . . . . . . . . . . . . . . . . . . . . . . . . 127
4.3 Detecting the Order of Resizing and Blurring . . . . . . . . . . . . . . 132
4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.4.1 Detect Double JPEG Compression . . . . . . . . . . . . . . . 141
4.4.2 Detect the Order of Resizing and Contrast Enhancement . . . 145
4.4.3 Detect the Order of Resizing and Blurring . . . . . . . . . . . 150

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5 Fundamental Tradeoffs in Compression Anti-forensics 156
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.1.1 JPEG Compression . . . . . . . . . . . . . . . . . . . . . . . . 161
5.1.2 Double JPEG Compression Fingerprints . . . . . . . . . . . . 162
5.1.3 Double JPEG Compression Detection . . . . . . . . . . . . . . 164
5.1.4 JPEG Compression Anti-Forensics . . . . . . . . . . . . . . . 165

5.2 Concealability-Rate-Distortion Tradeoff . . . . . . . . . . . . . . . . . 167
5.3 Flexible Anti-Forensic Dither . . . . . . . . . . . . . . . . . . . . . . 173
5.4 Anti-Forensic Transcoder . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.5 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . 184

5.5.1 Two C-R-D Tradeoffs Revealed From Simulation . . . . . . . . 185
5.5.2 C-R-D Tradeoff for Lower Secondary Quality Factors . . . . . 189
5.5.3 C-R-D Tradeoff for Higher Secondary Quality Factors . . . . . 192

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6 Conclusions and Future Work 198
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

vi



Bibliography 203

vii



List of Tables

2.1 Relative error of estimating compressive measurements for images. . . 62

3.1 minQM
P 0
e for different M . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2 minQM
P 0
e for different M when (a) λ = 0.02 and (b) λ = 0.7. . . . . . 109

5.1 Numbers of images in (a) training database and (b) testing database
that were used in our experiment. . . . . . . . . . . . . . . . . . . . . 186

viii



List of Figures

2.1 Fingerprints of compressive sensing for sparse signals in the presence
of measurement noise or environment noise. The upper row shows the
observed signals from (a) traditional sensing, (b) compressive sens-
ing corrupted with measurement noise and (c) compressive sensing
corrupted with environment noise. The bottom row shows the corre-
sponding noise histograms of the observed signals above. . . . . . . . 21

2.2 Example showing the fingerprints of compressive sensing in a nearly
sparse signal with and without the presence of noise. The top row
shows the histograms observed from a nearly sparse signal after (a)
traditional sensing and (b) compressive sensing. The bottom row
shows the histograms observed from a nearly sparse signal in the
presence of noise after (c) traditional sensing and (d) compressive
sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 (a) A hyperspectral image taken from [9] with dimension 1024×1024
pixel. (b) It’s monochromatic image (obtained from raw data) corre-
sponding to wavelength of 400nm. (c) The same monochromatic im-
age obtained by compressive sensing and reconstructed from 10242 ×
50% compressive measurements. (d) and (e) Histograms of DWT
subband 3 coefficients from (d) the traditionally sensed image and
(e) the compressively sensed image. . . . . . . . . . . . . . . . . . . 24

2.4 An example showing compressive sensing fingerprints in the (a) ‘mug’
image captured by a single pixel camera [79]. (b) The histogram
of pixel variations (magnitude of the gradient) for the ‘mug’ image
captured by a traditional digital camera. (c) The pixel variation his-
togram for the compressively sensed image of the same scene acquired
using the single pixel camera. . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Fitting the histogram of the observed signal to the estimated signal
distribution. The Laplace distribution was used to generate each
sample of the nearly sparse signal. The left figure shows the fitting
result when this signal was obtained by traditional sensing, while the
right one shows the result for a when the signal was compressively
sensed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Histograms of DWT coefficients taken from uncompressed Lena (left),
the same image after JPEG 2000 compression (right), and the recon-
structed compressively sensed Lena (center). . . . . . . . . . . . . . . 36

ix



2.7 ROC curves obtained by using the image compression detection tech-
nique in [58] to identify JPEG 2000 compression in a set of unal-
tered and JPEG 2000 compressed images (left) and a set of unaltered
and compressively sensed images (right). In the right figure “false
alarms” correspond only to unaltered images misclassified as JPEG
2000 compressed. Since there is no JPEG 2000 compressed image
in the seconde test set, the results in the right figure demonstrate
that compressive sensing can be easily misidentified as JPEG 2000
compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 ROC curves obtained by using the proposed scheme in Section 2.3.2 to
identify compressively sensed images from traditionally sensed images
(left) and to identify compressively sensed images from traditionally
sensed but JPEG 2000 compressed images (right). . . . . . . . . . . . 39

2.9 Fit the coefficient histogram of compressively sensed Lena with both
Laplace model and Laplace mixture model. Coefficients are taken
from the third subband after 6-level DWT decomposition with wavelet
basis ‘bior4.4’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10 ROC curves of zero ratio detector and distribution-based detector
on signals modeled as sparse signals in the presence of noise for (a)
M/N=0.1, (b) M/N=0.4 and (c) M/N=0.9. ‘Msure’ is short for mea-
surement and ‘Envron’ is short for environment. ‘ZR’ denotes the
zero ratio detector and ‘DB’ denotes the distribution-based detector. . 51

2.11 ROC curves of zero ratio detector and distribution-based detector
on signals modeled as sparse signals in the presence of noise when
different reconstruction algorithms were used. . . . . . . . . . . . . . 53

2.12 ROC curves of distribution-based detection on nearly sparse signals
and nearly sparse signals in the presence of noise for (a) M/N=0.1,
(b) M/N=0.4 and (c) M/N=0.9. ‘Msure’ is short for measurement
and ‘Envron’ is short for environment. . . . . . . . . . . . . . . . . . 56

2.13 ROC curves of the first (left) and second (right) step detections on
each DWT sub-band coefficients. M/N = 0.25 is used in compressive
sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.14 ROC curves of the first (left) and second (right) step detections on
coefficients of DWT sub-band 3 under different compression ratios of
compressive sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.15 Estimated M̂ versus the real M for (a) sparse signals in the presence
of noise, (b) nearly sparse signals, (c) nearly sparse signals in the
presence of noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1 Typical process that a multimedia signal may go through when con-
sidering forensics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Abstract channel model in our information theoretical framework. . . 68
3.3 Channel model for the example of multiple compression detection

forensics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



3.4 An illustration of the mapping between multimedia states and fea-
tures in the example of multiple compression detection. . . . . . . . . 70

3.5 Abstract channel between multimedia states and features in the in-
formation theoretical framework for operation forensics. . . . . . . . . 71

3.6 Abstract channel inner structure for the model in Fig. 3.3. . . . . . . 82
3.7 Normalized histograms of observation noise and their estimated Gaus-

sian distributions (plotted in red lines) on different histogram bins for
(a) single compressed images with quantization step size of 6 in the
examined subband and (b) doubly compressed images with quanti-
zation step size of 6 then 7 in the examined subband. Bin i means
that the observation noise on normalized histogram bin B(iqlast) is
examined, where qlast denotes the last quantization step size. The
mean square error of each estimation is also shown in the subfigure. . 88

3.8 Variance of observation noise versus histogram bin index for (a) single
compressed images with quantization step size of 6 in the examined
subband; and (b) doubly compressed images with quantization step
size of 6 then 7 in the examined subband. . . . . . . . . . . . . . . . 90

3.9 The reachable forensicabilities of different compression quality factors
QM and the upper bound of forensicability for different M ’s. . . . . . 92

3.10 Experimental error probabilities of several estimators comparing with
the theoretical lower bound of error probabilities, where two randomly
selectedQ20’s are taken as examples: (a)Q20 = {..., 8, 11, 13, 6, 5} and
(b) Q20 = {..., 11, 9, 7, 8, 13}. Estimators used in experiments are,
in order of displayed legends, maximum likelihood estimator using
DCT coefficient histogram on UCID database, Dresden databases,
and synthetic data; support vector machine using first significant digit
of DCT coefficients on UCID database. . . . . . . . . . . . . . . . . . 95

3.11 Patterns of QM yielding the highest and lowest forensicabilities. . . . 100
3.12 The best 9 DCT subbands (shown as blue cells) for detection, which

yield the highest forensicabilities for (a) M = 2, (b) M = 3, (c)
M = 4 and (d) M = 5. Numbers 1 through 9 represent the order of
these subbands regarding their forensicabilities from the highest to
the lowest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.13 Histogram of λ in subband (2,3) of images from UCID and Dresden
databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.14 Representative image outliers in UCID and Dresden databases with
(a) λ ∼= 0.02 and (b) λ ≥ 0.7. . . . . . . . . . . . . . . . . . . . . . . 110

4.1 Fingerprints for detecting the order of resizing and blurring. (a) and
(b) are the original image and the DFT of its p-map, respectively.
(c) - (f) show the DFT of the p-map of (c) the resized image, (d) the
blurred image, (e) the blurred then resized image, and (f) the resized
then blurred image. Resizing factor is 1.5 (upscaling). Gaussian blur
is used with variance 1. Regions of interests are highlighted by dotted
squares and circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xi



4.2 A confusing example that we may not be able to detect the order.
Plotted are DFTs of the p-map of (a) the blurred image, (b) the
blurred then resized image, and (c) the resized then blurred image
when resizing factor is 1.5 and the variance of Gaussian blur is 0.7.
Regions of interests are highlighted by dotted squares and circles. . . 119

4.3 A typical process of estimating the hypotheses. . . . . . . . . . . . . . 120
4.4 Compare a simple hypothesis channel and a ROC curve. . . . . . . . 124
4.5 The central horizontal line of the DFT of the p-map of (a) an unal-

tered image, (b) a resized image, (c) a blurred image, (d) a blurred
then resized image, and (e) a resized then blurred image. . . . . . . . 135

4.6 The process of how to calculate the PSNR from the central horizontal
line of the DFT of a p-map. Take Fig. 4.5(d) as an example. . . . . . 137

4.7 The noise energy pattern signal (dotted blue lines) extracted from the
DFT of the p-map and their polynomial fitting curves (solid red lines)
for (a) an unaltered image, (b) a resized image, (c) a blurred image,
(d) a blurred then resized image, and (e) a resized then blurred image.139

4.8 Distinguishability test results of detecting double JPEG compression
by applying our information theoretical framework and criteria. (a)
priors are known and uniform. (b) priors are unknown. . . . . . . . . 144

4.9 Distinguishability test results of detecting the order of resizing and
contrast enhancement by applying our information theoretical frame-
work and criteria. (a) Priors are known and uniform. (b) Priors are
unknown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.10 Distinguishability test results of detecting the order of resizing and
blurring by applying our information theoretical framework and cri-
teria. (a) Priors are known and uniform. (b) Priors are unknown. . . 152

4.11 The DFT of the p-map of (a) a single JPEG compressed image with
compression quality factor 75, and (b)-(e) double JPEG compressed
images with compression quality factors 75 then 85 and interleaved by
(b) reszing, (c) blurring, (d) blurring then resizing, and (e) resizing
then blurring. The same image in Fig. 4.1(a) is examined in this
example. Resizing factor is 1.5 and the variance of Gaussian blur is
1. Regions of interests are highlighted by dotted rectangles. . . . . . . 154

5.1 Histograms of DCT coefficients subtracted from sub-band (0,2) of a
natural image been (a) single compressed with specific quantization
step 5, (b) doubly compressed with quantization step 3 followed by
5, and (c) doubly compressed with quantization step 7 followed by 5. 162

5.2 The system model considered in this chapter. . . . . . . . . . . . . . 167

xii



5.3 Examples of concealabilities related to ROC curves. When the de-
tector achieves perfect detection, the forger has concealability of the
fingerprints as 0. When the ROC curve is at or below the random
decision line, we say that the forger has achieved concealability as
1. Then for those ROC curves between perfect detection and ran-
dom decision, the concealability ranges from 0 to 1 and depends on
a certain false alarm rate. . . . . . . . . . . . . . . . . . . . . . . . . 171

5.4 An illustration of how to determine S
(k)
0 and S

(k)
1 for a certain value of

Y = kq1. The vertical arrows denote the position of a certain quan-
tized bin in the coefficient histogram. The horizontal line segment at
the bottom of each arrow represents the quantization interval where
all values within this range will be mapped into the quantized bin in-
dicated by the arrow. lq2 is the quantized bin that kq1 will be mapped
into during the recompression. According to different positions of lq2
and its quantization intervals, there are four cases for S

(k)
0 , while S

(k)
1

keeps the same for the same kq1. . . . . . . . . . . . . . . . . . . . . 177
5.5 Histograms of DCT coefficients of an anti-forensically modified and

double compressed image with anti-forensic strength (a) α = 0, (b)
α = 0.4, and (c) α = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.6 Concealability, rate, and distortion triples for all tested anti-forensic
strengths and secondary quality factors with distortion defined based
on (a) MSSIM in (5.11) and (b) MSE. . . . . . . . . . . . . . . . . . 187

5.7 Tradeoff of concealability, rate, and distortion for the case where the
second quality factor is smaller than the first one. (a) plots the reach-
able (C,R,D) points, where the points with the same marker and color
are those who have the same secondary compression quality factor
but have been applied different anti-forensic strengths. The higher
the concealability, the more the anti-forensic strength. (b) is the
polynominal fitting surface of (a). . . . . . . . . . . . . . . . . . . . . 190

5.8 Rate changes with anti-forensic strength for lower secondary quality
factor case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.9 Tradeoff of concealability, rate, and distortion for the higher sec-
ondary quality factor case. (a) plots the R-D-C points. Points with
the same marker and same color are those obtained by using the same
secondary quality factor but different anti-forensic strengths. (b) is
the polynominal fitting surfaces of (a). . . . . . . . . . . . . . . . . . 193

xiii



Chapter 1

Introduction

1.1 Motivation

Nowadays, multimedia has played an important role in recording and convey-

ing message. Many critical decisions and statements made by governments, news

reporters and law enforcement are based on multimedia evidence. However, the

increase of easily accessible editing software and online tools has made multimedia

content untrustworthy. People begin questioning the origin of given multimedia con-

tent and how it was processed. To verify the authenticity of multimedia content, the

field of multimedia forensics has been developed. Researchers in multimedia foren-

sics aim to study and develop forensic techniques to identify the origin of multimedia

content and how it was processed after capture.

In the past decade, many forensic techniques have been developed to verify

the authenticity of multimedia content [88]. For example, by disassembling a dig-

ital camera into separated components and appropriately modeling each of them,

forensic researchers can estimate the parameters of camera components and thus

identify the camera model that was used to capture an image under question [94].

Color filter arrays and sensor pattern noise can also used to identify digital cam-

eras [59, 78]. Given that most cameras automatically compress the captured image

using their prescribed compression parameters, identifying the type of source en-

1



coder and its parameters can help us find the digital camera that was used to gen-

erate a compressed image [58]. Besides identifying the source of a given multimedia

file, forensic techniques also enable us to detect post-processing manipulations ap-

plied on the multimedia content. For example, given current techniques, we can

detect global and local contrast enhancement [86], resizing [77], single and double

compression [31,76], median filtering [50], blurring [96], and so on.

To take care of new emerged technologies and deal with more complex prob-

lems, forensic researchers have never stopped improving their forensic techniques

and also proposing new algorithms. Specifically, new features have been found for

detecting the same manipulation operation [19,55,76]. State of the art technologies

have been used in forensics, such as machine learning [55,74] and deep learning [60].

With so many forensic techniques proposed for one forensic problem, such as double

compression detection, fusion algorithms have been proposed to effectively combine

these techniques to achieve better detection performance [3]. In addition, given that

most manipulation detectors can only detect single manipulation operations while

making a forgery often involves the application of multiple operations, more compli-

cated manipulation processes have been studied by forensic researchers recently. For

example, multiple JPEG compressions have been examined in forensics to identify

the number of applied compressions [66]. Double JPEG compressions interleaved

with resizing or contrast enhancement in between have also been studied to evaluate

the effect of intermediate operations in double compression detections [6, 36].

While forensic researchers strive to provide new solutions for more realistic

forensic scenarios, it is also of key interest to understand the limitations of mul-
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timedia forensics. This limitation may due to the constraint of existing forensic

techniques when dealing the emergence of new technologies. For example, compres-

sive sensing technology has been proposed recently. It is a promising acquisition

technology that has been widely used in various fields of digital signal processing.

However, there has been no forensic techniques designed to consider this acquisi-

tion method. Furthermore, existing forensic techniques identifying the source of an

image may easily be confused by images acquired by compressive sensing.

Another limitation of forensics comes from the limited information contained

in multimedia content. In typical processes of forensic algorithms, features are ex-

tracted from multimedia content to make the estimation of the process history hap-

pened on this multimedia content. The limited statistics contained by certain fea-

tures must result in the limitation of forensic information these features can convey

about the multimedia’s process history. Forensic researchers have begun to notice

these limitations as they attempt to identify more complex processing histories. For

example, when detecting multiple JPEG compressions, the detection performance

is largely degenerated as investigators try to detect four times of compressions [66].

In addition, if multiple different operations are applied on multimedia content, the

interplay between these operations may also results in the failure of identifying the

complete processing history.

Noticed of these constraints, one would wonder what are the fundamental

limits in multimedia forensics? How much information that we can extract from

multimedia content towards identifying its processing history? A. Swaminathan

et al. proposed an estimation framework and a pattern classification framework
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for component forensics and explored the fundamental limits towards identifying

cameras [92, 93]. However, there is no work considering the fundamental limits

of multimedia forensics towards estimating the processing history of multimedia

content after capture. Different from proposing empirical forensic techniques, which

answers “what can we do”, exploring the fundamental limits of forensics answers

the question of “what cannot we do”. It enables us to acknowledge the capability

of forensic investigators and know how far forensic techniques can be improved.

With the development of multimedia forensics, anti-forensic schemes have also

been studied. In anti-forensics, researchers stand on forgers’ side and develop attack-

ing techniques to conceal fingerprints of manipulations and thus fool forensic tech-

niques. Specifically, we now have anti-forensic schemes to conceal the fingerprints of

compression [87], contrast enhancement [15], resizing [49], median filtering [101], and

so on. Studying anti-forensics enables us to understand the behavior of forgers and

their possible attacks so that forensic investigators can find the weakness of their

techniques and improve them accordingly. When applying anti-forensics, forgers

mainly concern about the effectiveness of their anti-forensic techniques. Meanwhile,

there are certain constraints on applied anti-forensics to make sure the modified

multimedia content is not too distorted that forensic investigators can immediately

tell the manipulation. Limited by these factors, the behavior of forgers is dependent

on the fundamental tradeoffs in anti-forensics. Finding and characterizing these

tradeoffs can help us better predicting the behavior of forgers and preparing corre-

sponding reactions.
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1.2 Dissertation Outline

From the discussion above, we can clearly see the necessity of acknowledging

and exploring the fundamental limits in multimedia forensics and anti-forensics.

In this dissertation, both theoretical and empirical methods have been proposed

to explore the fundamental problems in forensics and anti-forensics. Specifically,

to solve the limitation problem of existing forensic techniques when dealing with

newly emerged technologies, a set of empirical algorithms have been developed.

Furthermore, to explore the fundamental limits of estimating multimedia content’s

processing history, we propose several theoretical frameworks for different forensic

scenarios. In addition, the fundamental tradeoffs in multimedia anti-forensics are

proposed and characterized. The rest of this dissertation is organized as follows.

1.2.1 Compressive Sensing Forensics (Chapter 2)

Compressive sensing, as a new signal acquisition technology known for its sub-

Nyquist sensing rate, has seen increased popularity in recent years. However, current

forensic techniques identifying a signal’s acquisition history do not account for the

possibility that a signal could be compressively sensed. In this chapter, we propose

a set of forensic techniques to identify signals acquired by compressive sensing. We

do this by first identifying the fingerprints left in a signal by compressive sensing.

We then propose two compressive sensing detection techniques that can operate

on a broad class of signals. Since compressive sensing fingerprints can be confused

with fingerprints left by traditional image compression techniques, we propose a
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forensic technique specifically designed to identify compressive sensing in digital

images. Additionally, we propose a technique to forensically estimate the number of

compressive measurements used to acquire a signal. Through a series of experiments,

we demonstrate that each of our proposed techniques can perform reliably under

realistic conditions. Simulation results show that both our zero ratio detector and

distribution-based detector yield perfect detections for all reasonable conditions that

compressive sensing is used in applications, and the specific two-step detector for

images can at least achieve probability of detection of 90% for probability of false

alarm less than 10%. Additionally, our estimator for the number of compressive

measurements can well reflect the real number.

1.2.2 Fundamental Limits in Operation Forensics (Chapter 3)

While more and more forensic techniques have been proposed to detect the

processing history of multimedia content, one starts to wonder if there exists a fun-

damental limit on the capability of forensics. In other words, besides keeping on

searching what investigators can do, it is also important to find out the limit of

their capability and what they cannot do. In this chapter, we explore the funda-

mental limit of operation forensics by proposing an information theoretical frame-

work. Specifically, we consider a general forensic system of estimating operations’

hypotheses based on extracted features from the multimedia content. In this sys-

tem, forensicability is defined as the maximum forensic information that features

contain about operations. Then, due to its conceptual similarity with mutual infor-
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mation in information theory, forensicability is measured as the mutual information

between features and operations’ hypotheses. Such a measurement gives the error

probability lower bound of all practical estimators which use these features to detect

the operations’ hypotheses. Furthermore, it can determine the maximum number

of hypotheses that we can theoretically detect. To demonstrate the effectiveness

of our proposed information theoretical framework, we apply this framework on a

forensic example of detecting the number of JPEG compressions based on DCT coef-

ficient histograms. We conclude that, under typical settings of forensic analysis, the

maximum number of JPEG compressions that we can perfectly detect using DCT

coefficient histogram features is 4. Furthermore, we obtain the optimal strategies for

investigators and forgers based on the fundamental measurement of forensicability.

1.2.3 Fundamental Limits in Order Forensics (Chapter 4)

When multiple manipulation operations are applied on multimedia content,

investigators not only need to identify the use of each operation, but also need

to detect the order of these operations. By detecting the order of operations, in-

vestigators can know the complete processing history of the multimedia content.

Furthermore, detecting the order of operations may also provide information about

when the multimedia content was manipulated and who manipulated it. However,

when multiple operations are involved in the analysis, the interplay among opera-

tions may affect the fingerprints of earlier applied operations and make it difficult to

detect the order of operations. This leads to a fundamental question of when we can

7



and cannot detect the order of operations. In this work, we propose an information

theoretical framework by using mutual information based criteria to determine the

detectability of the order of operations regarding certain features and estimators.

A case study of detecting the order of resizing and blurring has been examined to

demonstrate the effectiveness of the proposed framework and criteria. In addition,

two known forensic problems are considered in the simulations to show that the

results obtained from the proposed framework and criteria match those of existing

works.

1.2.4 Fundamental Tradeoffs in Compression Anti-forensics (Chapter

5)

To conceal fingerprints of manipulation operations, anti-forensics has been

used by forgers to fool forensic detectors. However, when anti-forensic techniques

are applied to multimedia content, distortion may be introduced, or the data size

may be increased. Furthermore, when compressing an anti-forensically modified

forgery, a tradeoff between the rate and distortion is introduced into the system. As

a result, a forger must balance three factors: how much the fingerprints can be foren-

sically concealed, the data rate, and the distortion, are interrelated to form a three

dimensional tradeoff. In this paper, we characterize this tradeoff by defining con-

cealability and using it to measure the effectivenss of an anti-forensic attack. Then,

to demonstrate this tradeoff in a realistic scenario, we examine the concealability-

rate-distortion (C-R-D) tradeoff in double JPEG compression anti-forensics. To
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evaluate this tradeoff, we propose flexible anti-forensic dither as an attack in which

the forger can vary the strength of anti-forensics. To reduce the time and computa-

tional complexity associated with decoding a JPEG file, applying anti-forensics, and

recompressing, we propose an anti-forensic transcoder to efficiently complete these

tasks in one step. Through simulation, two surprising results are revealed. One

is that if a forger uses a lower quality factor in the second compression, applying

anti-forensics can both increase concealability and decrease the data rate. The other

is that for any pairing of concealability and distortion values, achieved by using a

higher secondary quality factor, can also be achieved by using a lower secondary

quality factor at a lower data rate. As a result, the forger has an incentive to always

recompress using a lower secondary quality factor.
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Chapter 2

Compressive Sensing Forensics

Since the initial development of digital multimedia forensics, researchers have

sought to identify how different digital signals were captured and stored. Information

about how a signal was acquired can be used to both identify the specific device used

to capture the signal and to verify the signal’s authenticity. Furthermore, knowledge

of how a signal was captured can be used to help trace its processing history. As

a result, determining how a signal was acquired has become an important forensic

problem.

Typically, forensic algorithms determine how a signal was acquired by iden-

tifying imperceptible traces introduced into a digital signal during the acquisition

process. These traces, which are known as fingerprints, arise due to properties of

the sensor used to capture the signal or as a result of the signal processing op-

erations used to form the digital signal. Existing forensic algorithms capable of

identifying a signal’s acquisition history are focused almost exclusively on images

and videos [16, 59, 78, 88, 94]. While each of these specifically designed techniques

performs strongly, it is necessary to develop forensic algorithms capable of identify-

ing the acquisition history of a broader class of signals.

Recently, a new method of capturing signals known as compressive sensing has

gained considerable attention. Compressive sensing is a signal processing technique
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capable of acquiring sparse signals at sampling rates below the Nyquist rate [29].

Rather than measuring the signal’s value at a series of uniformly spaced points, each

compressive measurement corresponds to a randomly weighted summation of the

entire signal. The sparse signal can then be reconstructed using l1 minimization from

much fewer measurements than are needed by traditional uniform sampling [11].

Furthermore, many real signals that are not ideally sparse can be modeled as either

sparse signals in the presence of noise or signals that are ‘nearly sparse’. Compressive

sensing can be used to acquire these signals with low amounts of reconstruction

error [12].

Due to the effectiveness of compressive sensing’s sub-Nyquist acquisition rate,

researchers in various signal processing fields have applied compressive sensing tech-

niques to many signal acquisition systems. These applicable fields include but not

limited to magnetic resonance imaging [63], photoacoustic imaging [80], astronomi-

cal imaging [8], radar [71], electrocardiography [2], networked data [41], and speech

and audio [100].

While acquisition schemes based on compressive sensing principles are widely

studied in the realm of research, the impact of compressive sensing has led people

to design and build real devices based on this technique. Single pixel or single

sensor acquisition devices have been developed for capturing conventional images [1]

and hyperspectral images [91]. In these applications, compressive sensing not only

reduced the acquisition power but also solved the ‘out of focus’ problem encountered

in traditional cameras [1]. Moreover, due to the power consumption of billions

of A-to-D conversion in video acquisition, a custom CMOS chip was designed by
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adopting compressive sensing technology to slash energy consumption by a factor of

15 [83]. Devices that apply compressive sensing to other applicable signals have also

been developed and built [47]. Researchers from Rice University have even started

a company, called InView, to develop low cost shortwave infrared cameras using

compressive sensing [27].

While an increasing number of technologies have begun to make use of com-

pressive sensing, there are currently no existing forensic techniques capable of dif-

ferentiating between signals captured using compressive sensing and those captured

by traditional uniform sampling. This has important consequences for the forensics

community.

As the number of devices that incorporate compressive sensing into their signal

processing pipeline increases, detecting the use of compressive sensing will become

an important part of forensically identifying a signal’s origin. A motivating example

can be seen in hyperspectral imaging, which is used in many critical applications such

as surveillance drones and environmental monitoring. Compressive sensing has been

recently used to capture and store hyperspectral images [45]. Detecting evidence of

compressive sensing in a hyperspectral image can help forensic investigators identify

the device. Furthermore, there may be scenarios where our government is presented

with an image captured by another government’s surveillance drone. In this scenario,

we may want to analyze the image to 1) verify the validity of the image and 2)

understand the capabilities of the other government’s surveillance drone. Similarly,

hyperspectral images of landscapes may potentially be used in court cases related

to environmental contamination or mineral rights.
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Additionally, the use of compressive sensing can affect the output of existing

forensic algorithms. For example, compressive sensing may also be used to acquire,

compress, and store certain types of images [45]. However, existing compression

detection schemes in [58] and [61] may misidentify a compressively sensed image as

an image that has been captured by a standard digital camera, then subsequently

compressed. Thus, it is necessary to design a specific forensic scheme for compres-

sive sensing detection to solve such confusions. In summary, it is clear that the

identification of compressively sensed signals is an important forensic problem.

In this chapter, we propose a new forensic technique capable of identifying

signals that have been acquired by compressive sensing. We begin by identifying

the fingerprints that compressive sensing introduces into a signal. Because virtually

no compressively sensed signal is truly sparse, we show that the reconstruction er-

ror introduced into compressively sensed signals has certain characteristics. We use

these characteristics as compressive sensing’s fingerprints and examine these finger-

prints under three models commonly applied to compressively sensed signals: sparse

signals in the presence of noise, nearly sparse signals, and nearly sparse signals in

the presence of noise. We then propose a set of forensic techniques to identify com-

pressively sensed signals that fit each of these models. Furthermore, we develop

a forensic technique specifically designed to identify compressively sensed images

and differentiate them from images that have undergone traditional lossy compres-

sion. Additionally, we propose a technique to forensically estimate the number of

compressive measurements used to acquire a signal.

The remainder of this paper is organized as follows. In Section 2.1, we provide
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a brief review of compressive sensing and present three different models of compres-

sively sensed signals. In Section 2.2, we identify and analyze the fingerprints left

in a signal by compressive sensing. Using these fingerprints, we propose two dif-

ferent compressive sensing detection techniques in Section 2.3. To address specific

challenges encountered when identifying compressive sensing in digital images, we

present a two step compressive sensing detection technique that can discriminate

between images that have been compressed using wavelet-based coders and images

that have been compressively sensed in Section 2.4. In Section 2.5, we propose an

estimator for the number of compressive measurements used to acquire a signal.

A series of experimental results are presented in Section 5.5 that demonstrate the

effectiveness of our proposed forensic techniques. Finally, in Section 2.7 we conclude

this paper.

2.1 System Model

We begin this section by providing a brief overview of compressive sensing.

We then discuss the three different models used for real world signals that are com-

pressively sensed. Throughout this paper, we will use s and x to denote the original

signal and the observed signal, respectively. Given the observed signal may be ob-

tained by either traditional sensing or compressive sensing, it will correspondingly

equal to the direct, maybe noisy, observation of the original signal, or the recon-

structed one from compressive measurements.
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2.1.1 Compressive Sensing Overview

Traditionally, a discretely indexed signal is formed from a continuously indexed

signal through uniform sampling. During uniform sampling, observations of the

continuously indexed signal are performed at uniformly spaced intervals over a fixed

duration. As a result, each entry si in a discretely indexed signal s = (s1, s2, . . . , sn)
T

corresponds to a single, direct measurement of the continuously indexed signal, and

we directly observe these measurements in traditional sensing. Thus, if we use x to

denote the observed signal in such case, then x = s.

The recent development of compressive sensing has allowed sparse signals,

which have only a few nonzero entries, to be captured with far fewer observations

than traditional sampling. During compressive sensing, each compressive measure-

ment corresponds to a linear combination of the continuously indexed signal’s values

at all the locations that would be observed during uniform sampling. Defining the

weighting vector for the ith compressive measurement as φ
i
, then each compressive

measurement yi can be written as

yi = φT

i
s. (2.1)

If m(m ≪ n) compressive measurements are collected, the transpose of the set of

weighting vectors can be vertically concatenated to form the observation matrix Φ.

As a result, the measurement vector y = (y1, y2, . . . , ym)
T containing each compres-

sive measurement can be written as

y = Φs. (2.2)

Typically, random matrices are used for observation matrices Φ in order to satisfy

15



the restricted isometry property for later reconstruction [12]. In this work, we use

Gaussian distribution with zero mean and unit variance to generate matrix Φ.

After the compressive measurements are obtained, the discretely indexed sig-

nal x, which we will observe from compressive sensing, is reconstructed from the

compressive measurements. This is done by solving the following constrained l1

minimization problem

min
x̃

||x̃||l1 , s.t. Φx̃ = y. (2.3)

If s is sparse, then given enough compressive measurements, O(k log n), where k

and n are the sparsity and length of s respectively, the signal can be perfectly

reconstructed, i.e. x = s [11].

Compressive sensing forensics, however, is a reverse engineering problem of

compressive sensing, which starts from the reconstructed signal and tries to reveal

how the signal was acquired. Forensic investigators only observe a reconstructed

signal x. Then, based on the fingerprints extracted from this signal, they identify

whether the observed signal was traditionally sensed or compressively sensed and

reconstructed. Furthermore, forensic investigators can also estimate the number of

compressive measurements m solely based on the reconstructed signal.

2.1.2 Signal Model

In theory, if a truly sparse signal is compressively sensed, it can be perfectly

reconstructed [11]. In practice, however, this is rarely the case. Often, the compres-

sive measurements of a truly sparse signal will be corrupted by noise. This can occur
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due to sensing in a noisy environment or due to noise within the sensors themselves.

Furthermore, it is often the case that signals of interest are not truly sparse, but

rather nearly sparse or ‘compressible’. While non-sparse but compressible signals

cannot be perfectly reconstructed, a bound can be placed on the reconstruction er-

ror [12]. If enough compressive measurements are captured, the reconstruction error

can be made sufficiently small.

Here, we discuss several commonly used models applied to signals that are

compressively sensed in real world scenarios. In subsequent sections, we will exploit

the effects of these nonideal conditions to identify the use of compressive sensing.

Sparse Signals in the Presence of Noise

There are many scenarios in which a true signal has only a few nonzero co-

efficients (i.e., nonzero entries si in s), but the signal is corrupted by noise during

sensing. These signals can be modeled as sparse signals in the presence of noise.

For example, in radar signal analysis the time-frequency plane is discretized into a

grid where the number of grid cells is much larger than the total number of targets.

The radar coefficients under this time-frequency shift operator basis are modeled as

sparse signals in the presence of noise [43].

Under this model, let s represent a sparse signal to be sensed. If s is sensed

using traditional uniform sampling, the observed signal x is given by

x = s +η. (2.4)

where η is a vector containing i.i.d. noise. Regardless of whether the noise originates

in the sensor or is due to an environmental source, a unique noise measurement
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occurs at each signal observation xi.

If s is compressively sensed, however, noise can be introduced into the com-

pressive measurements. Under some scenarios, additive noise directly corrupts each

compressive measurement [43]. This is equivalent to sensing using a noisy sensor.

We refer to this type of noise as measurement noise, and model the compressive

measurements as

y = Φ s +ηm, (2.5)

where ηm is i.i.d. noise. In other scenarios, the sparse signal directly mixes with

some noise process while it is being sensed [100]. We refer to this type of noise as

environment noise. We model compressive measurements in the presence of i.i.d.

environment noise ηe as

y = Φ(s +ηe). (2.6)

If the compressive measurements are corrupted by either measurement or en-

vironment noise, the sparse signal is no longer reconstructed using (2.3). Instead,

the reconstructed signal x is obtained by solving

min
x̃

||x̃||l1 , s.t. ||y − Φx̃||2l2 ≤ ϵ (2.7)

where ϵ is a parameter that depends on the noise power [17]. We note that in this

equation, the constraint present in (2.3) is replaced with the inequality ||y−Φx̃||2l2 ≤

ϵ.

Nearly Sparse Signals

While many important types of signals are not truly sparse, they satisfy certain

conditions allowing them to be well approximated by sparse signals. These signals
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are known as nearly sparse or compressible signals. The discrete wavelet transform

coefficients of a digital image corresponding to a natural scene are a widely used

example of a nearly sparse signal [65]. Gabor coefficients of certain classes of os-

cillatory signals can also be modeled as nearly sparse signals [34]. Though nearly

sparse signals cannot be perfectly reconstructed if they are compressively sensed,

they can be reconstructed with little error if enough compressive measurements are

obtained.

To formally define nearly sparse signals, we first sort the entries of the signal

s in descending order s(1), s(2), . . . , s(n), such that |s(1)| ≥ |s(2)| ≥ . . . ≥ |s(n)|. The

signal s is compressible if and only if its sorted coefficients fall inside a weak lp ball

of radius R for some 0 < p < ∞ [12], i.e.

|s(i)| ≤ R · i−1/p, i = 1, 2, . . . , n. (2.8)

We model nearly sparse signals as compressible signals whose entries are i.i.d. ran-

dom variables. Signals drawn from many commonly occurring distributions such as

the Laplace and Gaussian distributions are compressible [12].

Nearly Sparse Signals in the Presence of Noise

In some real world scenarios, a nearly sparse signal may be compressively

sensed in a noisy environment. As a result, we adopt nearly sparse signals in the

presence of noise as a third signal model. These signals can be viewed as a com-

bination of the previous two models. Provided that the noise power is sufficiently

small, nearly sparse signals will remain compressible when corrupted by noise. As a

result, we will see that detecting compressive sensing in signals that fit this models
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is similar to detecting compressive sensing in nearly sparse signals.

2.2 Compressive Sensing Fingerprints

To identify the fingerprints left by compressive sensing, we first examine sparse

signals in the presence of noise, then examine nearly sparse signals.

Consider a signal x formed by sensing a sparse signal s in the presence of noise.

Assuming that the locations of the nonzero components of s are known, the entries

of x that do not correspond to nonzero values can be gathered together to form the

vector xn . If x was acquired using traditional uniform sampling, each entry in xn

will directly correspond to a single noise observation. As a result, the normalized

histogram of xn approximates the distribution of the noise source. This can be seen

in Fig. 2.1(d).

This is not the case, however, if x was acquired via compressive sensing. If

measurement noise is encountered during sensing, the noise affects each compressive

measurement. During reconstruction, no single value of x will correspond to a single

noise observation. If environment noise is present during compressive sensing, both

the sparse signal and the noise will be captured during the measurement process.

Reconstructing the signal by solving (2.7), however, ensures that x will accurately

reconstruct the s but not the noise. As a result, if x was captured using compressive

sensing, the normalized histogram of xn will not match the distribution of the noise

source. In fact, because x was chosen to maximize the sparsity of the reconstructed

signal, a significant number of entries in xn will be zero or near zero. This will result
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Figure 2.1: Fingerprints of compressive sensing for sparse signals in the presence of

measurement noise or environment noise. The upper row shows the observed signals

from (a) traditional sensing, (b) compressive sensing corrupted with measurement

noise and (c) compressive sensing corrupted with environment noise. The bottom

row shows the corresponding noise histograms of the observed signals above.
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in the presence of an impulsive peak at zero in the normalized histogram of xn as

can be seen in Fig.s 2.1(e) and (f). This peak is the fingerprints left by compressive

sensing for sparse signals in the presence of noise.

A similar effect can be observed if x was formed by sensing a nearly sparse

signal. As it is shown in Fig. 2.2(a), the normalized histogram of traditionally sensed

signal x will closely match the distribution of the nearly sparse signal being sensed.

However, the use of compressive sensing will greatly increase the histogram’s kurtosis

and result in a big concentration at zero as can be seen in Fig. 2.2(b). Furthermore,

this result holds true for nearly sparse signals in the presence of noise, as can be

seen in Fig. 2.2(c) and (d).

To show the effectiveness of compressive sensing fingerprints in real applica-

tions, we take a hyperspectral image, which is shown in Fig. 2.3(a), as an example.

Hyperspectral images are composed of many sub-images in different spectrum bands,

each of which can be obtained by compressive sensing [91]. Therefore, in this ex-

ample, we take one sub-image out to examine. Comparing the traditionally sensed

sub-image in Fig. 2.3(b) and the compressively sensed image in Fig. 2.3(c), we can

hardly tell the difference. However, the histogram of transform domain coefficients

from compressively sensed image, as it is shown in Fig. 2.3(d), has a much higher

kurtosis at zero than that from the traditionally sensed image, which is shown in

Fig. 2.3(e).

Furthermore, in order to show that such fingerprints also exist in real com-

pressive sensing devices, we examine a single pixel camera captured image and an

image of the same scene but being captured by a traditional digital camera [79]. The
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Figure 2.2: Example showing the fingerprints of compressive sensing in a nearly

sparse signal with and without the presence of noise. The top row shows the his-

tograms observed from a nearly sparse signal after (a) traditional sensing and (b)

compressive sensing. The bottom row shows the histograms observed from a nearly

sparse signal in the presence of noise after (c) traditional sensing and (d) compressive

sensing.
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(e)

Figure 2.3: (a) A hyperspectral image taken from [9] with dimension 1024×1024

pixel. (b) It’s monochromatic image (obtained from raw data) corresponding to

wavelength of 400nm. (c) The same monochromatic image obtained by compressive

sensing and reconstructed from 10242×50% compressive measurements. (d) and (e)

Histograms of DWT subband 3 coefficients from (d) the traditionally sensed image

and (e) the compressively sensed image.
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single pixel camera in [79] obtains each compressive measurement by projecting the

scene onto a randomized digital micromirror array and optically calculate the linear

combination. We use the ‘mug’ image captured by a single pixel camera in [79], as

it is shown in Fig. 2.4(a), to present the fingerprints of compressive sensing. Be-

cause the reconstruction step was performed by minimizing the total variation, the

domain that compressive sensing fingerprints are present in is the pixel variations,

i.e., gradient magnitudes. Fig.s 2.4(b) and 2.4(c) show the histograms of pixel

variations for the traditionally sensed ‘mug’ image, and its compressively sensed

version, respectively. We can see from Fig. 2.4(c) that a peak corresponding to a

large concentration of components is present at the zero bin for the compressively

sensed image. These fingerprints are absent from the traditionally captured image’s

histogram on the left.

We note that the compressive sensing fingerprints’ existence is due to the sparse

representation of the signal created upon reconstruction. Because all reconstruction

algorithms enforce sparsity in one way or another, these fingerprints will be present

in the sparsity domain regardless of the reconstruction algorithm.

Though we focus on the basis pursuit (BP) reconstruction algorithm in this

chapter, we note that there are several algorithms that can be used to reconstruct

a compressively sensed signal such as orthogonal matching pursuit (OMP) [97],

least absolute shrinkage and selection operator (LASSO) [95], and total variation

(TV) [62]. We note that as long as a reconstruction algorithm seeks a sparse rep-

resentation of the compressive measurements, similar fingerprints will be present in

the reconstructed signal.
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Figure 2.4: An example showing compressive sensing fingerprints in the (a) ‘mug’

image captured by a single pixel camera [79]. (b) The histogram of pixel variations

(magnitude of the gradient) for the ‘mug’ image captured by a traditional digital

camera. (c) The pixel variation histogram for the compressively sensed image of the

same scene acquired using the single pixel camera.
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2.3 Compressive Sensing Detection

Now that we have identified the fingerprints left by compressive sensing, we

are able to develop a set of forensic techniques to detect its use [23]. Detecting

the use of compressive sensing is equivalent to differentiating between the following

hypotheses

H0 : x was obtained using traditional sampling,

H1 : x was obtained using compressive sensing,

(2.9)

where x is a discretely indexed signal of unknown origin. To do this, we first need

to obtain some measure of the strength of any compressive sensing fingerprints

present in x . Measurement of these fingerprints’ strength, however, depends on the

appropriate signal model for x as well as the amount of side information known by

the forensic investigator. To account for this, we propose two different compressive

sensing detection techniques that are appropriate in different forensic scenarios.

2.3.1 Zero Ratio Detection Scheme

In many cases, a forensic investigator knows little more than the fact that the

signal in question fits one of the three signal models outlined in Section 2.2. If this

is the case, the forensic investigator cannot leverage any side information such as

the signal or noise distribution while measuring the strength of compressive sensing

fingerprints. The investigator can, however, make use of the fact that if compressive

sensing was performed, it was done under nonideal conditions.

Assume temporarily that x can be modeled as a sparse signal s sensed in
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the presence of noise. We assume that the noise has a continuous distribution and

a nonzero variance, i.e. its distribution is not an impulse. From Section 2.2, we

know that under hypothesis H0 each entry of xn will correspond directly to a noise

observation. As a result, the distribution of the entries in xn will match the noise

distribution. By contrast, under hypothesis H1, an impulsive peak located at zero

will occur in the distribution of the entries of xn . Because of this, we can state

P(xn
i = 0|H0) ≪ P(xn

i = 0|H1). (2.10)

Though a forensic investigator may not know the noise distribution, the investiga-

tor can use (2.10) to measure the strength of compressive sensing fingerprints by

calculating the ratio of zero valued entries in xn to its total length.

Since in practice many of the techniques used to solve (2.3) or (2.7) result

in values of xn close to but not exactly equal to zero, we measure the strength of

the fingerprints as follows. Let Λε(x
n) denote the number of elements in xn which

have an absolute value no greater than ε. We calculate the zero ratio fingerprints’

strength using the equation

ξz(x
n) =

Λε(x
n)

ℓ(xn)
, (2.11)

where ℓ(xn) is the length of the vector xn . When calculating Λε, ε is chosen to

be ε = || xn ||∞/α, where α is a parameter that controls the range of values of xn

that are counted as zeros. Experimentally, we have observed that choosing α = 100

yields desirable results. We then perform compressive sensing detection using the
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following decision rule

δz =


H0 if ξz(x

n) < τz,

H1 if ξz(x
n) ≥ τz.

(2.12)

where τz is a decision threshold.

In reality, the locations of the nonzero values of s may not be known to a

forensic investigator, thus making it difficult to form xn from x . In this scenario,

two approaches can be taken to perform compressive sensing detection. Since s

will contain a small number of nonzero entries, entries in x corresponding to these

entries in s will have values significantly larger in magnitude than the rest. In the

first approach, if the entries of x are sorted in descending order, a substantial drop

in the values of the entries of x will be observed when transitioning between nonzero

entries of s and xn . Using this information, a threshold can be chosen to separate

out xn for use in detection. If a suitable threshold cannot be chosen to separate out

xn , a second approach can be used. In this approach, x can be used instead of xn

in the detection algorithm. Since s will have few nonzero entries, the statistics of

xn will dominate and there will be little effect on the detection results.

Additionally, if x can be modeled as a nearly sparse signal or a nearly sparse

signal in the presence of noise, the preceding detection technique can still be used,

albeit with slight modification. From Section 2.2, we know that for nearly sparse

signals or nearly sparse signals in the presence of noise, the reconstruction step in

compressive sensing will result in the presence of a large number of zero or near zero

valued entries in x . As a result, we can state

P(xi = 0|H0) ≪ P(xi = 0|H1). (2.13)
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for nearly sparse signals and nearly sparse signals in the presence of noise. If we

substitute x for xn in equations (2.11), compressive sensing can be detected in nearly

sparse signals using the decision rule δz presented in (2.12).

2.3.2 Distribution-based Detection Scheme

In some scenarios, the forensic investigator will have knowledge about the

distribution F of the noise present during sensing, like the quantization noise [19], or

about the distribution G of the coefficients in a nearly sparse signal. This knowledge

can be used as side information to perform improved compressive sensing detection.

To develop a detection scheme that makes use of this distribution information, let

us examine the case of nearly sparse signals.

Let us assume that a forensic examiner knows that the coefficients of a nearly

sparse signal are distributed according to some parametric distribution G(θ), where

the true value of the parameter θ is unknown. Additionally, assume that the forensic

investigator knows an estimator θ̂ for the parameter θ on the basis of i.i.d. realiza-

tions of G(θ). Under hypothesis H0, each entry of x will be a direct observation of

the nearly sparse signal, therefore the entries of x will be distributed according to

G(θ). If θ̂ is calculated using the entries of x , an appropriately chosen measure of the

distance between G(θ̂) and the normalized histogram of x should be small. We know

from Section 2.2, however, that under hypothesis H1 the entries of x will no longer

be distributed according to G(θ). This will cause θ̂ to be an inaccurate estimate

of θ if it is calculated from x under hypothesis H1. Now, given an appropriately
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Figure 2.5: Fitting the histogram of the observed signal to the estimated signal

distribution. The Laplace distribution was used to generate each sample of the

nearly sparse signal. The left figure shows the fitting result when this signal was

obtained by traditional sensing, while the right one shows the result for a when the

signal was compressively sensed.

chosen distance metric, the distance between G(θ̂) and the normalized histogram

of x will be large. This can be seen in Fig. 2.5. As a result, we can measure the

strength of compressive sensing fingerprints in x by measuring the distance between

the normalized histogram of x and G(θ̂).

A problem arises when measuring the distance between these two quantities:

hk(x ) is an estimate of the probability that the value of xi falls within the kth

histogram bin, while G(θ̂, t) is the probability that xi takes the value t. As a result,

these two quantities cannot be compared directly by any distance measurement. To

resolve this disparity, we integrate G(θ̂, t) over each histogram bin to obtain g(θ̂)

where

gk(θ̂) =

∫ b(k+1/2)

b(k−1/2)

G(θ̂, t)dt (2.14)

and b is the width of each histogram bin.
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Let ξd(hk, gk) denote some distance measure between hk and gk, such as mean

square distance (MSD) or Kullback-Leibler divergence (KL divergence), then, we

perform compressive sensing detection using the following decision rule

δd =


H0 if ξd(hk, gk) < τd

H1 if ξd(hk, gk) ≥ τd.

(2.15)

where τd is a decision threshold. The choice of the distance measure ξd(hk, gk)

is made based on the performance of this compressive sensing detector in different

applications. For example, when detecting compressively sensed images, using mean

square error as the distance measure yield the best detection performance. We will

discuss this case in the next section.

Besides the conventional distance measures, such as MSD and KL divergence,

we also propose their modified versions as the candidates of ξd(hk, gk). These modi-

fied distance measures take into account the particular manner in which compressive

sensing changes the distribution of the entries in x . Take the KL divergence measure

as an example. Since compressive sensing dramatically increases the kurtosis of the

distribution of the entries in x , the most forensically significant differences between

h and g should occur around k = 0. As a result, we modify the KL divergence to

measure the strength of compressive sensing fingerprints as follows

ξd(hk, gk) =
∑
k

wk ln
hk

gk
, (2.16)

where wk is a normalized set of weights used to emphasize differences in the foren-

sically significant region around k = 0. Since we wish to weight the regions around

k = 0 more heavily, we construct the weighting function using a Laplace distribu-
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tion. Other distributions obeying power law decay may also be good candidates.

Given that the weights are discrete, we integrate the Laplace distribution over each

histogram bin to obtain the weighting function as follows,

wk =


1− e−νb/2 cosh(νk) if k = 0,

e−ν|k| sinh(νb/2) otherwise,

(2.17)

where the parameter ν is chosen to be

ν =
βn∑n
i=1 |xi|

, (2.18)

and where β is a user specified parameter that adjusts the size of the forensically sig-

nificant region. Experimentally, we have found that β = 100 yields desirable results.

Similar modifications can be applied on other conventional distance measures.

If the signal being examined can be modeled as a sparse signal in the presence

of noise and the forensic investigator has a parametric model F(θ) of the noise

distribution, the detection technique presented above can be used, only with slight

modifications. Since the noise distribution rather than the signal distribution is

known, F should be substituted for G in (2.14). Additionally, θ̂ should be calculated

using xn and the histogram of xn should be substituted for h(x ) in (2.16). If the

signal is more appropriately modeled as a nearly sparse signal in the presence of

noise, the distribution of x is given by the convolution of G and F . If the noise

distribution is unknown or if G ∗ F is difficult or intractable, the noise distribution

can be ignored when performing compressive sensing detection as long as the noise

power is sufficiently low.

We note that, although only the original signal’s distribution is explicitly used
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in this distribution-based detection scheme, our model for compressively sensed sig-

nals has also been implicitly applied when designing the detector. Specifically, both

detection schemes are designed based on the assumption that the distribution of

a compressively sensed signal has much more kurtosis than that of a traditionally

sensed signal. While this is enough for identifying compressively sensed signals

from traditionally sensed signals, more explicit models for the distribution of com-

pressively sensed signals can be proposed for particular applications where more

complicated detection scenarios exist. We will discuss this in detail for images in

the next section.

2.4 Detecting Compressive Sensing in Digital Images

While the compressive sensing detection techniques proposed in Section 2.3

can be used on a wide variety of signals, in some scenarios it is desirable to create

a compressive sensing detection technique specifically tailored to a particular class

of signals. This is the case for digital images.

An image’s compression history can reveal important information about how

an image was captured and stored. It can also reveal important information about

the device used to capture an image [88]. As a result, a variety of techniques have

been developed to determine if an image was previously compressed. Fingerprints

left by compressive sensing, however, can be mistaken for traditional image com-

pression fingerprints by existing forensic techniques such as those proposed by Lin

et al. [58] and Luo et al. [61]. As a result, when we are given a compressively sensed
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and reconstructed image, it may be easily misidentified as a traditionally sensed

and compressed image. In this section, we propose a forensic technique specifically

designed to both detect evidence of compressive sensing in digital images and to

differentiate compressive sensing fingerprints from those left by traditional forms of

image compression.

2.4.1 Compressive Sensing Fingerprints in Digital Images

Since the pixel values of an image do not form a sparse signal, digital images

may not initially seem well suited for compressive sensing. It is well known, however,

that within each subband, the set of discrete wavelet transform (DWT) coefficients

of a natural image are sparse. As a result, compressive sensing reconstruction is

often performed on images in the wavelet domain.

From our discussion of compressive sensing fingerprints in Section 2.2, we

would naturally expect an impulsive peak to occur at zero in the DWT coefficient

distribution of a compressively sensed image. While this is true after the compres-

sively sensed DWT coefficients are reconstructed, the inverse DWT of the image

must be performed and the resulting pixel values must be projected back into the

set {0, . . . , 255} of allowable pixel values. This will introduce a small but nontrivial

amount of noise into the DWT coefficients when DWT is applied to the image again

to extract the coefficients. As a result, the peak in the image’s DWT coefficient

distribution at zero will no longer correspond to an impulse. Though the peak will

be slightly smoothed by this noise source, the DWT coefficient distribution of a

35



−400 −200 0 200 400
0

0.005

0.01

0.015

0.02

0.025

Coefficient Value

N
or

m
al

iz
ed

 H
is

to
gr

am

−200 −100 0 100 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Coefficient Value

N
or

m
al

iz
ed

 H
is

to
gr

am

−200 −100 0 100 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Coefficient Value

N
or

m
al

iz
ed

 H
is

to
gr

am

Figure 2.6: Histograms of DWT coefficients taken from uncompressed Lena (left),

the same image after JPEG 2000 compression (right), and the reconstructed com-

pressively sensed Lena (center).

compressively sensed image will still exhibit a large degree of kurtosis, as can be

seen in Fig. 2.6. We use this characteristic feature of a compressively sensed image’s

DWT coefficient distribution as the fingerprints.

Wavelet-based image compression techniques such as JPEG 2000 and SPIHT

also introduce fingerprints in an image’s DWT coefficient distribution. During com-

pression, these techniques use a bit-plane encoder to store the most significant digits

of each DWT coefficient in a subband. This has the same effect as quantizing each

DWT coefficient. As a result, the DWT coefficients in an image compressed using a

wavelet-based technique will tightly cluster around certain values, forming a series

of peaks in the DWT coefficient distribution that can be seen in the rightmost plot

in Fig. 2.6. These peaks are the fingerprints of wavelet based image compression.

Since the most prominent peak occurs at zero, compressive sensing fingerprints and

wavelet-based compression fingerprints can easily be confused by existing detectors.

To demonstrate that compression history detection techniques can mistake

compressive sensing fingerprints for JPEG 2000 compression fingerprints, we per-
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Figure 2.7: ROC curves obtained by using the image compression detection tech-

nique in [58] to identify JPEG 2000 compression in a set of unaltered and JPEG

2000 compressed images (left) and a set of unaltered and compressively sensed im-

ages (right). In the right figure “false alarms” correspond only to unaltered images

misclassified as JPEG 2000 compressed. Since there is no JPEG 2000 compressed

image in the seconde test set, the results in the right figure demonstrate that com-

pressive sensing can be easily misidentified as JPEG 2000 compression.

formed an experiment using the compression history detection technique proposed

in [58]. When performing this experiment, we used the Uncompressed Colour Im-

age Database (UCID) [82] to create a testing database of 300 unaltered images,

300 JPEG 2000 compressed images, and 300 compressively sensed images. First,

we evaluated the baseline performance of the wavelet-based compression detection

technique from [58] by using it to distinguish between the set of unaltered and JPEG

2000 compressed images. An ROC curve showing the results of this experiment is

displayed in the left figure of Fig. 2.7, which shows that this technique can reli-

ably detect wavelet-based compression. Next, we used this technique to identify

evidence of JPEG 2000 compression in the set of compressively sensed and unal-

tered images. Since none of the images in this second experiment were compressed
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using JPEG 2000, we would expect the detector to find no evidence of JPEG 2000

compression. An ROC curve showing the results of this experiment is displayed in

the right figure of Fig. 2.7. “false alarms” correspond only to unaltered images mis-

classified as JPEG 2000 compressed, and “detections” correspond to compressively

sensed images been identified as JPEG 2000 compressed images. These results show

that compressively sensed images can be easily misidentified as images that have

undergone JPEG 2000 compression by existing forensic techniques. This reinforces

the need for a technique to distinguish between compressive sensing and traditional

wavelet-based compression.

Moreover, while the proposed universal detection schemes in Section 2.3 can be

used on images to distinguish compressively sensed images from traditionally sensed

images, their performance may be affected when traditionally sensed but wavelet-

based compressed images are involved in the acquisition detection analysis. To

demonstrate this, we used the universal detector proposed in section 2.3.2 to differ-

entiate between compressively sensed images and both uncompressed traditionally

sensed images as well as traditionally sensed images that have been compressed us-

ing JPEG 2000. The results of this experiment are shown in Fig. 2.8. The left figure

demonstrates that our proposed general compressive sensing detection scheme can

be successfully used on image signals. While the right figure shows the degradation

of this scheme’s performance when traditionally sensed but JPEG 2000 compressed

images are involved in the analysis. Therefore, in order to determine the acquisition

process of an image signal and identify compressive sensing, we need more spe-

cific models for compressively sensed images to distinguish them from traditionally
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Figure 2.8: ROC curves obtained by using the proposed scheme in Section 2.3.2

to identify compressively sensed images from traditionally sensed images (left) and

to identify compressively sensed images from traditionally sensed but JPEG 2000

compressed images (right).

sensed but wavelet-based compressed images.

2.4.2 DWT Coefficient Distribution Models

Because both compressive sensing fingerprints and wavelet-based compression

fingerprints present themselves in an image’s DWT coefficient distribution, we must

adopt a set of models for an image’s DWT coefficient distribution in order to develop

our forensic technique. Let X be a random variable representing the value of a DWT

coefficient in a particular subband of an image. For uncompressed images, we model

the distribution of X using the Laplace distribution [87]

fX(x) =
λ0

2
e−λ0|x|. (2.19)

Since traditional DWT-based image compression is equivalent to nonuniform quan-

tization [87], we then model the DWT coefficient distribution of an image that has
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undergone traditional wavelet-based compression as

P[X = q] =

∫ q+△q

q−△q

λ0

2
e−λ0|x|dx, (2.20)

where q ∈ Z and △q is half of the width of the quantization interval that maps

DWT coefficients to q.

When examining compressively sensed images, we must account for the noise

introduced into the image’s DWT coefficients described in Section 2.4.1. Since

this noise will slightly smooth out the impulsive spike that we would expect to

occur in the distribution of X at zero, we instead model the DWT coefficients of a

compressively sensed image using a Laplace mixture distribution [24]

fX(x) = ω1
λ1

2
e−λ1|x| + ω2

λ2

2
e−λ2|x| (2.21)

where ω1 + ω2 = 1 and 0 < λ1 < 1 < λ2. Fig. 2.9 shows an example of a

compressively sensed image’s DWT coefficient histogram fit to both a Laplace and

a Laplace mixture distribution. We can see from this figure that an appropriately

chosen Laplace mixture distribution very accurately models the compressively sensed

image’s DWT coefficient distribution.

2.4.3 Compressive Sensing Detection

Because the fingerprints left by traditional wavelet-based compression tech-

niques can be confused with the compressive sensing fingerprints, we propose per-

forming compressive sensing detection on images in two steps [24]. In the first step,

we separate unaltered traditionally sensed images from those that are either tradi-

tionally compressed or compressively sensed. In the second step, we differentiate
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Figure 2.9: Fit the coefficient histogram of compressively sensed Lena with both

Laplace model and Laplace mixture model. Coefficients are taken from the third

subband after 6-level DWT decomposition with wavelet basis ‘bior4.4’.

between compressively sensed images and those that have traditionally undergone

wavelet-based compression.

Step 1 - Identify Uncompressed Traditionally Sensed Images

The goal of the first step of our compressive sensing detection scheme is to

remove uncompressed traditionally sensed images from further examination. This

step is equivalent to differentiating between the following two hypotheses

H0: The image is uncompressed and traditionally sensed,

H1: The image is traditionally compressed or compressively sensed.

(2.22)

where hypothesis H1 is a composite hypothesis. To accomplish this, we exploit

the fact that the DWT coefficient distributions of both compressively sensed im-

ages and traditionally compressed images will significantly differ from the Laplace

distribution.

We begin by assuming that hypothesis H0 is correct. Under this assumption,
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the parameter λ0 in (2.19) can be estimated for a particular subband of an image’s

DWT coefficients using the maximum likelihood estimator

λ̂0 =
N∑N

i=1 |xi|
, (2.23)

where each xi represents a DWT coefficient in the subband being examined and N is

the number of DWT coefficients in the subband. Once the estimate λ̂0 is obtained,

we use λ̂0 and (2.19) to calculate the expected histogram gunaltk according to (2.14).

We then measure the mean squared distance (MSD) between the observed histogram

of DWT coefficients hk and gunaltk according to the formula

MSD1 =
1

B

∑
k

(
hk − gunaltk

)2
, (2.24)

where B is the total number of histogram bins.

We note that this step is an application of our distribution-based detection

scheme proposed in section 2.3.2. MSD is chosen instead of KL divergence to avoid

the “divide by zero” problem when calculating the KL divergence.

If the MSD between hk and gunaltk is sufficiently large, we conclude that an

image’s DWT coefficient histogram cannot be modeled using (2.19), therefore the

image either has undergone wavelet-based compression or has been compressively

sensed. As a result, we differentiate between the hypotheses in (2.22) using the

decision rule

δ1 =


H0 : If MSD1 < τ1

H1 : If MSD1 ≥ τ1,

(2.25)

where τ1 is the decision threshold. If δ1 returns a decision of H1 for an image, then

we proceed to step 2 of our detection process.
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Step 2 - Detect Compressive Sensing

Once we have decided that an image has been either traditionally compressed

or compressively sensed, we must differentiate between these two possibilities. In

the second step of our detector, we frame this problem as deciding between the

hypotheses

H0:The image has undergone wavelet-based compression,

H1:The image was compressively sensed.

(2.26)

We know that under hypothesis H1, an image’s DWT coefficient distribution will be

given by (2.21). As a result, we can identify compressively sensed images by deter-

mining how well the distribution of an image’s DWT coefficients within a subband

fits a Laplace mixture distribution.

To do this, we first estimate the parameters in the parameter set θ = {ω1, ω2, λ1, λ2}

using the expectation maximization (EM) algorithm [67]. Let Zi be latent random

variables that denote which component of the Laplace mixture distribution each

DWT coefficient xi originates. As a result, we can write the following equations:

fXi
(xi|Zi = 1) =

λ1

2
e−λ1|xi|, (2.27)

fXi
(xi|Zi = 2) =

λ2

2
e−λ2|xi|, (2.28)

P[Zi = 1] = ω1 and P[Zi = 2] = ω2. (2.29)

At the tth iteration of the EM algorithm, the updated estimates of the parameters
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in the parameter set are given by the equations

w
(t+1)
j =

1

n

N∑
i=1

T
(t)
j,i j = 1, 2 (2.30)

λ
(t+1)
j =

∑N
i=1 T

(t)
j,i∑N

i=1 T
(t)
j,i |xi|

j = 1, 2 (2.31)

where

T
(t)
j,i =

w
(t)
j λ

(t)
j e−λ

(t)
j |xi|

ω
(t)
1 λ

(t)
1 e−λ

(t)
1 |xi| + ω

(t)
2 λ

(t)
2 e−λ

(t)
2 |xi|

. (2.32)

The EM algorithm’s iterations are terminated after either the maximized log-likelihood

ratio

max
θ

Q(θ|θ(t)) =
N∑
i=1

2∑
j=1

T
(t)
j,i

[
ln
(
ω
(t+1)
j λ

(t+1)
j /2

)
− λ

(t+1)
j |xi|

]
.

converges or a fixed number of iterations have been reached.

After the values of ω1, ω2, λ1, and λ2 have been estimated, we compute the

expected DWT coefficient histogram gcsk under hypothesis H1 using (2.14). Next, we

calculate the MSD between the gcsk and the observed histogram of DWT coefficients

hk

MSD2 =
1

B

∑
k

(
hk − gcsk

)2
, (2.33)

where B is the total number of histogram bins. Finally, we perform compressive

sensing detection according to the decision rule

δ2 =


H0 : If MSD2 > τ2

H1 : If MSD2 ≤ τ2,

(2.34)

where τ2 is a decision threshold.
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2.5 Measurement Number Estimation

Once a signal has been identified as compressively sensed, a forensic investiga-

tor may wish to ascertain additional information about how the signal was captured.

One significant piece of information is the number of compressive measurements that

were used to acquire the signal. In this section, we propose a technique to estimate

the number of compressive measurements obtained when sensing a signal.

When a compressively sensed signal is reconstructed by solving (2.3), the spars-

est solution x such that Φ x = y is chosen. Since the values of x can be thought of

as weights for the column vectors of Φ, and y is obtained also by weighted sum of

these vectors with non-sparse weighting values, it seems natural that the sparsity of

the reconstructed signal will be closely related to dimension of the column vectors of

Φ, which is approximated to be the rank of Φ, i.e., the number of compressive mea-

surements. In fact, we are able to prove that the relationship between the number

of compressive measurements and the number of zeros in the reconstructed signal is

given by the relationship stated below in Theorem 1.

Theorem 1. Let y be a vector of m compressive measurements obtained by com-

pressively sensing a signal that fits one of the three signal models proposed in Section

2.1.2. Assume that the noise, if applicable, is continuously distributed. Additionally,

let the m by n sensing matrix Φ have orthonormal row vectors selected uniformly

at random from an orthonormal vector set in Rn. If the reconstructed signal x is

obtained by solving the l1 minimization problem

min
x̃

||x̃||l1 s.t. Φx̃ = y, (2.35)
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then with probability close to one, x will have m non-zero coefficients. As a result,

the number of compressive measurements is given by

m = n− Λ0(x), (2.36)

where Λ0(x ) denotes the number of zero valued entries in x .

Proof. We prove this theorem by deriving a lower and upper bound on n − Λ0(x )

respectively, then showing that the only value of n−Λ0(x ) that satisfies both bounds

is m.

To derive the lower bound, we begin by defining vector space V as the linear

span of the column vectors ϕ
1
, ϕ

2
, . . . , ϕ

n
of the sensing matrix Φ. Since Φ has

orthogonal row vectors, it is full rank. Thus, dim(V ) = dim{ϕ
1
, ϕ

2
, . . . , ϕ

n
} = m.

Next, we define the dimension of an m length vector v on space V as the size of the

smallest subset of {ϕ
1
, ϕ

2
, . . . , ϕ

n
} whose linear span contains v.

The compressive measurements y can be expressed as y =
∑n

i=1 ϕi
si, where s is

the signal being acquired by compressive sensing. If s fits any of the signal models in

Section 2.1.2, then the dimension of y is equal to the dimension of V with probability

close to one. Specifically, in the case of signals corrupted by environmental noise

and nearly sparse signals, either the noise or the nature of the signal itself will cause

each entry of s nonzero. Otherwise, if the signal is corrupted by measurement noise,

then the independent white noise added to the compressive measurements will cause

y to lie in the span of any subset of V of size m− 1 or less with probability nearly

zero.

Because the reconstructed signal x is just another decomposition of y on space
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V , the number of non-zero entries in x can not be less than the dimension of y on

this space. Thus,

n− Λ0(x ) ≥ dim(y) = dim(V ) = m. (2.37)

To derive the upper bound, we reformulate (2.35) as the following equivalent

problem [17]

min
z̃

1T z̃, s.t. Az̃ = y, z̃ ≥ 0. (2.38)

where 1 denotes a column vector of length 2n of all ones and A = (Φ,−Φ) is of size

m× 2n. If the solution to (2.38) is partitioned into two vectors of equal length such

that z = (uT , vT )T , then the solution to (2.35) can be expressed as x = u− v.

By examining this intermediate problem, the following lemma and corollary

can be proved by using Karush-Kuhn-Tucker conditions [51].

Lemma 1. Let z′ denote the sparsest solution of problem (2.38), i.e., the one with

smallest number of non-zero coefficients. Then

n− Λ0(z
′) ≤ m. (2.39)

Corollary 1. For any solution z of (2.38), the corresponding solution x for (2.35)

will have the same number of non-zero coefficients with z.

Given these two results, we conclude our proof by recalling that the solution

to (2.35) is unique (see Theorem 1.1 in [12]), so that the sparsest solution x′ to

(2.35) is the only solution, i.e., x = x′. Therefore, n − Λ0(x ) = n − Λ0(z
′) ≤ m.

Combining this result with (2.37), we conclude that n− Λ0(x ) = m, thus Theorem

1 is proved.
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In practice, a number of iterative techniques are often used to solve (2.35).

Since these techniques are typically terminated after the difference between two

iterations is sufficiently small or a fixed number of iterations has been reached,

the solution yielded by these techniques will often differ slightly from the optimal

solution. As a result, several values of x that would ideally be zero will instead take

small nonzero values. To compensate for this effect, we instead count the number

of entries Λζ(x) that fall within a ball of radius ζ around zero. Our measurement

number estimator for the observed signal x is defined as follows:

m̂ = n− Λζ(x), (2.40)

where ζ = ||x̆||∞/ρ. If the signal x is modeled as a sparse signal in noise, x̆ is taken

as the noise component, otherwise x̆ = x. The choice of ρ depends on how accurate

the reconstruction is. For example, in the ideal where the iteration in simulation can

go to infinity, then ρ → ∞ and ζ → 0. In our simulations, we have experimentall

observed that ρ = 100 yields desirable performance.

2.6 Simulations and Results

To verify the effectiveness of our proposed forensic techniques, we have evalu-

ated their performance through a series of experiments. In this section, we present

the results of these experiments and show that our proposed techniques can reliably

detect the use of compressive sensing. We first evaluate the ability of our forensic

techniques to identify compressive sensing in sparse signals in the presence of noise,

nearly sparse signals, and nearly sparse signals in the presence of noise. We then
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evaluate the performance of our compressive sensing detection technique for images

and our technique to estimate the number of compressive measurements used to

acquire a signal.

2.6.1 Sparse Signals in the Presence of Noise

To evaluate the ability of both the zero ratio detector and the distribution-

based detector to identify compressive sensing in sparse signals in the presence of

noise, we first created a database of testing signals. This database consisted of 200

compressively sensed sparse signals in the presence of environmental noise, 200 com-

pressively sensed sparse signals in the presence of measurement noise, and 200 sparse

signals in the presence of additive noise which were not compressively sensed. Each

signal was created by first randomly generating a sparse signal of length N = 1000

with 20 nonzero entries. For each nonzero entry, its location was chosen uniformly

at random and its value was drawn from a Gaussian distribution with a mean of

10 and unit variance. We then corrupted each signal with additive Gaussian noise

distributed N (0, 0.1). For signals which were not compressively sensed, we added

the noise directly to the sparse signal to obtain the observed signal. For compres-

sively sensed signals corrupted by environmental noise, we added the noise to the

sparse signal, then performed M compressive measurements. For signals corrupted

by measurement noise, we first obtained M compressive measurements of the sparse

signal, then added the Gaussian noise to each compressive measurement. Each

compressively sensed signal was reconstructed using the basis pursuit de-noising al-
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gorithm [17]. We obtain the noise component of the observed signal by excluding

the 20 entries that have the largest magnitudes, since these likely correspond to the

nonzero components of the sparse signal. We then used both detection techniques

to determine if each signal was compressively sensed.

In our first set of experiments, we evaluated the performance of both detection

techniques as the ratio of the number of compressive measurements to the total signal

length was varied from M/N = 0.1 to 0.9 in increments of 0.1. For distribution-

based detector, the modified KL divergence was chosen as the distance measure

for it performs better than other distance measures do. When performing these

experiments, we varied the decision thresholds of each detector over a range of values.

For each threshold value, we determined the associated probabilities of detection Pd

and false alarm Pf by calculating the percentage of compressively sensed signals

that were correctly identified and the percentage of signals that were incorrectly

identified as compressively sensed respectively. We then used these probabilities to

construct a set of ROC curves showing the performance of each detector. Selected

ROC curves showing the performance of both detectors for M/N = 0.1, 0.4, and

0.9 are shown in Fig.s 2.10(a) through (c).

From the full set of ROC curves, we found that both detectors achieved perfect

detection, i.e. Pd = 100% with Pf = 0%, for M/N ≤ 0.8. When M/N reaches 0.9,

both detectors can still identify compressive sensing with Pd = 99% at a Pf ≤

5%. Since in most real world scenarios compressive sensing will be applied with

M/N less than 0.5, these results show that both techniques perform strongly under

realistic conditions. Furthermore, we can see from Fig. 2.10(c) that the distribution-
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Figure 2.10: ROC curves of zero ratio detector and distribution-based detector on

signals modeled as sparse signals in the presence of noise for (a) M/N=0.1, (b)

M/N=0.4 and (c) M/N=0.9. ‘Msure’ is short for measurement and ‘Envron’ is

short for environment. ‘ZR’ denotes the zero ratio detector and ‘DB’ denotes the

distribution-based detector.
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based detector outperforms the zero ratio detector because the forensic investigator

is able to make use of additional information about the noise’s distribution. We

also note that the performance of our detectors decrease as M increases because

with more compressive measurements, the noise can be accurately reconstructed.

Since compressive sensing fingerprints manifest themselves as changes in the noise

distribution, this impedes compressive sensing detection. Nevertheless, our results

show that compressive sensing detection can be performed with a high degree of

accuracy under realistic values of M/N .

Next, we evaluated the robustness of both detectors to different signal and

noise powers, as well as different noise distributions. To evaluate the performance

with different signal and noise powers, we fixed the number of compressive measure-

ments so that M/N = 0.5. This was done because M/N = 0.5 is typically an upper

bound in real world applications [63], therefore it provides a lower bound on the

performance of both detectors in realistic scenarios. We then repeated the previous

experiments using the same noise power with signal powers of 10, 100, and 1000,

and while using the same signal power with noise powers of 0.1, 1, and 10. For

each of these experiments, both detectors achieved Pd = 100% at a false alarm rate

of Pf = 0%. These results show that both detectors can perform strongly under a

variety of signal and noise powers. Next, we kept M/N = 0.5 and performed com-

pressive sensing detection when each signal corrupted by noise from the exponential,

Laplace, Gaussian, uniform and Rayleigh distributions. Again, under each scenario

both detectors were able to acheive Pd = 100% at a false alarm rate of Pf = 0%.

Taken together with our previous results, these results show that both our zero ratio
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Figure 2.11: ROC curves of zero ratio detector and distribution-based detector on

signals modeled as sparse signals in the presence of noise when different reconstruc-

tion algorithms were used.

detector and distribution-based detector can be used to identify compressive sensing

in sparse signals corrupted by noise under a wide range of conditions.

In addition, since several different algorithms are available to reconstruct a

compressively sensed signal, we performed a set of experiments to demonstrate the

robustness of our compressive sensing detection technique to different reconstruction

algorithms. In these experiments, we used used both orthogonal matching pursuit

(OMP) [97] and the LASSO error variation minimization reconstruction algorithm

[95] to reconstruct the compressively sensed signals. We then repeated our first set

experiments, this time setting M/N = 0.5. ROC curves obtained from the results

of these experiments are shown in Fig. 2.11. These results demonstrate that both

of our detectors can identify compressive sensing regardless of the reconstruction

algorithm.
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2.6.2 Nearly Sparse Signals and Nearly Sparse Signals in the Pres-

ence of Noise

For nearly sparse signals and nearly sparse signals in the presence of noise, we

evaluated our distribution-based detector’s ability to identify compressive sensing.

To do this we created a testing database of 1000 signals consisting of 200 of each

of the following types of signals; compressively sensed nearly sparse signals, nearly

sparse signals which were not compressively sensed, compressively sensed nearly

sparse signals corrupted by environmental noise, compressively sensed nearly sparse

signals corrupted by measurement noise, and nearly sparse signals corrupted by

additive noise which were not compressively sensed.

Each signal was generated by first creating a nearly sparse signal of length

N = 1000 whose entries were drawn from a Laplace distribution with variance

104. The Laplace distribution was chosen because it is commonly used to model

the coefficients of several nearly sparse signals [46, 54]. For compressively sensed

nearly sparse signals, we performedM compressive measurements of the signal, then

reconstructed it. For compressively sensed nearly sparse signals in the presence of

noise, we applied zero mean additive Gaussian noise with variance 10 to either the

signal or theM compressive measurements, then performed reconstruction using the

basis pursuit de-noising algorithm. To create nearly sparse signals in noise which

were not compressively sensed, we added zero mean Gaussian noise with variance

10 to the nearly sparse signal. We then used our distribution-based detector to

determine if each signal had been compressively sensed.
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In our first set of experiments on these signals, we varied the ratio of the

number of compressive measurements to the signal length from M/N = 0.1 to 0.9

in steps of 0.1 as was done in Section 2.6.1. We evaluated our distribution-based

detector’s performance by varying its decision threshold over a range of values,

calculating the corresponding Pd and Pf for each threshold value, then creating a

set of ROC curves. Selected ROC curves for M/N = 0.1, 0.4, and 0.9 are shown in

Fig. 2.12.

From the full set of ROC curves we found that whenM/N ≤ 0.8, our distribution-

based detector could achieve a probability of detection of Pd = 100% with Pf = 0%

for both nearly sparse signals and nearly sparse signals in the presence of either

type of noise. When M/N was increased to 0.9, our detector was able to achieve

a performance of Pd = 99% with Pf ≤ 3% for all cases. These results show that

our distribution-based detector can accuratley identify compressively sensed nearly

sparse signals and nearly sparse signals in noise for realistic values of M/N .

Next, we evaluated our distribution-based detector’s robustness when perform-

ing compressive sensing detection on nearly sparse signals and nearly sparse signals

in noise. To do this, we performed a series of experiments in which we fixed M/N at

0.5 as was done in Section 2.6.1, then varied the signal variance as well as the noise

power and distribution when appropriate. For nearly sparse signals, we allowed the

signal variance to take values of 10−4, 1 and 104. In each case, the detector achieved

Pd = 100% with Pf = 0%, i.e. perfect detection. For nearly sparse signals in the

presence of noise, we repeated experiments using signal powers of 103, 104 and 105

and with noise powers of 0.1, 1 and 10. Additionally, we performed experiments
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Figure 2.12: ROC curves of distribution-based detection on nearly sparse signals and

nearly sparse signals in the presence of noise for (a) M/N=0.1, (b) M/N=0.4 and (c)

M/N=0.9. ‘Msure’ is short for measurement and ‘Envron’ is short for environment.
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in which we fixed the signal power at 10 and varied the noise distribution between

the Gaussian, Rayleigh, Laplace, exponential and uniform distributions. In each

of these experiments, our detector was able to achieve Pd = 100% with Pf = 0%.

These results show that our detector can be used to reliably identfy compressive

sensing in both nearly sparse signals and nearly sparse signals in the presence of

noise under a wide variety of conditions.

2.6.3 Images

To evaluate the performance of our compressive sensing detection technique

for images, we first created a testing database of images. For each experiment, we

used 300 unaltered images, 300 JPEG 2000 compressed images, and 300 compres-

sively sensed images from the UCID database [82]. Each image in this database has

size of 512 × 256 pixels. During JPEG 2000 compression and compressive sensing

reconstruction, the ‘bior4.4’ DWT basis was used to perform the discrete wavelet

transform of each image. To fairly evaluate our detector, during each set of experi-

ments the compression quality factor for the JPEG 2000 images and the number of

compressive measurements for the compressively sensed images were chosen so that

both sets of images had the same average PSNR. For example, the average PSNRs

for M/N = 0.67 and M/N = 0.25 are 36dB and 26dB, respectively.

In our first experiment, when performing compressive sensing we chose the

compression ratio to be N/M = 4. After creating an appropriately compressed

set of JPEG 2000 images, we classified each image in the testing database using
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our two-step image compressive sensing detection technique. When doing this, we

obtained classification results using DWT subbands 2 through 6 for both detection

steps. We used these results to create the set of ROC curves for each step of our

detection scheme shown in Fig. 2.13.

The leftmost plot in Fig. 2.13 shows ROC curves for the first step of our

detection process in which unaltered images are separated from both JPEG 2000

compressed and compressively sensed images. From these results, we can see that

performing detection on subbands 3, 4, or 5 yields the best performance. For each

of these subbands, our detector achieves a Pd of 100% at a Pf of 4% or less. The

rightmost plot in Fig. 2.13 shows ROC curves for the second step of our detec-

tor. From these curves we can see that when using subbands 2 or 3 to perform

detection, our detector achieves a Pd of approximately 90% at Pf = 10%. Taken

together, these results show that the detection scheme proposed in Section 2.4.3 can

be used to reliably discriminate between unaltered, compressively sensed, and JPEG

2000 compressed images. For both steps of the detection process, we note that the

performance decreases sharply when subband 6 or higher is used to perform detec-

tion. This is because the kurtosis of the distribution of DWT coefficients typically

increases as the subband increases. This, together with the fact that the effective

quantization interval used in JPEG 2000 is typically larger for higher DWT sub-

bands, will result in the DWT coefficient distributions of unaltered, compressively

sensed, and JPEG 2000 compressed images appearing very similar.

Next, we repeated the previous experiment while varying the number of com-

pressive measurements so that the compression ratio of the compressively sensed
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Figure 2.13: ROC curves of the first (left) and second (right) step detections on

each DWT sub-band coefficients. M/N = 0.25 is used in compressive sensing.

images ranged between N/M = 1.5 and 4. In this set of experiments, we used

subband 3 to perform both steps of our detection process. We used the results of

this set of experiments to create the ROC curves shown in Fig. 2.14. We can see

from the leftmost plot in Fig. 2.14 that the first step of our detector can achieve

Pd > 90% with Pf < 5% whenN/M ≥ 2. Since in most realistic scenariosN/M > 2,

these ROC curves show that the first step of our detector performs strongly. The

rightmost plot in Fig. 2.14 shows that the second step of our detector can acheive

a Pd of approximately 90% or higher at Pf = 10% for each value of N/M . These

results show that our dector can be used to reliably discriminate between unaltered,

compressively sensed, and JPEG 2000 compressed images in a variety of scenarios.

2.6.4 Estimator of the Number of Compressive Measurements

We performed a final set of experiments to evaluate the performance of our

technique to estimate the number of compressive measurements used to capture a
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Figure 2.14: ROC curves of the first (left) and second (right) step detections on

coefficients of DWT sub-band 3 under different compression ratios of compressive

sensing.

signal. In these experiments, we created a set of sparse and nearly sparse signals

of length N = 1000 as was done in Sections 2.6.2 and 2.6.1, then corrupted them

using both environmental and measurement noise to create a database of 100 of

each of the following signals; sparse signals in the presence of environmental noise,

sparse signals in the presence of measurement noise, nearly sparse signals, nearly

sparse signals in the presence of environmental noise, and nearly sparse signals in

the presence of measurement noise. When creating signals corrupted by noise, we

used Gaussian noise whose variance corresponded to a signal to noise ratio (SNR) of

103. This was done because the performance of our forensic technique decreases as

the SNR decreases, thus our results can be interpreted as a conservative evaluation

of our estimator’s performance.

Once we created our testing database, we compressively sensed each signal

while varying the number of compressive measurements from M = 100 to 900. We
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Figure 2.15: Estimated M̂ versus the real M for (a) sparse signals in the presence

of noise, (b) nearly sparse signals, (c) nearly sparse signals in the presence of noise.

then used our forensic technique to obtain an estimate M̂ of the number of compres-

sive measurements used to acquire each signal. The results of this experiment are

displayed in Fig. 2.15 which shows a series of plots comparing the estimated number

of compressive measurements to the true number. We can see from this figure that

for each signal model, our estimate closely matched the true number of measure-

ments. Furthermore, we can see that our estimate lies within ±25 measurements of

the true number of measurements.
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Additionally, we also testified the effectiveness of our proposed estimator of the

number of compressive measurements on images. In these experiments, we tested

our estimator on the database of compressively sensed images created in section

2.6.3. We have found that higher frequency subbands tend to have higher estimation

accuracies due to their sufficient numbers of coefficients. Thus, we used subband 6 to

estimate the number of compressive measurements in this subband, and then obtain

the estimated ratio of M/N . The relative square error of the estimated M/N ratio

was calculated as E
[( M̂

N
−M

N

)2
(M
N

)2

]
. Table 2.1 lists these relative estimation errors for

some typical choices of M/N ratios. The results show that the relative square error

of our estimator on images is no greater than 5.2% for typical choices of compression

ratios in compressive sensing.

Table 2.1: Relative error of estimating compressive measurements for images.

True M/N 0.25 0.4 0.5

Relative Error 3.2% 3.5% 5.2%

2.7 Summary

In this chapter, we have proposed a set of techniques to identify the use of

compressive sensing in a wide variety of signals. To do this, we first identified the

fingerprints left in a compressively sensed signal. We then developed two general

techniques to identify compressively sensed signals; one that operates by analyzing

the ratio of zero valued entries in a signal, and another that operates by identifying
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changes to a signal’s coefficient distribution caused by compressive sensing. Since

evidence of compressive sensing in images can be confused with fingerprints left

by JPEG 2000 compression, we designed a compressive sensing detection technique

specifically tailored to digital images. Additionally, we proposed a technique to

estimate the number of compressive measurements used to acquire a compressively

sensed signal.

Our experimental results have shown that both our zero ratio and distribution-

based detection schemes are able to reliably detect compressive sensing in a wide

variety of realistic scenarios. Similarly, we have shown that our technique to identify

compressive sensing in images can reliably distinguish compressively sensed images

from both uncompressed and JPEG 2000 compressed images. Additionally, we have

provided both a theoretical proof and experimental results verifying the effective-

ness of our technique to estimate the number of compressive measurements used to

acquire a signal.
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Chapter 3

Fundamental Limits in Operation Forensics

Due to the ease of tampering a multimedia file, forensics has gained much at-

tention in the recent decade for providing technical tools to verify the authenticity

of multimedia content [88]. Enabled by techniques in existing forensic literature,

forensic investigators can not only identify the acquisition environment of multi-

media content [24, 38, 58, 59, 78, 94], but also detect the processing history that the

content has gone through after acquisition [32, 50, 74, 77, 85, 86]. For the purpose of

improving the detection performance and identifying more sophisticated manipula-

tions, forensic researchers have always been working on discovering new fingerprints

and designing new schemes [53,66,69,84].

However, as the effort of developing more powerful forensic techniques goes on,

evidence has shown difficulties when dealing with complicated manipulation scenar-

ios [66]. One would then wonder if there exists a fundamental limit on forensic

capability that can never be exceeded? In other words, what is the limit of investi-

gators’ capability? How many manipulation operations that investigators can detect

at most? Given this information, we would be able to tell whether the existing tech-

nique has achieved the limit. If not, how far can it go? Furthermore, by quantifying

the forensic capability, we may also obtain information about how to achieve the

capability limit. In addition, given that forgers may manipulate multimedia content
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to the extent beyond the limit of forensics, special care would be needed for such

cases.

There are few works exploring the fundamental limit of forensic capabilities.

To the best of our knowledge, the most related work on fundamental limit analysis of

forensics was done by Swaminathan et al. [92, 93]. They explored the fundamental

limit in component forensics by establishing two theoretical frameworks: an esti-

mation framework and a pattern classification framework. Three types of forensic

scenarios were defined in each framework regarding how much information investi-

gators have about the components of a camera. Then, fundamental relationships of

their forensic performance were derived using the above two theoretical frameworks.

Moreover, in the estimation framework, Fisher information was used to obtain the

optimal input for semi non-intrusive component forensics. However, these theoreti-

cal frameworks were designed for camera identification forensics, and thus they may

not be suitable for answering fundamental questions in operation forensics, which

focuses on detecting manipulation operations.

In this chapter, we explore the fundamental limit of operation forensics by

building an information theoretical framework. We consider the forensic scenario

of detecting the processing history of given multimedia content. We aim to answer

the question of how many operations that investigators can detect, at most? To

answer this question, we define forensicability as the forensic capability of detect-

ing operations. Unlike the measure of distinguishability proposed in [25], which

was based on a simple hypothesis model, our definition is applicable for more gen-

eral scenarios where multiple operations may happen and many hypotheses can be
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considered. Given that investigators often use features to estimate process history,

in our information theoretical framework, forensicability indicates the maximum

forensic information that extracted features can contain about detecting operations.

Furthermore, it determines the fundamental limit of forensic detection performance

of any scheme based on those features. Then, by introducing a statistical concept of

expected perfect detection, we are able to use forensicability to determine the max-

imum number of operations investigators can detect. In addition, the fundamental

measure of forensicability provides insights and theoretical support for predicting

forgers’ behavior and designing optimal forensic schemes.

The remaining of this chapter is organized as follows. Section 3.1 introduces

our information theoretical framework for operation forensics, where forensicability

is defined and analyzed for general scenarios. Then, to demonstrate our framework,

we apply it to the forensic problem of multiple JPEG compression detection in

Section 3.2. In this section, specific models for DCT coefficient histogram features

are proposed to derive the expression of forensicability in this example. Then,

Section 5.5 performs all experiments corresponding to the theoretical analysis in

Section 3.2. Among these experimental results, we obtain the maximum number of

JPEG compressions one can detect using DCT coefficient histograms. In addition,

the best strategies for investigators and forgers are also analyzed in this section.

Lastly, Section 4.5 concludes our work.
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Figure 3.1: Typical process that a multimedia signal may go through when consid-

ering forensics.

3.1 Information Theoretical Framework

In this section, we introduce our information theoretical framework for gen-

eral operation forensic systems. Under this model, we define the capability of in-

vestigators as forensicability, which determines the lower bound of estimation error

probability and helps us answer the question of when we cannot detect any more

operations.

3.1.1 Channel between Multimedia States and Features

Let us consider the process of a typical forensic analysis shown in Fig. 3.1.

Unaltered multimedia content may go through some processing before investigators

obtain it. In order to identify the processing history that the obtained multimedia

content went through, investigators extract features from the content. Based on the

extracted features, specific estimators are proposed to finally estimate the processing

history.

During this process, it is often assumed that there are a finite number of

hypotheses on processing histories that the multimedia content may go through.

Investigators determine which hypothesis actually happened based on the analysis
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Figure 3.2: Abstract channel model in our information theoretical framework.

of extracted features. For example, to detect if the multimedia content was edited by

a certain operation, like contrast enhancement [86], resizing [77] or compression [31],

simple hypothesis test was used to distinguish the unaltered multimedia content and

the content edited by the certain operation. In another example of detecting the

number of compressions, the hypotheses would include single compression, double

compression, triple compression and so on. In this work, processing history hypothe-

ses considered in a certain forensic analysis are denoted as multimedia states. Then,

investigators’ goal is to distinguish multimedia states based on extracted features.

Given the discussion above, we reformulate the forensic system in a different

way such that the relationship between multimedia states and features can be em-

phasized. As it is shown in Fig. 3.2, in this new formulation, the multimedia state

is the input to the system. When a certain multimedia state is applied on unal-

tered multimedia content, features can be extracted from the processed multimedia

content. Then, estimators will be applied on these features to estimate the input

multimedia state.

By exploring fundamental limits in operation forensics, we want to answer
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Figure 3.3: Channel model for the example of multiple compression detection foren-

sics.

“what is the maximum information about multimedia states that investigators can

obtain from the extracted features?” In other words, we are concerning the funda-

mental relationships between multimedia states and features, regardless of specific

detectors or estimators that investigators may use to make final decisions. This

motivates us to abstract all processes between multimedia states and features as a

channel. Within this channel, the unaltered multimedia content can be any partic-

ular content, and it is modeled as a random variable. As a result, the relationship

between multimedia states and features becomes stochastic instead of deterministic.

To demonstrate our abstract channel and further explain the relationship be-

tween multimedia states and features, let us consider an example of detecting the

number of JPEG compressions using the DCT coefficients feature. As it is shown

in Fig. 3.3, the multimedia state is the number of JPEG compressions from 1 to

M . The feature is DCT coefficient histogram represented in a vector. Fig. 3.4

illustrates the mapping between multimedia states and features in this example.

Specifically, with the same number of compressions applied, different images result

in different DCT coefficient histograms, which we call them a histogram set. When
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Figure 3.4: An illustration of the mapping between multimedia states and features

in the example of multiple compression detection.

we detect double compressions, we are distinguishing single compression, X = 1,

and double compression, X = 2. Given the distinctive fingerprints for single com-

pression and double compression, the DCT coefficient histogram sets resulted from

these two inputs can be well separated after some post-processing [74]. Thus, for

M = 2, classification schemes can be used to distinguish the input according to the

output. However, as the number of compressions considered in the system increases,

more overlapping between different histogram sets may occur, which will affect the

accuracy of the detection. Finally, at a certain point, we cannot distinguish all in-

puts and we say that we have reached our limit of detecting multiple compressions.

Detailed modeling and analysis will be discussed in Section 3.2.
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mation theoretical framework for operation forensics.

3.1.2 Forensicability

Given the channel model built up between multimedia states and features,

we are ready to define forensicability for operation forensics. Let us consider the

general abstract channel proposed in our information theoretical framework, as it is

simplified in Fig. 3.5. Let X ∈ {1, 2, . . . ,M} denote the input of the channel, i.e.,

the multimedia state considered in a forensic analysis. Let Y denote the output of

the channel, which is a vector containing features that examined by investigators.

After obtaining feature Y , investigators design estimators based on their statistics

to estimate X. We define forensicability in this forensic system as the maximum

information that features contain about multimedia states, regardless of any specific

estimators used afterward. It is well known that, in a channel model, mutual infor-

mation implies the reduction in uncertainty of input due to the knowledge of output.

Thus, given the similarity between these two concepts, we define forensicability as

follows.

Definition 1. In operation forensics, where features are used to identify multimedia
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states, forensicability of using feature Y towards identifying multimedia state X is

defined as the mutual information between X and Y , i.e., I(X;Y ).

Forensicability of an operation forensic system implies the maximum forensic

information that features contain about multimedia states. More importantly, it de-

termines the best performance investigators can obtain by examining these features

through all possible estimators. We demonstrate this significance in the following

theorem.

Theorem 2. Consider any estimator of the multimedia state X̂ such that X →

Y → X̂ is a Markov Chain, i.e., the value of X̂ depends only on Y and not on X.

Let Pe = P(X ̸= X̂) denote the error probability. If the estimator is better than a

random decision where X̂ is uniformly and randomly drawn from the set of X, i.e.,

Pe ≤ M−1
M

, then we have

Pe ≥ P 0
e , (3.1)

where P 0
e is the lower bound of error probability. It is unique and satisfies the

following equation

H(P 0
e ) + P 0

e log2(M − 1) = H(X)− F (X;Y ). (3.2)

Proof. From the corollary of Fano’s inequality in [28], we have

H(Pe) + Pe log2
(
|X | − 1

)
≥ H(X|Y ), (3.3)

where |X | is the cardinality of the input X and thus |X | = M . In order to later

examine the equality conditions, we briefly review the derivation of (3.3) in [28] as
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follows. First, let E = 1(X̂ ̸= X) denote an error random variable, then H(E,X|X̂)

can be expanded in two ways,

H(E,X|X̂) = H(X|X̂) +H(E|X, X̂)

= H(E|X̂) +H(X|E, X̂). (3.4)

While H(E|X, X̂) = 0 and H(E|X̂) ≤ H(E) = H(Pe), the upper bound of

H(X|E, X̂) is obtained as

H(X|E, X̂) = P(E = 0)H(X|X̂, E = 0)

+P(E = 1)H(X|X̂, E = 1)

≤ (1− Pe)0 + Pe log2
(
|X | − 1

)
. (3.5)

Thus, combining the above results, we have

H(Pe) + Pe log2
(
|X | − 1

)
≥ H(X|X̂) ≥ H(X|Y ). (3.6)

Given (3.3), we examine the derivative of the left hand side of this inequality

with respect to Pe,

∂
(
H(Pe) + Pe log2(M − 1)

)
∂Pe

= log2

(
1− Pe

Pe

(M − 1)

)
≥ 0. (3.7)

The last step holds because Pe ≤ M−1
M

. Therefore, the left hand side of (3.3) is an

increasing function of Pe for Pe ≤ M−1
M

. Then, the minimum of Pe, which is denoted

by P 0
e , can be obtained by solving the equality of (3.3). Hence, we have, Pe ≥ P 0

e ,

where P 0
e is the unique solution of the following equation,

H(P 0
e )+P 0

e log2(M − 1)=H(X|Y )=H(X)−I(X;Y ). (3.8)
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The lower bound P 0
e can be achieved if and only if all of the following conditions

are satisfied.

1. H(E|X̂) = H(E), i.e., E and X̂ are independent. Furthermore, it can be

easily proved that the independence between E and X̂ implies that the error

probability for each given estimated result is the same, i.e., P(X ̸= i|X̂ =

i) = P(X ̸= j|X̂ = j), ∀1 ≤ i, j ≤ M . For the specific setting of this work, it

indicates that multimedia states are equally hard to be correctly identified.

2. H(X|X̂, E = 1) = log2(M − 1), which implies that no information can be

inferred from a known missed detection towards finding the correct one. For

the specific setting of this work, this condition means that, given a wrong

estimated multimedia state, probabilities of the true multimedia state being

any other multimedia states are the same.

3. I(X; X̂) = I(X;Y ), i.e., X → X̂ → Y is also a Markov chain. This implies

that, the estimated input contains all information that the real input has about

the channel output. For the specific setting of this work, it means that the

distribution of features given an estimated multimedia state will not change if

the real multimedia state is also known.

In addition, with the assumption of uniform prior for X, which is commonly

used in forensic analysis, the error probability lower bound will be only dependent

on forensicability:

H(P 0
e ) + P 0

e log2(M − 1) = log2 M − I(X;Y ). (3.9)
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Note that, while uniform priors are adopted in this work, cases with non-uniform

priors can be similarly handled by using the initial equation (3.2) instead of (3.9).

3.1.3 Expected Perfect Detection

While the lower bound of error probability gives fundamental limit on es-

timators’ performance, we also want to answer the question of “when cannot we

detect any more operations?” For example, in the multiple compression detection

problem discussed earlier, we may want to know how many compressions we can

detect at most. To answer these questions, we need a criterion to make decisions

on whether we can or cannot detect more. One possible way is to check the equal-

ity of I(X;Y ) ≤ H(X). If equality holds, then there exists some estimator which

can distinguish all considered multimedia states with zero error probability. Other-

wise, it implies that not all multimedia states can be distinguished with zero error

probability by any estimator.

However, for most cases, the equality of I(X;Y ) = H(X) may never hold.

This is because that multimedia state X is always a discrete variable, while the

feature vector Y given a certain multimedia stateX is usually modeled as continuous

variables, such as multivariate Gaussian random variables. Thus, as long as the

supports of conditional distributions of Y given different X have any overlap, it is

impossible to perfectly estimate X from Y , i.e., I(X;Y ) < H(X). For these cases,

the question becomes “how small should the error probability be so that we can still

consider it as a perfect detection?”
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Such a question leads us to examine the relationship between theoretical and

experimental results. Given a rare incident, i.e., the probability that this incident

happens tends to zero, it is very likely that we will not observe it in real experiments.

Therefore, if the theoretical error probability is small enough, then we may not see

the occurrence of error within a limited number of observations. Inspired by this

idea, we reformulate the process of experimental testing as follows.

Given an image that may belong to any multimedia state considered in the

analysis, there is probability Pe that the image will be misidentified. When we ex-

perimentally evaluate the performance of a detector on a database, we go through

the following steps. First, an image is picked from a database containing images of

all possible multimedia states. Then the detection scheme is applied on this image

to obtain an estimated multimedia state. Lastly, by comparing the estimated mul-

timedia state with the ground truth, we know whether the detection was correct or

not. Given that nothing is known until the last step, each image is treated equally

during estimation. By iterating these steps for every image in the database, the

experimental error probability can be calculated as the total number of misclassi-

fications divided by the size of the database. This process can be considered as a

sequential process, where each time an image is randomly picked and its multimedia

state is estimated by a detector, whose theoretical detection error probability is Pe.

Then, by definition of Pe, for each individual detection, the tested image has prob-

ability Pe of being misidentified and probability 1− Pe of being correctly detected.

From this formulation, we can see an analogy between the process of experimental

testing and a Bernoulli process.
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Motivated by the discussion above, we model each sample in the testing

database as an independent and identical Bernoulli random variable with probabil-

ity Pe of missed detection. It is well known in probability theory that, the expected

time of the first occurrence of missed detection happens at 1/Pe. In other words,

if the experimental database only has S < 1/Pe samples, then the missed detection

may not occur in expected sense, where the expectation is taken among all databases

with the same size S. Thus, we propose the definition of expected perfect detection

as follows.

Definition 2. Given an experimental database of size S, the expected perfect de-

tection happens if and only if the theoretical error probability satisfies Pe < 1/S.

Based on this definition, a simple corollary below can give us the criterion to

determine when we cannot detect any longer.

Corollary 2. For an experimental database of size S, if the lower bound of error

probability obtained from (3.2) satisfies P 0
e > 1/S, then no expected perfect detection

can be obtained for any estimators.

We note that all above analysis is based on the law of large number. Experi-

mentally, we find that the size of the database needs to be at the order of thousands

for the expected perfect detection argument being hold. Fortunately, most experi-

mental databases used in forensic analysis satisfy this condition.
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3.2 Information Theoretical Modeling for JPEG Compression Foren-

sics

To demonstrate the effectiveness of our proposed framework for operation

forensics, we use the multiple JPEG compressions detection forensics as an example

[20].

3.2.1 Background on JPEG Compression Forensics

An image’s JPEG compression history is forensically important because it

helps investigators to identify the image’s acquisition process and detect possible

manipulations [73,76]. Specifically, by estimating the quantization table of a singly

compressed image, one can identify the model of the camera that captured the

image [73]. Furthermore, when a forger manipulates a JPEG image and re-saves it in

the same format, double JPEG compression fingerprints may left in the image [35,44,

64,74,76]. The more times the JPEG image is manipulated, the more times of JPEG

compressions it may go through. Thus, detecting the number of JPEG compressions

that an image has gone through can help investigators to understand how much

the image has been tampered. However, as the number of JPEG compressions

increases, the multiple compression fingerprints become less distinguishable [53,66].

So a natural question would be “how many JPEG compressions can we detect, at

most?”

Before applying our information theoretical model to answer this question, let

us first review the typical process of a JPEG compression. When JPEG compressing
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an image, block-wise DCT transform is first applied on the pixel domain to obtain

coefficients in DCT domain. Then, these coefficients are quantized and encoded

by an entropy coder to get the JPEG data file. Whenever the image is edited or

processed, decompression is needed, which follows the reverse procedure of compres-

sion. During decompression, the quantized DCT coefficients cannot be recovered.

Thus, by examining the difference of DCT coefficients between uncompressed and

compressed images, one can observe important fingerprints of JPEG compression.

Furthermore, multiple JPEG compressions can also be detected by examining these

coefficients.

Let D0 denote a coefficient of a certain DCT subband of an uncompressed

image. We use the Laplacian model to characterize the distribution of D0 [54],

where

fD0(ρ) =
λ

2
e−λ|ρ|, ρ ∈ R. (3.10)

During JPEG compression, let a1 be the quantization step used in this subband,

and D1 denote the DCT coefficient after compression, then

D1 = round
(D0

a1

)
· a1. (3.11)

Thus, D1 has a discrete distribution of

P(D1 = l1a1) =

∫ (l1+1/2)a1

(l1−1/2)a1

fD0(ρ)dρ, l1 ∈ Z,

=


1− e−λa1/2, if l1 = 0,

e−λ|l1a1| sinh
(
λa1
2

)
, if l1 ̸= 0.

(3.12)
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By examining the DCT coefficient histogram, investigators can detect whether the

image is singly compressed or not. Furthermore, quantization step sizes can also be

estimated if the image is detected as a singly compressed one [73].

When recompressing this singly compressed image using quantization step of

a2, a2 ̸= a1, in the examined subband, let D2 denote the DCT coefficient after two

compressions, then we have

D2 = round
(D1

a2

)
· a2 = round

(
round

(D0

a1

)
· a1
a2

)
· a2, (3.13)

and

P(D2 = l2a2) =
∑

(l2−
1
2
)a2≤l1a1<(l2+

1
2
)a2

P(D1 = l1a1), l2 ∈ Z. (3.14)

Due to the effect of double quantization, the histogram of D2 will present periodic

characteristics, either periodic peaks or periodic zeros. Then, by examining the

Fourier transform of the histogram, investigators can distinguish between singly

compressed images and doubly compressed images [64,74,76].

3.2.2 DCT Coefficients Feature Model

Given that the histogram of DCT coefficients is a commonly used feature to

detect JPEG compressions, in this example, we examine the fundamental limit of

using DCT coefficient histograms to detect multiple JPEG compressions. We note

that, other features used to detect JPEG compressions can be analyzed by similar

approaches. As it is shown in Fig. 3.3, we consider an abstract channel where the

input X ∈ {1, 2, ...,M} is the number of JPEG compressions and the output Y is

the DCT coefficient histogram written in a vector form.
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To demonstrate the relationship between X and Y , we take one subband as

an illustration. We use λ to denote the parameter of the Laplace distribution of

the coefficient D0 in this subband when it is not compressed (3.10). Let QM =

(q1, q2, ..., qM) denote the set of quantization step sizes that may be used for this

subband during compressions. Since in multiple compression detection forensics, the

given image is a JPEG image and investigators try to detect how many compressions

have been done before this last one, we keep the last compressions the same for all

hypotheses. Without loss of generality, we take qM as the quantization step size used

in the last compression for all hypotheses. Then, if there are actually m applications

of JPEG compressions, the DCT coefficient should have been quantized by step sizes

{qM−m+1, qM−m+2..., qM} in order. Let Dm denote the DCT coefficients if m times of

JPEG compressions are applied. By following the analysis in (3.13) and substituting

{a1, a2..., am} with {qM−m+1, qM−m+2..., qM}, we have,

Dm = round

(
... round

(
round

(
D0

qM−m+1

)
× qM−m+1

qM−m+2

))
× qM . (3.15)

Given this equation and (3.10), we can derive the distribution of Dm, which only

has nonzero values at integer multiples of qM . Let vector vm(λ,QM) denote this

theoretical distribution, with each element vn,m(λ,QM) representing the nonzero

probability mass function P(Dm = nqM), then

vm(λ,QM) =
[
P(Dm = −NqM), ...,P(Dm = NqM)

]
. (3.16)

In reality, however, we may not observe the theoretical distribution from the

DCT histogram due to the model mismatch and/or the rounding and truncation

in the compression and decompression. Instead, the normalized DCT coefficient
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Figure 3.6: Abstract channel inner structure for the model in Fig. 3.3.

histogram that we observe may be a noisy version of the theoretical distribution.

Let random variable Y m(λ,QM) denote the observed normalized histogram if m

applications of JPEG compressions were applied, i.e.,

Y m(λ,QM) = [Bm(−NqM), ...Bm(NqM)], (3.17)

where Bm(nqM),−N ≤ n ≤ N, denotes the normalized histogram bin at location

nqM when m times of compressions happened. Then, by assuming that the obser-

vation noise, denoted by W , is an additive noise, we have

Y m(λ,QM) = vm(λ,QM) +W. (3.18)

Let random variable V (λ,QM) ∈ {v1(λ,QM), v2(λ,QM), . . . , vM(λ,QM)} de-

note the theoretical distribution of DCT coefficients. Then, for a certain subband,

given a fixed λ and QM , the abstract channel in Fig. 3.3 can be depicted as the

diagram in Fig. 3.6. Specifically, for each hypothesis on the number of JPEG com-

pression X, it dictates a theoretical distribution on DCT coefficients V , which can

be calculated by (3.10) and (3.15). But due to the observation noiseW , the obtained

normalized DCT coefficient histogram is Y in (3.18).
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3.2.3 Forensicability for JPEG Compression Forensics

Based on our information theoretical framework, forensicability of using DCT

histogram to detect multiple JPEG compressions is I
(
X;Y (λ,QM)

)
.

To calculate forensicability, we first assume that the observation noise on dif-

ferent histogram bins are independent with each other, then the covariance of W

is a diagonal matrix. Furthermore, based on experimental results, which will be

shown in Section 5.5, we use the multivariate Gaussian distribution to model the

observation noise as follows

W (λ,QM) ∼ N
(
d, diag

(
βV 2α(λ,QM)

))
, (3.19)

where d, β > 0 and α > 0 are constant parameters, which will be estimated later. We

note that, in our model, the variance of observation noise, Var(W ), is proportional

to the signal V that the noise is added on. This is because that the model mismatch

and the rounding and truncation effect in the compression and decompression are

more obvious on significant histogram bins.

In this example, we consider the case where we have no biased information on

how many compressions that the image might have gone through, i.e., X has equal

probability of being any value in {1, 2, . . . ,M}. Then, given (3.18), (??) and (3.19),

we can derive the forensicability of using DCT histogram to detect multiple JPEG

compressions as the following expression

Fλ,QM
(X;Y ) = log2M − 1

M

M∑
m=1

E
[
log2

M∑
j=1

exp
(
Φm

j (V )
)]

, (3.20)
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where

Φm
j (V ) =

N∑
n=−N

[
α ln

vn,m
vn,j

− (Yn − vn,j)
2

2βv2αn,j
+

(Yn − vn,m)
2

2βv2αn,m

]
. (3.21)

Proof. Since d is a constant, we have I(X;Y ) = I(X;Y −d). Thus, in the following

derivation, we take d = 0 for simplicity. Then, the conditional probability of Y

given X = m is

fY (y|X = m) =
N∏

n=−N

1√
2πβv2αn,m

exp

[
− (yn − vn,m)

2

2βv2αn,m

]

=
1

N∏
n=−N

√
2πβv2αn,m

exp

[ N∑
n=−N

−(yn − vn,m)
2

2βv2αn,m

]
. (3.22)

Based on Bayes’ theorem and P(X = m) = 1
M
, ∀m ≤ M , we calculate the

conditional entropy of X given Y as follows,

H(X|Y )

=

∫
R2N+1

M∑
m=1

pX(m|Y = y) log2
1

pX(m|Y = y)
fY (y)dy

=

∫
R2N+1

M∑
m=1

fY (y|X = m)

MfY (y)
log2

M∑
j=1

fY (y|X = j)

fY (y|X = m)
fY (y)dy

=
1

M

M∑
m=1

∫
R2N+1

fY (y|X = m) log2

[
M∑
j=1

fY (y|X = j)

fY (y|X = m)

]
dy.

(3.23)

By (3.22), the ratio between fY (y|X = j) and fY (y|X = m) can be calculated
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as

fY (y|X = j)

fY (y|X = m)

=
N∏

n=−N

vαn,m
vαn,j

exp

[
N∑

n=−N

−(yn − vn,j)
2

2βv2αn,j
+

(yn − vn,m)
2

2βv2αn,m

]
, exp

[
Φm

j (v)
]
, (3.24)

where

Φm
j (v) =

N∑
n=−N

[
α ln

vn,m
vn,j

− (yn − vn,j)
2

2βv2αn,j
+

(yn − vn,m)
2

2βv2αn,m

]
. (3.25)

Take the notation of (3.24) into (3.23), we have

H(X|Y )

=
1

M

M∑
m=1

∫
R2N+1

fY (y|X = m) log2

{
M∑
j=1

exp
[
Φm

j (v)
]}

dy

=
1

M

M∑
m=1

E
[
log2

M∑
j=1

exp
(
Φm

j (V )
)]

. (3.26)

Given that I(X;Y ) = log2 M −H(X|Y ), we have completed the derivation of

(3.20) and (3.21).

Note that the right hand side expression in (3.20) and (3.21) still depend on

λ and QM . We remove these dependencies from variables in the sequel to simplify

the expression. It is also noticed from (3.20) and (3.21) that forensicability does not

depend on the constant mean d of the observation noise. This is because that any

constant deviation of the output can be directly subtracted from input without any

effect on the channel performance.

Before calculating forensicability, we need to estimate parameters β and α

in the variance of observation noise (3.19). Based on (3.18) and (3.19), we apply
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maximum likelihood estimator to obtain the optimal β and α. Given that d has no

effect on forensicability, we first derive the estimator for d = 0. Let Yλi,n,m denote

the nth histogram bin of the ith image (whose Laplace parameter is λi) after m times

of compressions. Then, the optimal β and α are

(β̂, α̂) = argmax
β>0,α>0

log
K∑
i=1

N∑
n=−N

M∑
m=1

P(Yλi,n,m = yλi,n,m). (3.27)

According to Karush-Kuhn-Tucker conditions, we have

K∑
i=1

N∑
n=−N

M∑
m=1

(yλi,n,m − vλi,n,m)
2 ln vλi,n,m(

1

vλi,n,m

)2α̂ = β̂

K∑
i=1

N∑
n=−N

M∑
m=1

vλi,n,m,

K∑
i=1

N∑
n=−N

M∑
m=1

(yλi,n,m − vλi,n,m)
2

v2α̂λi,n,m

=β̂K(2N + 1)M. (3.28)

Given that the theoretical distribution vλi,n,m ∈ [0, 1], the left hand side of (3.28)

is monotonically increase with α̂. Then α̂ can be approximated for any given β̂. In

addition, from (3.28), β̂ can be derived for any fixed α̂. Thus, an iterative algorithm

can be used to obtain the optimal β̂ and α̂ from (3.28) and (3.28). For d ̸= 0 cases,

similar estimators can be derived with yλi,n,m substituted by yλi,n,m − dn, where

dn, n ∈ [−N,N ], is the nth element in d.

Lastly, we note that, as the first work proposing and calculating forensica-

bility in operation forensics, JPEG compression forensics has been chosen as it is

a well studied problem in literature. Furthermore, the existing model of DCT co-

efficient histograms has helped us simplify the analysis of channel characteristics.

Nevertheless, similar approaches can be applied to other forensic problems to find

their fundamental limit of forensicability. For example, in contrast enhancement

detection [86], the input of the channel is either unaltered, i.e., X = 0, or contrast
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enhanced, i.e., X = 1. The extracted feature can be taken as the high frequency

component of the image pixel histogram. Then, similar approaches can be applied

to model the relationship between features and multimedia states. Forensicability

can also be calculated to imply the best performance one can possibly obtain. Fur-

thermore, by comparing the forensicability of contrast enhancement detection and

those of other detections, such as resizing detection [77], one can find which ma-

nipulation is fundamentally easier to be detected. In addition, our framework may

also be used to explore the fundamental limit of detecting the order of manipula-

tion operations [84]. In this case, multimedia states would be any combinations of

considered operations, and features can be built by concatenating all useful features

for distinguishing the order of these operations.

3.3 Data-Driven Results and Analysis

In this section we provide experimental support for our proposed framework

and calculate the forensicability for JPEG compression forensics. From analyzing

forensicability, we are able to answer how many JPEG compressions, at most, that

investigators can detect. Furthermore, we also examine the effect of compression

quality factors and different DCT subbands on forensicability in order to provide

guidance of strategies for both investigators and forgers.
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Figure 3.7: Normalized histograms of observation noise and their estimated Gaus-

sian distributions (plotted in red lines) on different histogram bins for (a) single

compressed images with quantization step size of 6 in the examined subband and

(b) doubly compressed images with quantization step size of 6 then 7 in the exam-

ined subband. Bin i means that the observation noise on normalized histogram bin

B(iqlast) is examined, where qlast denotes the last quantization step size. The mean

square error of each estimation is also shown in the subfigure.
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3.3.1 Verification of Observation Noise Model

To support our proposed observation noise model in (3.19), we conduct an

experiment to examine the difference between observed normalized histograms and

their theoretical distributions. Our test images are generated from the 1338 uncom-

pressed images from UCID database [82]. We first create the 1338 singly compressed

images by JPEG compressing the uncompressed images using quality factor of 80.

We examine the (2, 3) subband, where the corresponding quantization step size is

6. Double compressed images are also examined for verification, where we obtain

these test images by double JPEG compressing the uncompressed 1338 images using

quality factors 80 and then 75. The corresponding quantization step sizes for the ex-

amined subband are 6 and 7 respectively. The observed normalized histograms are

obtained directly from these two sets of compressed images. We calculate the the-

oretical distributions for singly compressed images and doubly compressed images

based on their uncompressed versions. Specifically, for each of the 1338 images, we

first estimate the Laplace parameter λ based on the DCT coefficients of the uncom-

pressed image. Then the theoretical distribution is calculated according to (3.15)

and (3.16) for given λ and quantization step sizes. Observation noise is calculated by

subtracting the theoretical distributions from the observed normalized histograms.

Fig. 3.7 plots the histograms of observation noise and their estimated Gaus-

sian distributions for different histogram bin locations for both singly compressed

images and doubly compressed images. From these results, we can see that Gaus-

sian distributions can well approximate the distributions of the observation noise for
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Figure 3.8: Variance of observation noise versus histogram bin index for (a) single

compressed images with quantization step size of 6 in the examined subband; and (b)

doubly compressed images with quantization step size of 6 then 7 in the examined

subband.

most of cases. Furthermore, the mean of the histograms does not change much be-

tween singly compressed images and doubly compressed images. This gives support

on our constant mean model of the observation noise.

Fig. 3.8 plots the variance of observation noise for different histogram bin

locations for both singly compressed images and doubly compressed images. Given

the discussion in Section 3.2.1, the DCT coefficient distribution of singly compressed

image is quantized Laplace distribution. Although different images have different

Laplace parameters and their DCT coefficient distributions may be different, these

distributions share a common shape of having a central peak at zero and decreasing

fast as the absolute value of the variable increases. The observation noise variance

of singly compressed images exhibits similar characteristics as it is plotted in Fig.

3.8(a). Furthermore, for double compressed images where the second quality factor

90



is lower than the first one, double compression fingerprints of periodic peaks will

be presented in DCT coefficient histograms. Similar fluctuation of the observation

noise variance is shown in Fig. 3.8(b). Therefore, both figures in Fig. 3.8 show

that the variance of observation noise changes in the similar way as the value of

theoretical distribution changes. In other words, these experimental results show

that the variance of observation noise is proportional to the theoretical distribution.

This validates the proposed variance model of the observation noise in (3.19). Fur-

thermore, instead of using a linear model, an exponential proportionality principle

is adopted in the variance model to make it more general.

We note that there may be more accurate but complicated models for the

observation noise. We use the model in (3.19) as a tradeoff between the accuracy of

modeling and the complexity of analysis.

3.3.2 Forensicability Calculation

In order to calculate forensicability, we first estimate parameters β and α from

(3.28) and (3.28). We use the normalized DCT coefficient histograms of singly com-

pressed images and their corresponding theoretical distributions obtained from last

subsection to estimate. Due to the nonzero mean of observation noise, we subtract

this mean from the observed normalized histograms before using them in (3.28) and

(3.28). Then, we exclude insignificant histogram bins due to the severe noise effect

on those small histogram bins. Specifically, we use those normalized histogram bins

whose theoretical probabilities are equal or greater than 5 × 10−4. This results in
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Figure 3.9: The reachable forensicabilities of different compression quality factors

QM and the upper bound of forensicability for different M ’s.

total 36298 histogram bins used for estimation. The estimated parameters’ values

are

β̂ = 0.0494, α̂ = 0.744. (3.29)

Given β and α, forensicability of multiple JPEG compression forensics can be

obtained from (3.20) and (3.21). Since (3.20) is not a closed form and we cannot

calculate the precise value, we use Monte Carlo simulation to approximate the re-

sult. This is a commonly used method in information theoretic analysis [68]. We

demonstrate the results for subband (2, 3), where we take a typical value of λ = 0.1.

We find that the quantization step size in this subband changes from 1 to 14 when

varying the JPEG compression quality factor from 50 to 100. By excluding the

trivial cases where one quantization interval is an integer multiple of another, we
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choose the candidate quantization step sizes as

{5, 6, 7, 8, 9, 11, 13}. (3.30)

Then, for each M , we randomly select values from this candidate set to construct

QM , under the constraint that two adjacent elements are not equal.

For each different QM , Iλ,QM
(X;Y ) is estimated by Monte Carlo averaging

and plotted in Fig. 3.9. The green lines with triangle ending points show the

range of all possible forensicabilities at each M for different QM ’s. As we can ex-

pect, quantization step sizes play an important role in determining forensicabilities.

We will analyze this effect in later sections. In Fig. 3.9, we also plot the line of

Iλ,QM
(X;Y ) = log2 M , which is the upper bound of forensicability for uniform pri-

ors, indicating perfect detection. Despite variations of forensicabilities for different

QM ’s, the gap between the highest reachable forensicability and its upper bound

becomes more obvious when M increases. This indicates that, as M increases, even

when we encounter the scenario with the highest forensicability, i.e., the case having

the best detection performance, we still cannot obtain perfect detection. Further-

more, the distance of the best performance to perfect detection will be larger with

the increase of M . Therefore, when M increases, it will be much harder to detect

the exact number of applied JPEG compressions, which validates our theory.

3.3.3 Estimation Error Probability Lower Bound

According to theorem 2, forensicability determines the lower bound of error

probabilities. In this section, we perform several experiments to examine the effec-
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tiveness of the lower bound by comparing the theoretical lower bound of all possible

error probabilities with the experimental error probability obtained from specific

estimators. We perform this comparison on two examples of Q20, which are con-

structed by randomly selecting quantization step sizes from the candidate set in

(3.30).

The first estimator we examine is the maximum likelihood estimator. The

experimental error probabilities of this estimator on real images are obtained as

follows. For each M ∈ [2, 20], QM is obtained as the last M quantization step sizes

in Q20. The 1338 uncompressed images from the UCID database are first used to

construct a test database. Specifically, for each M , we JPEG compress each of the

1338 images M times using quality factors, whose quantization step sizes in the

(2, 3) subband are {q20−M+1, . . . , q20}. The resulting 1338 images compose the data

set of M times compressed images. Then, normalized DCT coefficient histograms in

the (2, 3) subband are extracted for analysis. Their theoretical distributions are also

calculated based on Q20 and the estimated λ’s from their uncompressed versions.

Given the assumption of uniform priors and the proposed conditional distribu-

tion of a normalized histogram given the theoretical distribution in (3.18) and (3.19),

the maximum likelihood estimator is used to estimate the number of compressions

for each M . Specifically, when M hypotheses of X are considered in the system, let

m be the actual number of compressions that an image has gone through. Its nor-

malized DCT coefficient histogram is denoted as y
m
. Then the maximum likelihood
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Figure 3.10: Experimental error probabilities of several estimators comparing

with the theoretical lower bound of error probabilities, where two randomly se-

lected Q20’s are taken as examples: (a) Q20 = {..., 8, 11, 13, 6, 5} and (b) Q20 =

{..., 11, 9, 7, 8, 13}. Estimators used in experiments are, in order of displayed legends,

maximum likelihood estimator using DCT coefficient histogram on UCID database,

Dresden databases, and synthetic data; support vector machine using first significant

digit of DCT coefficients on UCID database.
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estimator for m is

m̂ = argmax
1≤m∗≤M

P(Y m∗ = y
m
), (3.31)

where the distribution of Y m∗ is given in (3.18) and (3.19).

To examine the experimental result for different databases, we applied the

above maximum likelihood estimator on another database, the Dresden Image Database

[39]. This database contains 1491 unprocessed images, with each has size of 2000×

3008 or larger. We can see from Fig. 3.10 that the estimator performs similarly on

these two databases.

Furthermore, we examine the error probability of maximum likelihood estima-

tor on synthetic data. The synthetic database is generated as follows. First, we take

λ as the mean value of 1338 uncompressed images in UCID database. Based on QM

and λ, we calculate the theoretical distribution of the DCT coefficient for each M .

Then, based on the conditional probability of the observed histograms given these

theoretical distributions, we generate 1000 synthetic observed histograms for each

M to compose a test database. To calculate the experimental error probability for

each M , maximum likelihood is used to obtain the estimation results of the number

of compressions for each synthetic histogram in the test database. We can see from

Fig. 3.10 that the error probabilities obtained from synthetic data are lower than

those obtained from real data.

Another estimator we examine is the forensic technique in [66], where the

histogram of first significant digit (FSD) of DCT coefficients is used to train a

support vector machine. Because the histogram of the FSD of DCT coefficients can
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be obtained directly from the histogram of the DCT coefficients, this estimator is

eventually based on the feature of DCT coefficient histograms and fits our model.

The estimation results of using this estimator on subband (2, 3) is also plotted in

Fig. 3.10. We can see that as the number of considered compressions increases,

the performance of this estimator becomes comparable to the maximum likelihood

estimator.

Last, for every M , the theoretical lower bound of error probabilities is calcu-

lated for each image, i.e., each estimated λ, using (3.2), then we take the mean value

and plot it in Fig. 3.10.

Both examples in Fig. 3.10(a) and Fig. 3.10(b) show that the error probability

of specific estimators are higher than the theoretical lower bound, which verifies

the validity of our proposed lower bound. For the example in Fig. 3.10(b), most

experimental results are worse than those in Fig. 3.10(a), even when detecting

double compressions, i.e., M = 2. This matches the results in forensic literatures

of detecting double compressions, which shows difficulty when the detected image

has a secondary compression quality factor lower than the primary one [74]. The

distance between the experimental error probability of one specific estimator and

the theoretical error probability lower bound of all estimators suggests the existence

of better estimators or better features.
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3.3.4 Maximum Number of Detectable Compressions

Given the error probability lower bound, we can determine what is the max-

imum number of compressions investigators can detect by using corollary 2. First,

based on Theorem 2, we use the highest reachable forensicability for each M to cal-

culate the minimum lower bound of error probabilities for all possible compression

quality factors. The calculation results are shown in Table 3.1. From this table

we can see that, for double compression detection where M = 2, the lower bound

of error probability is approximately 0 (note that it is not exactly zero, it is just

smaller than the precision of Matlab processor), which matches the result of existing

techniques [74]. Furthermore, the table shows that the minimum lower bound of

error probability increases dramatically with M .

Table 3.1: minQM
P 0
e for different M .

M 2 3 4 5 6

minQM
P 0
e 0 3.9× 10−9 5× 10−5 2.1× 10−4 0.0016

Then, to determine the point where we cannot perfectly detect any more

compressions, we adopt the concept of expected perfect detection defined in def-

inition 2 and use the conclusion in corollary 2. For example, if the forensic inves-

tigator performs experiments on a test database of size S = 5000, then because

minQ4 P
0
e < 1/S = 2 × 10−4 but minQ5 P

0
e > 2 × 10−4, we claim that no expected

perfect detection exists for M > 4.
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Furthermore, by noticing that

1

minQ4 P
0
e

= 20000,
1

minQ5 P
0
e

= 4762, (3.32)

we have the following conclusion. For any database of size bigger than 4762 and

smaller than 20000, expectedly, no perfect detection can be achieved for detecting

more than 4 times of JPEG compressions. In other words, for typical sizes of

database, investigators can only perfectly detect up to 4 times of JPEG compressions

using DCT coefficient feature.

We note that, since we are analyzing the minimum lower bound of error prob-

ability, which is the best performance we may get from all estimators and all com-

pression quality factors, these results only provides an upper limit of investigators’

capability. In other words, “cannot perfectly detect 5 compressions” does not mean

“can perfectly detect 4 compressions for sure”. Our theorem tells what we cannot

do rather than what we can do.

It is also noted that, for databases bigger than 20000, the maximum number

of compressions can be detected may be less than 4. It implies that the number of

detectable compressions depends on the test database size. It is reasonable because,

as the database size goes bigger, there will be higher probability that we may meet

an instance that is hard to detect and thus error may occur.
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Figure 3.11: Patterns of QM yielding the highest and lowest forensicabilities.

3.3.5 Quality Factor Patterns having the Highest and Lowest Foren-

sicabilities

As Fig. 3.9 shows, forensicability varies significantly with QM . In order to

characterize this effect, we examine all combinations of quantization step sizes and

their forensicabilities. From there, we find the patterns of QM which will yield the

highest and lowest forensicabilities, as they are shown in Fig. 3.11.

We find that, if the next compression always uses a higher quality factor than

the previous one, forensicabilities will be the highest, i.e., they are easiest to be

detected. Denote the set of quality factors yielding the highest forensicabilities as

Qh, then

Qh = {QM |qm < qm−1,∀1 < m ≤ M,M ∈ Z+}. (3.33)

To explain this phenomenon, let us examine a DCT coefficient histogram of an image

that has been compressedm times using decreasing quantization step sizes a1 > a2 >
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. . . > am in the concerned subband. Recall the discussion in Section 3.2.1, the singly

quantized coefficients D1 obeys a quantized Laplace distribution with quantization

step size a1. Then, given that the next quantization step size is smaller than the

current one, when re-quantizing this histogram, every bin will remain its original

value but be shifted to its nearby integer multiple of a2. Zeros may be introduced

into the histogram of D2, but all nonzero histogram bins will be the same as those

in the histogram of D1. Similar analysis applies for the following quantizations.

Therefore, the normalized DCT histogram after m times of quantizations will have

all of its nonzero bins being equal to those after the first quantization.

For detecting M times of compressions with quantization step sizes QM , we

are distinguishing the following M hypotheses on the DCT coefficient histogram:

H1 : 1 time of quantization by qM ,

H2 : 2 times of quantizations by {qM−1, qM} in order,

H3 : 3 times of quantizations by {qM−2, qM−1, qM},

...

HM : M times of quantizations by {q1, q2, . . . , qM}.

(3.34)

It is easy to notice that, for different hypotheses, the first quantization step sizes

are different. Thus, for case of q1 > q2 > . . . > qM , theoretically, the nonzero bins

of the normalized histogram obtained from one hypothesis are completely different

from those obtained from another hypothesis. Furthermore, there may also have

cases where a location of a zero histogram bin in one hypothesis has a nonzero bin

in another hypothesis. This will further enlarge the disparity of DCT histograms

obtained from different hypotheses. Therefore, the complete distinguishability of
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theoretical distributions of DCT coefficients among different hypotheses results in

the easiest detection and the highest forensicability.

The compression quality factors resulting in the lowest forensicabilities, as it

is shown in Fig. 3.11, are those which use same quality factors periodically. More

specifically, denote the set of quality factors yielding the lowest forensicabilities as

Ql. We have found that

Ql = {QM |qM = qM−2 = . . . = q(M+1)%2+1 > all other q′is,M ∈ Z+}, (3.35)

where % is a remainder operator. The reason can be explained by the following

theorem.

Theorem 3. Given a quantized DCT coefficient Dm−2 with the last quantization

step size as qm−2. We further quantize it two more times using quantization step

sizes qm−1 then qm. The obtained coefficient is denoted as Dm. If the quantization

step sizes satisfy qm = qm−2 > qm−1, then the DCT coefficient remains the same

after these two more compressions, i.e., Dm ≡ Dm−2.

Proof. Take any possible value of Dm−2 = lm−2qm−2, where lm−2 ∈ Z, after the two

quantizations, we obtain

Dm = round

(
round

( lm−2qm−2

qm−1

)qm−1

qm

)
qm. (3.36)
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Given that ∀A ∈ R, A− 1/2 < round(A) ≤ A+ 1/2, we have

Dm

qm
> round

(( lm−2qm−2

qm−1

− 1

2

)qm−1

qm

)
(3.37)

= round
(
lm−2 −

1

2

qm−1

qm

)
(3.38)

> round
(
lm−2 −

1

2

)
(3.39)

> lm−2 − 1, (3.40)

where (3.38) and (3.39) are obtained from the condition qm−2 = qm > qm−1. Since

Dm

qm
is an integer, we obtain Dm

qm
≥ lm−2. Similarly, we can prove that Dm

qm
≤ lm−2.

Thus,

Dm = lm−2qm = Dm−2. (3.41)

Given the above theorem, the M hypotheses in (3.34) can be reduced to only

singly quantized hypothesis and double quantized hypothesis. Specifically, all odd

numbered hypotheses will be identical to each other. While all even numbered hy-

potheses will be simplified to 2 times of quantization with different primary quan-

tization step sizes. Furthermore, for the simplified double quantization hypotheses,

the second quantization step size is larger than the first one, which is harder for

estimation compared to its opposite case. Therefore, such a pattern of compression

quality factors is the hardest to be detected, and thus has the lowest forensicability.

Moreover, since the estimation performance will always be similar to a double com-

pression detection regardless of how many compressions investigators really want to

detect, forensicability almost remains the same as M increases.
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3.3.6 Optimal Strategies for Forgers and Investigators

The fundamental measurement of forensicability can also be used to obtain

the optimal strategies for both investigators and forgers. In this multiple com-

pression detection system, investigators try to detect the number of compressions

forgers have done on an image. Thus, investigators can choose examined subbands

to maximize forensicability, while forgers have the right of choosing compression

quality factors to minimize forensicability. Given that forensicability is a function

of both subband parameter λ and compression quality factors QM , we model the

optimal strategies for forensic investigators and anti-forensic forgers in this multiple

compression detection system as

δF = argmax
(i,j)

EQM

[
Fλ(i,j),QM

(X;Y )
]
, (3.42)

δAF = argmin
QM

Eλ(i,j)

[
Fλ(i,j),QM

(X;Y )
]
, (3.43)

respectively, where (i, j), i, j ∈ [1, 8], denotes the subband index.

Since we have just discussed the effect of compression quality factors on foren-

sicability, let us obtain the optimal strategy for forgers (3.43). From the discussion

in last subsection, we notice that the patterns of compression quality factors yielding

the highest and lowest forensicabilities do not depend on the subband parameter λ.

Instead, the results are merely dependent on how the DCT coefficients are quan-

tized. Thus, regardless of which subband or subbands investigators will choose, Ql

will always yield the lowest forensicability. Thus, we obtain the optimal strategy for

forgers is

δAF = Ql. (3.44)
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We note that, when M = 2, we have δAF = Ql = {Q2|q1 < q2}, which is oppo-

site to the pattern of Qh. This result matches our early work on the concealability-

rate-distortion tradeoff of compression anti-forensics, where we found that forgers

would prefer to use a lower secondary quality factor instead of a higher one in their

second compression [21].

To obtain the optimal strategy for investigators, we take λ(i,j) as the mean

value of all estimated λ’s from the (i, j)th subband coefficients of 1338 uncompressed

images in the UCID database. We examine the cases of detecting 2, 3, 4 and 5 times

of compressions, i.e., we take M ∈ [2, 5]. For each M , QM for the (2, 3) subband

is still constructed by randomly selecting quantization step sizes from the candi-

date set {5, 6, 7, 8, 9, 11, 13} in (3.30). Given that the compression quality factors

corresponding to these quantization step sizes are {82, 78, 75, 70, 67, 60, 55}, QM for

other subbands can also be determined from their corresponding quantization tables.

Then, for each of the 63 alternating current (AC) DCT subbands, forensicabilities

are calculated for all QM ’s, whose number of possibilities can reach (7× 64 =)9072

when M = 5. We assume that investigators do not know the priori of the compres-

sion quality factors used by forgers. Thus, for each subband, EQM

[
Fλ(i,j),QM

(X;Y )
]

is calculated as the mean value of forensicabilities with respect to different QM ’s.

By comparing the expected value of forensicabilities for all 63 subbands, we

order them in descending order and take the top 9 subbands to show in Fig. 3.12.

Our results show that, the top 9 subbands yielding the highest forensicabilities

remain the same when detecting different numbers of compressions, though their

orders are slightly different. Thus, if investigators take the best 9 subbands for
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Figure 3.12: The best 9 DCT subbands (shown as blue cells) for detection, which

yield the highest forensicabilities for (a) M = 2, (b) M = 3, (c) M = 4 and (d)

M = 5. Numbers 1 through 9 represent the order of these subbands regarding their

forensicabilities from the highest to the lowest.
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detection, their the optimal strategy, which is denoted as δ
(9)
F , will be

δ
(9)
F = {(2, 1), (1, 2), (3, 1), (1, 3), (2, 2), (4, 1), (1, 4), (3, 2), (2, 3)}. (3.45)

It matches the set of subbands that many successful double compression forensic

techniques have used in their algorithms [74]. This result gives theoretical support of

why we use those subbands for detecting double compressions. It also suggests that

we should continue to use these subbands to detect 3, 4 or 5 times of compressions.

Furthermore, the ranks on these subbands tell us which subband contains more

forensic information and which one will give us the most trustful result.

3.3.7 Forensicabilities for Image Outliers

Given that forensicability depends on the Laplace parameter λ of DCT coeffi-

cients, it may also vary for different types of images. While our results were obtained

by choosing a representative λ value and thus can be considered as the most ex-

pected performance for natural images, there are some outliers that are much harder

or much easier to be detected. For example, if an image is underexposed and most

of its pixels are equal to zero, then it would be very hard to detect the number of

compressions on this image.

To track the change of the Laplace parameter λ for different images, we ex-

amine natural images from both the UCID database (1338 images) and the Dresden

image database (1491 images). Fig. 3.13 shows the histogram of λ in the (2, 3)

subband of these 2829 images. We can see that most images have their λ values

close to 0.1, which was chosen as the representative value of λ in Section 3.3.4.
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Figure 3.13: Histogram of λ in subband (2,3) of images from UCID and Dresden

databases.

In order to examine forensicabilities for other images, we take two extreme

cases of λ = 0.02 and λ = 0.7 to obtain the bounds of performance. Table 3.2(a)

and 3.2(b) show the minimum error probability lower bound for different numbers

of compressions when λ = 0.02 and λ = 0.7, respectively. By comparing these

two tables with Table 3.1, we can see that the minimum lower bound of error

probabilities minQM
P 0
e increases with λ, and thus forensicability decreases with λ.

This matches the results in the previous subsection where forensicability decreases

for higher frequency subbands which have higher values of λ. This is because for

large λ’s, the DCT coefficient histograms have high kurtosis and low variances.

Most bins in these histograms have small values that can be severely contaminated

by noise. Only a few histogram bins have large enough values that can be used for

estimation. Thus, little information can be extracted from these histograms. By

following the analysis in Section 3.3.4 we can infer that, if we have a database of

size 10000, then for image outliers whose λ = 0.02, investigators can detect up to 7
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Table 3.2: minQM
P 0
e for different M when (a) λ = 0.02 and (b) λ = 0.7.

(a)

M 2 3 4 5 6 7 8

minQM
P 0
e 0 0 1.9× 10−9 1.1× 10−7 2.2× 10−6 3.7× 10−5 5.5× 10−4

(b)

M 2 3

minQM
P 0
e 1.4× 10−5 0.0018

times of compressions. While for image outliers whose λ = 0.7, we can only detect

2 times of compressions.

Lastly, in order to see what types of images are outliers, we select some repre-

sentative images from each extreme case and show them in Fig. 3.14. As it is shown

in Fig. 3.14(a), the outliers having the lowest λ’s and the highest forensicabilities are

highly textured images whose AC components have sufficient information to be used

for forensic detection. On the other hand, the outliers having the highest λ’s and

the lowest forensicabilities are images having a large amount of smooth or uniform

areas but few textured regions. As it is shown in Fig. 3.14(b), this phenomenon

may be caused by overexposure, underexposure, strong blurring, or little textured

image content.
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(a)

(b)

Figure 3.14: Representative image outliers in UCID and Dresden databases with (a)

λ ∼= 0.02 and (b) λ ≥ 0.7.
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3.4 Summary

In this chapter, we proposed an information theoretical framework to explore

the fundamental limit of operation forensics. In this framework, we defined forensi-

cability in operation detection forensics as the maximum information that features

contain about operations. Based on this measure, we obtained the lower bound of

error probabilities for any estimators using these features. Furthermore, by intro-

ducing the concept of expected perfect detection, we were able to determine the

limit of how many operations we can successfully detect. To show the effectiveness

of our framework, we applied it to the case of detecting multiple JPEG compressions

using DCT coefficient histogram features. By appropriate modeling of the features,

we calculated forensicabilities and concluded that, under typical settings of forensic

analysis where the size of the testing database is less than 20000, at most 4 times

of compressions were perfectly detectable. Furthermore, based on this fundamental

measurement, we found the patterns of compression quality factors holding the high-

est and lowest forensic information. Lastly, the optimal strategies for investigators

and forgers were discussed using forensicability.
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Chapter 4

Fundamental Limits in Order Forensics

In recent years, many forensic techniques have been proposed to identify the

use of different manipulation operations, such as compression [31, 55, 76], resizing

[48, 77], contrast enhancement [86], blurring [13, 89, 96] and so on [22, 85, 88]. Most

of these techniques expose specific fingerprints of the considered operations and

implicitly assume that no other operations were applied [13, 31, 48, 77, 85, 86, 89,

96]. However, in reality, it is often the case that multiple operations are needed to

complete a forgery. For example, if a forger wants to replace a person’s face in an

image using another person’s face from another image, he or she may need to apply

the following operations. First, the forger may need to apply resizing and contrast

enhancement operations on the new face to make it match the size and color of the

old face in the target image. Then, to avoid visible boundaries of the new face to the

background of the target image, blurring may be applied to smooth the transition.

At last, this forged image may be compressed for storage or transmission.

There have been some forensic techniques designed to identify the existence of

a single operation in a certain operation chain [6,14,36,55,76]. Double compression

detectors were developed to detect the existence of the first compression in a pro-

cessing chain of two consecutive compressions [55, 76]. In [6], an improved double

compression detector was proposed for the processing chain of two compressions
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with resizing in between. Specifically, two hypotheses were considered: whether the

image was single JPEG compressed, or it was double JPEG compressed with resiz-

ing applied in the middle. Authors in [36] considered a similar scenario where linear

contrast enhancement was interleaved with the two compressions. In addition, the

contrast enhancement detector proposed in [14] can effectively detect this operation

when it was applied on previously JPEG compressed images.

While these techniques considered multiple operations, their goal is to identify

the existence of a specific operation in a certain processing chain. Nothing can be

inferred about the order of operations from these techniques. However, when mul-

tiple different operations may be applied on the multimedia content, detecting the

order of these operations is equally important with identifying the existence of each

operation. By detecting the order of operations, we can obtain the complete pro-

cessing history of multimedia content. Furthermore, given that different operations

may be applied by different forgers, detecting the order may also help us identify

who manipulated the multimedia content and when it was manipulated. For ex-

ample, if investigators receive an image that was downloaded from the internet and

may be maliciously blurred by either the uploader or the downloader. Suppose that

when an image is uploaded, resizing is needed to make the image fit the website

standard. In this scenario, detecting the order of blurring and resizing can tell us

who manipulated the image and when it was manipulated.

Few works have been done on detecting the order of operations. In [84], a

forensic technique has been developed to detect the order of resizing and contrast

enhancement. Nevertheless, the order of operations is not always detectable due
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to the interplay between operations. One reason would be that when multiple

operations are applied on the multimedia content, later applied operations may

affect, or even destroy, the fingerprints of earlier applied operations. For example,

if JPEG compression or Gaussian noise is applied after contrast enhancement, the

fingerprints of contrast enhancement would be too weak to be detected [14].

Therefore, a natural question would be “when can and cannot we detect the

order of operations?” To answer this question, we formulate the order detection

problems into multiple hypotheses estimation problems. For such problems, we pro-

pose an information theoretical framework and mutual information based criteria to

determine whether or not we can distinguish all the considered hypotheses. Further-

more, for those indistinguishable cases, this criterion can tell us which hypotheses

are confused with each other and why they are confused. In addition, we also give

a rigorous definition of the existence of conditional fingerprints. To verify the ef-

fectiveness of the proposed framework and criteria, we apply them on two known

forensic problems to show that the obtained results match those published in exist-

ing works. Then, the proposed framework and criteria are applied on the problem

of detecting of the order of resizing and blurring to obtain when we can or cannot

detect their orders.

The remaining of this chapter is organized as follows. Section 4.1 explains

the fact that the order of operations is not always detectable and presents our

system model for determining when they can or cannot be detected. The mutual

information based criteria are proposed in section 4.2. Section 4.3 presents our

proposed estimation scheme for detecting the order of resizing and blurring. To
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demonstrate the effectiveness of our proposed framework and criteria, section 5.5

provides simulation results for both existing forensic problems and the problem

examined in section 4.3. Lastly, section 4.5 concludes our work.

4.1 System Model

In this section, we first give an example to illustrate that the order of operations

is not always detectable. Then, based on the analysis on the example, we propose our

information theoretical framework for generalized multiple hypotheses estimation

problems.

4.1.1 Order of Operations May Not be Detectable

When multiple operations are applied on multimedia content, the effect of

later applied operations on earlier applied ones may lead to the undetectability of

the order of operations. For example, let us consider a processing chain which may

contain two operations: resizing and blurring. To detect the order of resizing and

blurring, we assume that a given image may fall into one of the following hypotheses:

H0 : The image is unaltered,

H1 : The image is resized only,

H2 : The image is blurred only,

H3 : The image is blurred then resized,

H4 : The image is resized then blurred.

(4.1)
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Fingerprints for detecting the order of resizing and blurring. (a) and

(b) are the original image and the DFT of its p-map, respectively. (c) - (f) show

the DFT of the p-map of (c) the resized image, (d) the blurred image, (e) the

blurred then resized image, and (f) the resized then blurred image. Resizing factor

is 1.5 (upscaling). Gaussian blur is used with variance 1. Regions of interests are

highlighted by dotted squares and circles.
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The order of resizing and blurring can be distinguished if we can distinguish all the

above five hypotheses.

Fig.s 4.1(b) - 4.1(f) show the different fingerprints of each hypothesis in the

discrete Fourier transform (DFT) of an image’s p-map. P-map is a probability

matrix with each element representing the probability of the corresponding image

pixel correlated with its neighbor pixels [77]. This matrix is widely used in detecting

the resizing operation [48]. This is because that the linear interpolation process in

resizing will lead to periodic characteristics of the p-map. Thus, when we take

the DFT of the p-map, we would observe four distinct peaks in the corresponding

spectrum, as they are shown in Fig. 4.1(c).

We assume that the blur operation is applied by using a linear filter on an

image. Let Ii,j and I ′i,j denote a pixel located at (i, j) of the unaltered image I and

the blurred image I ′, respectively. Then, each blurred pixel is a linear combination

of its original neighbor pixels, for example,

I ′i,j =
∑

|△i|<k

∑
|△j|<k

α△i,△jIi+△i,j+△j, (4.2)

where α△i,△j denote the coefficient of the linear filter. Consider a neighbor pixel

of I ′i,j, such as I ′i+1,j, from (4.2) we know that this pixel is a linear combination of

pixels
{
Ii+△i,j+△j

∣∣|△i− 1| < k, |△j| < k
}
. Thus, I ′i,j and I ′i+1,j are both dependent

on pixels {Ii+△i,j+△j

∣∣−k+1 < △i < k, |△j| < k}. This analysis shows that, though

blurring does not give direct correlations between neighboring pixels, the neighbor

pixels of a blurred image may still be correlated due to the overlapped dependency

on the pixels of the original image. This alteration on pixel correlations cause by
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blurring may result in certain fingerprints in the p-map of the blurred image.

To see how pixel correlations are altered by blurring, we examined the p-map

and its DFT of a blurred image. We have found that, in the DFT of the p-map,

a blurred image has an increase of energy in high frequency component while the

energy in frequency domain of an unaltered image is monotonically decreasing as the

frequency increases. We can see these fingerprints by comparing Fig. 4.1(d) with

Fig. 4.1(b). These fingerprints can be used to detect blurring, as we will discuss in

section 4.3.

Furthermore, even when the image is previously resized, these fingerprints of

blurring may still exists, as it is shown in Fig. 4.1(f). However, if resizing is applied

after blurring, the fingerprints of blurring will be hardly detectable, as it is shown in

Fig. 4.1(e). Nevertheless, either resizing then blurring or blurring then resizing, the

DFT of the p-map is more noisy than that of the only resized case. We can see this

by comparing Fig. 4.1(e) and Fig. 4.1(f) with Fig. 4.1(c). Then, the peak signal to

noise ratio (PSNR) at the four peaks corresponding to the resizing fingerprints may

be used to distinguish the hypotheses containing both resizing and blurring and the

hypothesis of pure resizing. Specific detection schemes will be discussed in section

4.3.

Based the fingerprints of each hypothesis presented in Fig.s 4.1(b) - 4.1(f),

we can design algorithms to distinguish all hypotheses in (4.1) and thus detect the

order of resizing and blurring. However, for some cases, these fingerprints are very

weak and hardly detectable. Fig. 4.2 shows a confusing example where the same

image in Fig. 4.1(a) was examined but the blurring effect is weaker that in Fig. 4.1.
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(a) (b) (c)

Figure 4.2: A confusing example that we may not be able to detect the order. Plotted

are DFTs of the p-map of (a) the blurred image, (b) the blurred then resized image,

and (c) the resized then blurred image when resizing factor is 1.5 and the variance

of Gaussian blur is 0.7. Regions of interests are highlighted by dotted squares and

circles.

We can see that, though we may still be able to observe the fingerprints of blurring,

we can hardly tell the difference between the blurred then reszied image and the

resized then blurred image. Therefore, in this case, we may not be able to detect

the order of resizing and blurring.

4.1.2 Information Theoretical Model for Multiple Hypotheses Esti-

mation Problems

Given that the order of operations is not always detectable, a natural question

would be “when can we and cannot we detect the order of operations?” To answer

this question, we first consider a generalized multiple hypotheses estimation problem

as follows.

Consider a forensic problem where we have assumptions on the possible hy-
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Figure 4.3: A typical process of estimating the hypotheses.

potheses that the given multimedia content may belong to. Here are some examples

of hypotheses assumptions made in existing works:

• In [48] of detecting resizing, two hypotheses are considered: H0, the image is

unaltered; H1, the image is resized.

• In [76] of detecting double JPEG compression, also two hypotheses are con-

sidered: H0, the image is single JPEG compressed; H1, the image is double

JPEG compressed.

• In [84], five hypotheses are considered, similarly to those in (4.1) with the

blurring operation substituted by the operation of contrast enhancement.

In order to distinguish these considered hypotheses, investigators go through

the following typical steps [20]. First, possible fingerprints that can be used to

distinguish each hypothesis are found. Then, based on these fingerprints, features

are extracted from an examining image. At last, a set of estimators with tunable

thresholds or parameters will be used to make the final decision of the estimated

hypothesis based on the extracted features. Fig. 4.3 shows this process.
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Given certain features, estimators with different parameters will lead to differ-

ent estimation performance. For example, when detecting the resizing operation, we

can use the fingerprints of four peaks in the DFT of an image’s p-map [48]. In order

to measure these fingerprints, the cumulative periodogram of the Fourier domain p-

map is calculated. Then, its maximum gradient is used to make the final estimation

by comparing it to a certain threshold [48]. This tunable threshold is the parameter

of the estimator which determines the detection rate and false alarm rate of the

estimator. The overall performance of the estimator can be measured by plotting a

receiver operating characteristic (ROC) curve, which contains all reachable pairs of

detection rates and false alarm rates.

Let us consider another forensic problem where more than two hypotheses

are involved. In [84] of detecting the order of resizing and contrast enhancement,

five hypotheses are considered in the analysis. A tree structured estimator was

proposed to obtain the estimated hypothesis. In each tree node, an intermediate

decision is made by comparing a certain statistic extracted from an image with

a tunable threshold. The final estimation performance is determined by all the

thresholds used in the detection scheme tree. Because there are more than two

hypotheses considered in the problem, multiple ROC curvse would be needed to show

the estimation performance [84]. This representation of multiple ROC curves could

be problematic when we want to characterize the overall estimation performance,

or to compare the estimation performance of different estimators.

In order to give a simple yet effective characterization, we use a transition

probability matrix between the true hypotheses and the estimated hypotheses to
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represent the performance of the estimator with certain parameters. This represen-

tation is applicable for general multiple hypotheses estimation problems. Further-

more, it can be used to compare the estimation performance of different estimators,

which will be discussed in the next section.

The transition probability matrix is defined as follows. LetH = {H0, H1, ..., HM−1}

denote the set of considered hypotheses in a multiple hypotheses estimation prob-

lem. Then the true hypothesis and the estimated hypothesis, denoted as H and Ĥ

respectively, belong to this set. Based on certain features, a set of estimators with

different parameters θ, denoted as dθ, are used to obtain the estimated hypothe-

ses. For each choice of θ, the performance of the specific estimator is presented

by a transition probability matrix T(θ) with each element denoting the conditional

probability of an estimated hypothesis given a true hypothesis, i.e.,

Ti,j(θ) = Pθ(Ĥ = Hj|H = Hi), 0 ≤ i, j < M. (4.3)

With this definition, we propose a feature dependent channel to characterize

the relationship between true hypotheses and estimated hypotheses. The channel

characteristics, i.e., the transition probabilities between input and output (4.3), is

specified by the parameters of the set of estimators, as it is shown in Fig. 4.3.

4.2 Information Theoretical Criteria

As we have formulated the order detection problem into a multiple hypotheses

estimation problem, our goal is to tell when we can and cannot distinguish all

considered hypotheses. Given that for certain features, estimators with different
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parameters yield different estimation performance, a natural thought would be to

see if the best estimator is able to distinguish all hypotheses. Then, the question

becomes “which estimator is the best?” In this section, we first propose a mutual

information criterion to determine the best estimator. Then, based on this criterion,

our information theoretical criterion of when we can and cannot distinguish all

hypotheses are proposed.

4.2.1 Mutual Information Criterion to Obtain the Best Estimator

For simple hypothesis problems where only two hypotheses are considered

in the problem, the best estimator can be obtained by comparing ROC curves.

However, when more than two hypotheses are considered, because each estimator

has multiple ROC curves [84], comparison among ROC curves becomes complicated.

Specifically, when tuning the parameters, some ROC curves may become better

while others may be worse. It is hard to say which parameters yield the best

overall estimation performance. Therefore, we need a criterion to quantify the overall

performance of estimators.

In the previous section, we have used a transition probability matrix to char-

acterize the performance of an estimator. The relationship between true hypotheses

and estimated hypotheses has been modeled as an abstract channel with transition

probabilities T(θ). Then, for the best estimator, we would expect that the esti-

mated hypotheses contain the maximum information about the true hypotheses.

Since mutual information is a measure of the information that the output of a chan-
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Figure 4.4: Compare a simple hypothesis channel and a ROC curve.

nel contains about the input, we define the best estimator based on this measure.

Definition 3. In a problem of estimating hypothesis H ∈ H, estimators dθ1 and dθ2

are based on the same features. Let Ĥ denote the estimated hypothesis. T(θ1) and

T(θ2) are transition probability matrices of estimator dθ1 and dθ2, respectively. Let

pH denote the priors of H. Then, detector dθ1 is better than dθ2 , w.r.t. the mutual

information criterion, when

IpH ,T(θ1)
(H; Ĥ) > IpH ,T(θ2)

(H; Ĥ), (4.4)

for the cases where we know the priors of H; or

max
pH

IpH ,T(θ1)
(H; Ĥ) > max

pH
IpH ,T(θ2)

(H; Ĥ), (4.5)

for the cases where we do not know the priors. I(H; Ĥ) denotes the mutual infor-

mation between H and Ĥ.

This criterion enables us to evaluate the best estimator for general multiple

hypotheses estimation problems, especially when more than two hypotheses are

considered. Furthermore, the properties of this measurement also match those of

the traditionally used ROC curves for simple hypothesis estimation problems.
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In order to show the effectiveness of our proposed mutual information criterion

in simple hypothesis cases, we make a comparison between our information theoret-

ical characterization of the estimation performance and the traditional ROC curve,

as it is shown in Fig. 4.4. In these cases, H = {H0, H1}. Let pd and pf denote the

detection rate and false alarm rate as follows,

pd = P(Ĥ = H1|H = H1), (4.6)

pf = P(Ĥ = H1|H = H0). (4.7)

Given that uniform priors are usually implied when plotting ROC curves [88], we

take P(H = H0) = P(H = H1) = 1/2.

The performance of an estimator with a specific parameter θ can be represented

by either the value of mutual information IpH ,T(θ)(H; Ĥ) or a point (pf , pd) in the

ROC curve. Because the mutual information only depends on pd and pf under the

assumption of uniform priors, for comparison, we use a function S(pf , pd) to denote

the mutual information. Then, we have the following properties of the mutual

information criterion.

Lemma 2. For a simple hypothesis channel with uniform priors, since each param-

eter θ of the estimator dictates a pair of pd and pf , we use a simplified function

S(pf , pd) to indicate the mutual information IpH ,T(θ)(H; Ĥ). Then, this function has

the following properties.

1. S(pf , pd) = S(pd, pf )

2. pd1 > pd2 > pf ⇒ S(pf , pd1) > S(pf , pd2)
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3. argmin
pf

S(pf , pd) = pd; argmin
pd

S(pf , pd) = pf

Proof. Given the uniform priors and likelihood probabilities, we can obtain the

probabilities of estimated hypotheses as

P(Ĥ = H0) = 1− 1
2
(pd + pf ), (4.8)

P(Ĥ = H1) = 1
2
(pd + pf ). (4.9)

Then, the mutual information for the simple hypothesis channel is

S(pf , pd) = IpH ,T(θ)(H; Ĥ)

= h
(
1
2
(pd + pf )

)
− 1

2
h(pf )− 1

2
h(pd), (4.10)

where h(p) denotes the binary entropy function of (p, 1 − p). From (4.10), we can

see that S(pf , pd) is a symmetric, i.e., S(pf , pd) = S(pd, pf ) Then, the first property

is proved.

To prove the second property, we take the partial derivative of S(pf , pd) w. r.

t. pd,

∂S(pf , pd)

∂pd
= −1

2
ln
(
1
2
(pd + pf )

)
+ 1

2
ln
(
1− 1

2
(pd + pf )

)
+1

2
ln pd − 1

2
ln(1− pd)

= 1
2
ln

(
1 +

pd − pf
(pd + pf )(1− pd)

)
(4.11)

Then, when pd ≥ pf , the above derivative is greater than zero. Thus, for pd ≥ pf ,

S(pf , pd) is an increasing function of pd. The second property is also proved.

Furthermore, we can also see from (4.11) that pd = pf is the minimal of

S(pf , pd), i.e., argmin
pd

S(pf , pd) = pf . Similarly, we can also prove that argmin
pf

S(pf , pd) =

pd. Then, the last property is proved and it concludes our proof.
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Since S(pf , pd) measures the estimation performance of an estimator with de-

tection rate pd and false alarm rate pf , it can also be interpreted as the measure of

estimation performance at a point (pf , pd) of a ROC curve. Then, the properties in

lemma 2 can be interpreted in the following way.

1. Estimation performance of each point in a ROC is symmetric along the random

guess line pd = pf .

2. For points above the random guess line, given a certain false alarm rate, an

estimator with a higher detection rate is a better estimator.

3. The worst performance is the random guess line.

We can easily see that the above properties match those in ROC curves.

Therefore, our proposed mutual information criterion is consistent with a ROC

curve for simple hypothesis test cases. Furthermore, it gives a criterion for cases

where more than two hypotheses are considered. Our mutual information criterion

is a general measurement of the estimation performance for multiple hypotheses

estimation problems.

4.2.2 Information Theoretical Criteria for Multiple Hypotheses Esti-

mation Problems

Given the measurement of estimators’ performance, we can determine the dis-

tinguishability of considered hypotheses by checking if the best performed estimator

can distinguish all hypotheses. Specifically, if priors are uniform, we examine the
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likelihood probabilities of the best estimator and check for each true hypothesis, if

the detection probability is greater than any misdetection probabilities. If nonuni-

form priors are assumed or we do not know the priors, we examine the posteriori

probabilities of the best estimator.

Definition 4. For a multiple hypotheses estimation problem, where considered hy-

potheses are H = {H0, H1, ..., HM−1}. Let H and Ĥ denote the true hypothesis and

the estimated hypothesis, respectively. Assume that priors are positive. Then, under

the mutual information criterion, all hypotheses can be distinguished by estimators

dθ, θ ∈ Rk, if and only if the following conditions are satisfied.

• If priors are uniform, the conditions are

Hi = argmax
t∈H

Pθ∗(Ĥ = t|H = Hi), ∀i = 0, 1, ...,M − 1; (4.12)

• If priors are nonuniform or unknown, the conditions are

Hi = argmax
t∈H

Pθ∗(H = t|Ĥ = Hi), ∀i = 0, 1, ...,M − 1, (4.13)

and

Pθ∗(Ĥ = Hi) > ϵ, ∀i = 0, 1, ...,M − 1, (4.14)

where ϵ is a small constant and θ∗ are parameters of the best estimator w.r.t. the

mutual information criterion. That is, if we know the priors

θ∗ = argmax
θ

IpH ,T(θ)(H; Ĥ). (4.15)

If we do not know the priors,

(θ∗, p∗H) = argmax
θ,pH

IpH ,T(θ)(H; Ĥ). (4.16)
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This criterion can be used to determine when we can or cannot distinguish

all hypotheses. Furthermore, by examining the conditions in (4.12) and (4.13), we

are able to tell which hypotheses are confused with each other when we cannot

distinguish all hypotheses.

Definition 5. For the problem in definition 4, two hypotheses, Hi and Hj, i ̸= j,

are confused with each other when we obtain the following results.

• If priors are uniform,

Pθ∗(Ĥ = Hi|H = Hj) ≥ Pθ∗(Ĥ = Hj|H = Hj),

or, Pθ∗(Ĥ = Hj|H = Hi) ≥ Pθ∗(Ĥ = Hi|H = Hi).

• If priors are nonuniform or unknown,

Pθ∗(H = Hi|Ĥ = Hj) ≥ Pθ∗(H = Hj|Ĥ = Hj),

or, Pθ∗(H = Hj|Ĥ = Hi) ≥ Pθ∗(H = Hi|Ĥ = Hi).

The reason of why hypotheses may be confused with each other is related

to the strength of fingerprints or conditional fingerprints [84]. As our examples

in (4.1) and at the beginning of section 4.1.2 show, each hypothesis represents an

operation chain. This operation chain can be an empty chain which denotes the

hypothesis of unaltered multimedia content. It can also be a single operation chain or

a multiple operations chain. We first define fingerprints and conditional fingerprints

of operation chains as follows.
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Definition 6. Consider an operation chain and its corresponding hypothesis, de-

noted as Si and Hi respectively. Let S∅ and H∅ denote the empty operation chain,

and the hypothesis of unaltered multimedia content. If Si ̸= S∅, then the finger-

prints of Si are a set of features that can be used to distinguish {Hi, H∅}. Next, we

consider another operation chain, denoted as Sj. If Si is a sub-chain of Sj, let Sj\i

denote the operation chain of Sj excluding Si. Hj\i is denoted as the corresponding

hypothesis of Sj\i. Then, the conditional fingerprints of Si given Sj are a set of

features that can be used to distinguish the following hypotheses:

{Hj\i, Hi, Hj}.

Remarks: To better understand the difference between fingerprints and con-

ditional fingerprints, we give the following example. Let Si and Sj denote the

operation chain of only contrast enhancement and contrast enhancement then resiz-

ing, respectively. Then, Sj\i represents the operation chain of only resizing. When

detecting contrast enhancement, the fingerprints we commonly used are the high fre-

quency components of the DFT of the pixel histogram [86]. However, these cannot

be the conditional fingerprints of contrast enhancement given contrast enhancement

then resizing [84]. This is because that resized images and contrast enhanced then

resized images, i.e., {Hj\i, Hi}, cannot be distinguished by examining the finger-

prints of contrast enhancement. In [84], the conditional fingerprints of contrast

enhancement given contrast enhancement then resizing are two features. One is the

maximum gradient of the periodogram of the Fourier transformed p-map, which is

the fingerprint of resizing. The other feature is the distance of normalized histograms
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between the full image and the down-sampled image [84]. By using these two fea-

tures, we can distinguish resized images, contrast enhanced images, and contrast

enhanced then resized images, i.e., {Hj\i, Hi, Hj}.

Based on fingerprints and conditional fingerprints, forensic techniques can be

designed to detect operations and their orders [84, 88]. Similarly, in a multiple hy-

potheses estimation problem, the existence of required fingerprints and conditional

fingerprints enables us to distinguish all hypotheses. Based on definition 5, rigor-

ous definitions of the existence of fingerprints and conditional fingerprints can be

obtained as follows.

Definition 7. Consider a multiple hypotheses estimation problem where H = {H0, H1, ..., HM−1}.

Let H∅ denote the empty chain hypothesis. For a hypothesis Hi ∈ H, Hi ̸= H∅, let

Si denote the processing chain represented by this hypothesis. Then, the fingerprints

of Si exist if

Hi is not confused with H∅ by definition 5.

Now, consider another hypothesis Hj, j ̸= i and Hj ̸= H∅, the processing chain it

represents is Sj. The fingerprints of Si and Sj are different if

Hi is not confused with Hj by definition 5.

Furthermore, if Si is a sub-chain of Sj, let Hj\i denote the hypothesis representing

Sj\i, then the conditional fingerprints of Si given Sj exist if

any two of {Hj\i, Hi, Hj} are not confused by definition 5.

Having all concepts defined for general hypotheses estimation problems, let us

examine the special cases of detecting the order of operations to see when we can
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and cannot detect the order. For example, if two operations A and B are involved

in a forensic problem, we consider the following hypotheses for a given multimedia

content.

H0 : It is unaltered,

H1 : It is altered by A only,

H2 : It is altered by B only,

H3 : It is altered by B then A,

H4 : It is altered by A then B.

(4.17)

Then, the order of A and B can be detected if and only if we can distinguish all

hypotheses in (4.17) by definition 4. This requires that any two hypotheses cannot

be confused with each other by definition 5. That is, the following conditions on

fingerprints and conditional fingerprints should hold by definition 7.

• Fingerprints of A, B, A → B, and B → A exist.

• Conditional Fingerprints of A given A → B exist.

• Conditional Fingerprints of B given B → A exist.

• Fingerprints of A → B and B → A are different.

4.3 Detecting the Order of Resizing and Blurring

To demonstrate the effectiveness of our framework and criteria, we examine

a case study of detecting the order of resizing and blurring. In this section, we

formulate this problem using our information theoretical framework and propose

132



an estimation algorithm to detect the order of resizing and blurring. Then, the

detectability of their order is obtained by applying our mutual information based

criteria on experimental data in section 4.4.3.

To detect the order of resizing and blurring, we are distinguishing the five

hypotheses in (4.1). Thus, this is a multiple hypotheses estimation problem and can

be analyzed using our information theoretical framework.

As we have shown in Fig. 4.1, these five hypotheses can be distinguished by

their unique fingerprints in the DFT of an image’s p-map. Specifically, if an image

is unaltered, the DFT of its p-map can be considered a noisy signal whose energy

gradually gets lower as the frequency goes higher, as it is shown in Fig. 4.1(b).

If the image is only resized, the DFT of its p-map reveals distinct peaks in the

corresponding spectrum, which is determined by resizing factors [77], as it is shown

in Fig. 4.1(c). The lowest frequency region is removed to emphasize the fingerprints.

If an image is only blurred, due to its alteration on neighbor pixels correlations,

we have found that it also shows fingerprints in the DFT of its p-map. The finger-

prints of blurring are presented as an increase of the noisy energy in high frequency

regions, as it is shown in Fig. 4.1(d).

When an image is altered by both resizing and blurring, regardless of the order,

fingerprints of resizing are left in the image. We can still see four peaks in the DFT

of the p-map, as they are shown in Fig.s 4.1(e) and 4.1(f). However, the PSNR is

lower than that of the case where only resizing is applied, because blurring increases

the noise energy of the DFT of the p-map.

To furthermore distinguish the hypotheses of resizing then blurring and blur-
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ring then resizing, we can examine the fingerprints of blurring. Because only when

blurring is applied after resizing, we can observe the fingerprints of blurring.

Based on these fingerprints, we take two features to distinguish these hypothe-

ses. One feature is to detect the existence of four peaks and measure the strength

of these peaks. The other feature is to capture the increase of noise energy in high

frequency regions.

Feature 1: PSNR

As we have discussed above, the first feature can be taken as the PSNR of

the DFT of an image’s p-map. To calculate this measure, we first extract the

central horizontal lines of the DFT of the p-maps from Fig.s 4.1(b)-4.1(e) and plot

the magnitudes on these lines in Fig.s 4.5(a)-4.5(e), respectively. By appropriately

choosing thresholds, this measure can be used to categorize the five hypotheses into

three classes: unaltered or only blurred images; blurred then resized or resized then

blurred images; only resized images; .

Specifically, let us take the resized then blurred case as an example, i.e., the

signal in Fig. 4.5(d). Given the symmetry of the signal, we first consider the left half

of the signal. Let yl and x denote the magnitude and the index, respectively. Since

the noise mean increases with the index, we first use the following linear regression

model to make the noise mean uniform so that the peak is more prominent.

yl = a1x+ b1 + n. (4.18)

An example of the linear regression process is shown in the upper left figure of Fig.
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Figure 4.5: The central horizontal line of the DFT of the p-map of (a) an unaltered

image, (b) a resized image, (c) a blurred image, (d) a blurred then resized image,

and (e) a resized then blurred image.
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4.6. After estimating the parameters as â1 and b̂1, we obtain the difference signal

dl = yl − â1x− b̂1, (4.19)

as it is shown in the bottom left figure of Fig. 4.6.

Then, the peak is detected from dl by finding the coordinates of its maximum

value (xp, yp). From the bottom left figure in Fig. 4.6 we can see that, the noise

variance changes a lot as it is farther from the peak. Thus, instead of calculating

the mean of the absolute value of noise in the whole range, we only consider the

regions close to the peak:

PSNRl =
yp

mean0<|x−xp|<ε

(∣∣dl(x)∣∣) . (4.20)

Similar process is then applied to the right half of the signal in Fig. 4.5(d) to

obtain PSNRr. Then, the PSNR measurement for the central horizontal line of the

DFT of a p-map is

PSNRh = max(PSNRl, PSNRr). (4.21)

Given that the peaks also present in the central vertical line of the DFT of the

p-map. We calculate the above PSNR measurement, denoted as PSNRv, for the

central vertical line signal as well. Then, the first PSNR feature used to distinguish

hypotheses in (4.1) is

PSNR = max(PSNRh, PSNRv). (4.22)
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Figure 4.6: The process of how to calculate the PSNR from the central horizontal

line of the DFT of a p-map. Take Fig. 4.5(d) as an example.

We can make the following estimation based on this feature,

Ĥ =


H0 or H2, if PSNR < τ1,

H3 or H4, if τ1 ≤ PSNR < τ2,

H1, if PSNR ≥ τ2.

(4.23)

where τ1 and τ2 are tunable parameters.

Feature 2: noise energy pattern

To further distinguishH2 fromH0 andH4 fromH3, we examine the fingerprints

of blurring. As shown in Fig. 4.1(d) and Fig. 4.1(f), when blurring is applied as the

last operation, we would observe an increase of noise energy at high frequencies of

the DFT of the p-map. In order to capture this change of noise energy, we calculate

a noise energy pattern signal near the boundaries of the DFT of a p-map.
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Specifically, let Z = {Zm,n} denote the magnitudes of the DFT of a p-map.

The origin is located at the upper left corner of the matrix with size a by a. The noise

energy signal, which is denoted as a matrix E, is first calculated as a summation of

neighboring magnitudes in Z, i.e.,

E = Z ⊗ 1w, (4.24)

where 1w is an all one matrix of size w by w, and ⊗ is a convolution operator. Then,

we take a one dimensional signal ye near the boundaries of E as the noise energy

pattern signal:

ye(x) =

(
Ev,a/2+x +Ea/2+x,a−v +Ea−v,a/2−x +Ea/2−x,v

)
4

, (4.25)

where v − a/2 ≤ x < a/2− v and v = ⌈w/2⌉+ 1.

In Fig.s 4.7(a)-4.7(e), the dotted blue lines are noise energy pattern signals

for the DFT of the p-maps in Fig.s 4.1(b)-4.1(f), respectively. We can see that the

fingerprints of blurring result in an increase of the noise energy with |x| for higher

values of |x|, as shown in Fig.s 4.7(c) and 4.7(e). To measure these fingerprints, we

use a second order polynomial model to fit the signal as

ye = a2x
2 + b2x+ c2, (4.26)

and see if the estimated function is convex or concave. The solid red lines in Fig.

4.7 are the estimated curves. If the estimated â2 is positive, then the noise energy

pattern signal is estimated as a convex function. This indicates that the noise

energy tends to increase with |x| for higher |x|’s. Thus blurring fingerprints are

detected. Otherwise, if the estimated function is concave, blurring fingerprints are
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Figure 4.7: The noise energy pattern signal (dotted blue lines) extracted from the

DFT of the p-map and their polynomial fitting curves (solid red lines) for (a) an

unaltered image, (b) a resized image, (c) a blurred image, (d) a blurred then resized

image, and (e) a resized then blurred image.
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not detected. The estimation we can make by this feature is

Ĥ =


H0 or H1 or H3, if â2 < 0,

H2 or H4, if â2 > 0.

(4.27)

Combining the estimation results from (4.23) and (4.27), our decision rule of

the proposed estimator for detecting the order of resizing and blurring is

Ĥ =



H0, if PSNR < τ1 and â2 < 0,

H1, if PSNR ≥ τ2,

H2, if PSNR < τ1 and â2 > 0,

H3, if τ1 ≤ PSNR < τ2 and â2 < 0,

H4, if τ1 ≤ PSNR < τ2 and â2 > 0.

(4.28)

In our proposed algorithm, the estimation has two tunable parameters, and thus

θ = (τ1, τ2). Given the estimator and its parameters, we will apply our mutual

information based criteria to simulation results to answer the question of “when can

we and cannot we detect the order of resizing and blurring” in section 4.4.3.

4.4 Simulation Results

In this section, we conduct several simulations to demonstrate the effectiveness

of our information theoretical framework and mutual information based criteria. We

first examine two existing forensic problems, one simple hypothesis problem and one

order detection problem, to verify the correctness of our framework and criteria.

Then, the detection of the order of resizing and blurring is examined to show when

we can and cannot detect the order of these two operations.
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4.4.1 Detect Double JPEG Compression

Since our framework and criteria can be used for general multiple hypotheses

estimation problems, we start with a well know simple hypothesis estimation prob-

lem in forensics, double JPEG compression detection [19,35,44,55,74,76]. We want

to prove that the results obtained from our method match those from published

literature.

To detect double JPEG compression, two hypotheses are considered in the

analysis:

H0 : The image is single JPEG compressed,

H1 : The image is double JPEG compressed.

(4.29)

There are many features that can be used to distinguish these hypotheses [19, 55,

74,76]. All of them can yield over 90% detection rates for most JPEG compression

quality factors. While our framework can be applied to any features and correspond-

ing estimators, we use the first digit feature of DCT coefficients as an example to

see if the results obtained from our framework match those in the existing work [55].

The estimator in [55] was proposed based on the double JPEG compression

fingerprints in the first digit of DCT coefficients. Specifically, If an image is single

JPEG compressed, the first digit of its DCT coefficients obeys a general Benford’s

law:

p(d) = N log10

(
1 +

1

s+ dq

)
, d ∈ {1, 2, ..., 9}, (4.30)

where s and q are model parameters and N is a normalization factor. The first digit
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d of a non-zero integer x is computed as

d =
⌊ x

10⌊log10 x⌋

⌋
, (4.31)

where ⌊·⌋ is the floor rounding operation. If the image is double JPEG compressed,

however, this law will not hold for the first digit of its DCT coefficients.

Given these fingerprints, an estimator for distinguishing hypotheses in (4.29)

can be designed as follows. First, we obtain the normalized histogram of the first

digit of DCT coefficients. Then, we use these statistics to estimate the general

Benford’s law and calculate the sum of squared errors (SSE) between the estimated

distribution and the normalized histogram. The final decision is made by comparing

the mean SSE of the 20 lowest frequency subbands with a tunable threshold θ as

follows [55],

Ĥ =


H0, if mean SSE < θ,

H1, if mean SSE ≥ θ.

(4.32)

In order to determine whether we can detect double JPEG compression, we

first generate a testing database using the 1338 unaltered images from the UCID

database [82]. Specifically, these images are first JPEG compressed by quality factors

from 50 to 95 with step size of 5 to obtain the single JPEG compressed image

database. Then, each of the image in this database is re-compressed by the same

set of quality factors to compose the double JPEG compressed image database. Let

Q1 and Q2 denote the quality factors used in the first and second JPEG compression,

respectively. Then, for each pair of Q1 and Q2, the testing database contains 1338

single compressed images using Q2 and 1338 double compressed images using Q1

then Q2.
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We first assume uniform priors for the two hypotheses as most literatures

do [55, 74]. Then, using (4.4) in definition 3, we can obtain the best parameter θ∗

that yield the highest mutual information between the estimated hypotheses and

the true hypotheses. By checking the conditions (4.12) in definition 4, we determine

whether we can distinguish these two hypotheses for a given pair of Q1 and Q2. The

results of all combinations of Q1 and Q2 are shown in Fig. 4.8(a).

We can see that for most cases, double JPEG compression can be detected by

using the proposed model. This matches the results in [55].

For indistinguishable cases, confused hypotheses are H0 and H1 by definition

5. This means that the conditional fingerprints of JPEG compression given the

operation chain of double JPEG compression do not exist in these cases by definition

7. Specifically, this is because 1) Q1 = Q2, though there are other features that can

be used to deal with this situation [44]; 2) the secondary quantization step size is

a multiple integer of the first quantization step size for most of the extracted DCT

subbands.

Note that we may be able to distinguish more cases if using a support vector

machine (SVM) as the estimator and tune the position of the hyperplane as the

parameters [55].

Then, we consider a general case where we do not know the priors of the

two hypotheses. The best estimator would be determined by (4.5) in definition 3

and we should use the criterion (4.13) in definition 4 to determine whether we can

distinguish the hypotheses. Fig. 4.8(b) shows the results under this assumption.

Since there are fewer constraints on the priors in the case of unknown priors,
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Figure 4.8: Distinguishability test results of detecting double JPEG compression by

applying our information theoretical framework and criteria. (a) priors are known

and uniform. (b) priors are unknown.
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the best estimator can yield higher mutual information in this case than that of

the uniform priors case. Then, the best estimation performance we can get from

unknown priors would be better than that from the uniform priors. Therefore, we

have more distinguishable cases in Fig. 4.8(b) than those in Fig. 4.8(a).

4.4.2 Detect the Order of Resizing and Contrast Enhancement

The next case study we examine is the order detection of resizing and con-

trast enhancement, which contains more than two hypotheses [84]. In this forensic

problem, five hypotheses are considered and needed to be distinguished:

H0 : The image is unaltered,

H1 : The image is resized only,

H2 : The image is contrast enhanced only,

H3 : The image is contrast enhanced then resized,

H4 : The image is resized then contrast enhanced.

(4.33)

The fingerprints of H3 and H4 were found in [84] as follows. If an image

is first resized then contrast enhanced, both fingerprints of resizing and contrast

enhancement can be revealed from the image. However, if an image is first contrast

enhanced then resized, only the fingerprints of resizing can be revealed. Nevertheless,

we can still detect the previously applied contrast enhancement by examining a

down-sampled image of the resized image. This is because that, if the resizing

factor can be represented as a rational number s = a/b such that a, b ∈ N and

are mutually prime, then every a pixel in the resized image will occur at the same

spatial location as a pixel in the original image. Therefore, the resizing operation
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can be reverse engineered by down-sampling the image with factor 1/a. If contrast

enhancement is previously applied, then its fingerprints can be revealed from this

down-sampled image.

Given these fingerprints, a tree structured estimation scheme was proposed

in [84]. First, resizing fingerprints are examined [48]. In this step, the feature

extracted is the maximum derivative of the cumulative periodogram calculated from

the DFT of the p-map. We denote this feature as frs. If frs is greater than a

threshold, denoted as α, it means that resizing has been applied on this image.

Thus, we can estimate the hypothesis as one of {H1, H3, H4}. Otherwise, the image

belongs to either H0 or H2.

If resizing fingerprints have been detected from the image, then we can use the

conditional fingerprints of contrast enhancement given contrast enhancement then

resizing to detect the previously applied contrast enhancement [84]. The feature

extracted is the distance of normalized pixel histograms between the full image and

the down-sampled image with factor 1/a. To obtain a, the resizing factor needs to

be estimated [75], which involves the use of a training database and SVM. Let fcers

denote the feature extracted in this step. If fcers is greater than a threshold λ, then

previously applied contrast enhancement is detected in the resized image. Thus, the

estimated hypothesis is H3. Otherwise, the image belongs to either H1 or H4.

To distinguish H2 from H0 or H4 from H1, the fingerprints of contrast enhance-

ment are examined [86]. The feature is taken from the high frequency components of

the DFT of the normalized pixel histogram. Let fce denote this feature. To distin-

guish {H0, H2}, if fce is greater than a threshold β1, then the image is estimated as
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H2. Otherwise, it is estimated as H0. Similar decision is applied for distinguishing

{H1, H4}, whose threshold is denoted as β2.

In summary, the estimation algorithm is as follows.

Ĥ =



H0, if frs < α and fce < β1,

H1, if frs ≥ α, fcers < λ and fce < β2,

H2, if frs < α and fce > β1,

H3, if frs ≥ α and fcers ≥ λ,

H4, if frs ≥ α, fcers < λ and fce > β2,

(4.34)

There are four tunable parameters and thus θ = (α, λ, β1, β2).

In order to know when we can and cannot detect the order of resizing and

contrast enhancement, we use 1000 images from the UCID database to generate our

test database. The rest 338 images are used to generate the training database for

the resizing factor estimation step. We use gamma corrections with parameter γ

to simulate the contrast enhancement operation [86]. For each γ ∈ {0.5, 0.6, ..., 2}

and s ∈ {0.5, 0.6, ..., 2}, the test database contains: 1000 unaltered images, 1000

resized images with scaling factor s, 1000 contrast enhanced images with gamma

correction parameter γ, 1000 contrast enhanced then resized images, and 1000 re-

sized then contrast enhanced images. Note that for γ = 1 or s = 1, contrast

enhancement or resizing is not actually applied. Thus, we cannot distinguish all

five hypotheses in these cases. To estimate the resizing factor, the training database

for SVM contains 5070 (=338×15) images whose resizing factors are taken from

{0.5, 0.6, ...0.9, 1.1, ..., 2} [75].

We still consider two cases regarding the priors of the considered hypotheses.
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Figure 4.9: Distinguishability test results of detecting the order of resizing and con-

trast enhancement by applying our information theoretical framework and criteria.

(a) Priors are known and uniform. (b) Priors are unknown.
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For uniform priors, the simulation results are shown in Fig. 4.9(a). While for

the cases that we do not know priors, the results are shown in Fig. 4.9(b). As

expected, when we do not have constraints on priors of the hypotheses, we have

more distinguishable cases than that when uniform priors are assumed.

In [84], two examples of resizing factors and gamma correction parameters,

(s = 1.5, γ = 0.5) and (s = 1.25, γ = 0.7), are examined in experiments. Specific

estimation performance for these two pairs of parameters are plotted in five ROC

curves. In both cases, authors in [84] have shown that the proposed estimator can

successfully detect the order of resizing and contrast enhancement. To compare these

results with those obtained by our framework, let us examine the uniform priors case.

From Fig. 4.9(a), we can see that both (s = 1.5, γ = 0.5) and (s = 1.25, γ = 0.7)

are distinguishable points. This shows that the results obtained by our approach

match those in [84].

Besides the two example cases examined in [84], we obtain the detectability

results for the whole range of resizing factors and gamma correction parameters.

From these results, we have found that, though we can detect the order of resizing

and contrast enhancement for most of the cases, there are a few indistinguishable

cases. We examine these cases and use definition 5 to find which hypotheses are con-

fused to make it indistinguishable. In addition, the reasons of why these hypotheses

are confused is summarized as follows by definition 7.

• H2 is confused with H4 for the indistinguishable cases where s = 1.1. This

means that the conditional fingerprints of resizing given resizing then contrast
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enhanced do not exist in these scenarios. The effect of later applied contrast

enhancement on the fingerprints of previously applied resizing is more obvious

as the strength of contrast enhancement increases, i.e., for larger values of

|γ − 1|.

• H3 is confused with H1 or H4 when s = 0.6, 0.9. Given the tree structure of the

estimation algorithm, this is due to the failure of distinguishing H3 from H1

and H4 by the conditional fingerprints of contrast enhancement given contrast

enhancement then resizing. This conditional fingerprints do not exist for these

scenarios either because of the incorrect estimation of the resizing factor or due

to the insufficient number of pixels extracted from the down-sampled image.

4.4.3 Detect the Order of Resizing and Blurring

By applying our information theoretical framework and criteria on double

JPEG compression detection and the order detection of resizing and contrast en-

hancement, we have shown that the results obtained from our proposed framework

match those in existing works. In this section, we examine the order detection of

resizing and blurring and find when we can and cannot detect the order of these two

operations.

For forensic problems examined in previous sections 4.4.1 and 4.4.2, the con-

sidered hypotheses can be distinguished for most of the cases. However, as we have

shown in Fig. 4.2, the order of resizing and blurring is not always detectable. Then,

our framework and criteria can be used to determine when this order can and cannot
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be detected.

In this experiment, we use all 1338 unaltered images in UCID database to

generate the test database. We use Gaussian blur with filter window 5 by 5 and

variance ν to simulate the blurring operation. For each s = {0.5, 0.55, ..., 2} and

ν = {0.5, 0.55, ..., 1}, the test database contains: 1338 unaltered images, 1338 resized

images with scaling factor s, 1338 blurred images with Gaussian variance ν, 1338

blurred then resized images, and 1338 resized then blurred images. The reasonable

range of ν ≤ 1 is obtained by calculating the distortion introduced by blurring using

the structure similarity (SSIM) index [99] and setting the reasonable SSIM measure

as greater that 0.9.

Based on the estimator proposed in section 4.3 with tunable parameters θ =

(τ1, τ2) (4.28), we use our information theoretical framework and criteria to obtain

the distinguishable and indistinguishable cases for different pairs of s and ν. Fig.

4.10(a) and 4.10(b) shows results for the case of uniform priors and the case where

priors are unknown, respectively. Due to the fewer constraints on hypothesis priors,

Fig. 4.10(b) contains more distinguishable cases than Fig. 4.10(a) does.

To understand why we cannot detect the order of resizing and blurring in those

indistinguishable cases, we examine the transition scenarios where distinguishable

cases becomes indistinguishable. That is, we analyze the indistinguishable cases

close to the range of distinguishable cases in Fig. 4.10. By definition 5, we have found

that for most cases, the confusing hypotheses that makes the order indetectable are

H3 and H4 in (4.1). Thus, by definition 7, the reason that we cannot detect the

order of resizing and blurring in these cases is that the fingerprints of blurring then
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Figure 4.10: Distinguishability test results of detecting the order of resizing and

blurring by applying our information theoretical framework and criteria. (a) Priors

are known and uniform. (b) Priors are unknown.

152



resizing and resizing then blurring are the same. This matches the example we have

shown in Fig. 4.2 where the fingerprints in Fig. 4.2(b) and Fig. 4.2(c) are similar.

In addition, we consider a scenario where manipulations are applied on a

compressed image. Then, more than two operations are involved in the analysis.

In this scenario, investigators obtain a JPEG image, and want to distinguish the

following hypotheses:

H0 : It is single compressed,

H1 : It is double compressed interleaved by resizing,

H2 : It is double compressed interleaved by blurring,

H3 : It is double compressed interleaved by

blurring then resizing,

H4 : It is double compressed interleaved by

resizing then blurring.

(4.35)

Fig. 4.11 shows the DFT of the p-map for each of the hypotheses. Since

the blocking artifact also results in peaks in the DFT of the p-map, both finger-

prints of resizing and blurring are weakened by the last applied JPEG compression.

Thus, these five hypotheses are easily confused with each other and may not be

distinguishable based on p-map related features.

4.5 Summary

In this chapter, we proposed an information theoretical framework and mutual

information based criteria to answer the question of when we can and cannot detect
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(a) (b)

(c) (d) (e)

Figure 4.11: The DFT of the p-map of (a) a single JPEG compressed image with

compression quality factor 75, and (b)-(e) double JPEG compressed images with

compression quality factors 75 then 85 and interleaved by (b) reszing, (c) blurring,

(d) blurring then resizing, and (e) resizing then blurring. The same image in Fig.

4.1(a) is examined in this example. Resizing factor is 1.5 and the variance of Gaus-

sian blur is 1. Regions of interests are highlighted by dotted rectangles.
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the order of operations. Specifically, we first formulated the order detection prob-

lems into multiple hypotheses estimation problems. Then, based on a certain set of

estimators, mutual information based criteria were proposed to determine whether

we can distinguish all considered hypotheses. To demonstrate the effectiveness of

our proposed framework and criteria, we first apply them on two existing and de-

tectable problems: double JPEG compression detection and the order detection of

resizing and contrast enhancement. Simulations show that the results obtained by

our framework match with those from existing literatures. Then, the case study

of detecting the order of resizing and blurring is examined, where the order may

not always be detectable. In this case study, we proposed an estimation technique

to detect their order. Based on this estimator, we used our information theoreti-

cal framework and criteria to obtain the detectable cases and find the reasons for

indetectable cases.
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Chapter 5

Fundamental Tradeoffs in Compression Anti-forensics

Due to the wide availability of multimedia editing tools, the authenticity of

multimedia content is often called into question. In order to verify the authenticity

of this content, scientists have developed many forensic techniques to trace the pro-

cessing histories of suspicious multimedia signals [24, 31–33, 50, 58, 59, 77, 86, 88, 94].

Among these techniques, tracing an images compression history has particular foren-

sic significance. This is because detecting previous applications of JPEG compres-

sion in images that are currently stored in uncompressed formats can help the inves-

tigator to identify their origins [31,33]. Furthermore, double or multiple compression

may occur when a compressed image is manipulated, then re-saved in the same for-

mat. As a consequence, detecting double compression or multiple compression can

imply that editing has possibly been applied to the image, thus calling its authen-

ticity into question. There are many forensic tools to detect double and multiple

compressions [5, 7, 19, 35,44,55,64,66,73,74,76].

Given the forensic significance of an image’s compression history, anti-forensic

techniques have been developed in order to confuse forensic detectors [4,26,30,57,81,

87]. These techniques enable a forger to fool forensic investigators through multiple

ways. First, the forger can remove compression fingerprints completely so that the

origin of the image cannot be detected. Furthermore, he/she can then recompress
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the anti-forensically modified image using another quantization table to mislead

the identification of its origin [87]. When double compression occurs while editing a

compressed image, modifying the compression history can also reduce the possibility

of the forgery being detected via compression fingerprints. Additionally, other anti-

forensic techniques have been developed to create forensically undetectable forgeries

[15,49,85,101].

Studying anti-forensics and analyzing forgers’ behavior are equally important

for forensic purpose. Forensic investigators can use this information to improve ex-

isting detectors [40]. Furthermore, based on the specific fingerprints left by applying

anti-forensics, investigators can develop new forensic detectors to reveal the use of

anti-forensics [52,56,98]. Through either way, forensic invesitgators can make their

detection system more robust by analyzing possible anti-forensic techniques.

Often, when anti-forensic techniques are applied, they introduce distortion to

the multimedia content while concealing the fingerprints of manipulation [4, 26, 30,

87]. For example, the authors in [87] remove JPEG compression fingerprints by

adding anti-forensic dither to each DCT coefficient to eliminate quantization finger-

prints. Thus, as the fingerprints are removed, distortion is also introduced to the

DCT coefficients through the dither. In [4,26,30], the fingerprints are concealed by

optimizing a certain cost function under some constraints. While achieving the anti-

forensic performance, the distortion is also introduced to the content, the amount of

which depends on the constraints. In these cases, the forger must balance between

the amount that fingerprints have been concealed and the distortion introduced by

anti-forensic modification.
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Similarly, anti-forensics may also increase the size of the multimedia content

while concealing the fingerprints of manipulation. For example, in order to conceal

the fingerprints of video frame deletion/addition, the authors in [85] increase the P-

frame prediction error to eliminate the periodic characteristic of the fingerprints. As

a consequence, this technique enlarges the file size of the anti-forensically modified

video. In such a case, the forger needs to balance between the degree to which

fingerprints are concealed and the data rate.

While anti-forensic techniques may introduce the two kinds of tradeoffs dis-

cussed above, there is no existing work formally studying either of these tradeoffs.

In fact, when compressing an anti-forensically modified forgery, there is a tradeoff

among how much manipulation fingerprints can be concealed, the data rate, and

distortion introduced into the signal. The forger must balance all three factors to

appropriately decide the strength of his/her operation.

In this chapter, we characterize the tradeoff discussed above. In order to mea-

sure the amount that manipulation fingerprints can be concealed, we define the

effectiveness of concealing these fingerprints as concealability. To demonstrate this

tradeoff in a real anti-forensic system, we introduce the concealability-rate-distortion

(C-R-D) tradeoff in image double JPEG compression anti-forensics. In order to ad-

just concealability, we propose a flexible anti-forensic dither. To reduce the time

and computational complexity associated with decoding a JPEG compressed im-

age, applying anti-forensics, then recompressing it, we introduce an anti-forensic

transcoder capable of efficiently performing these tasks in one step. Through a

series of experiments, we have experimentally characterized the C-R-D tradeoff in
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JPEG anti-forensic systems. We have found that this tradeoff results in two distinct

C-R-D surfaces; one for if the forger uses a lower JPEG quality factor during the

second compression and another for if the forger uses a higher quality factor during

the second compression. Furthermore, we observe two surprising phenomena from

these experiments.

It is worth pointing out the implication of introducing the rate-distortion trade-

off in the field of multimedia forensics and anti-forensics. The rate-distortion tradeoff

has been well studied for image and video compression [70,90]. Both empirical and

theoretical results have been derived to characterize the optimal achievable rate un-

der a certain distortion constraint. Given this tradeoff, one can choose the optimal

compression method according to his/her demands.

Since compression is a necessary signal processing for storage and transmis-

sion, rate-distortion tradeoff has been involved in the analysis of many systems in

different fields. For example, when implementing compression, complexity is an es-

sential factor, and the rate-distortion-complexity tradeoff was studied [37]. When

transmitting the compressed multimedia content through wireless communication

systems, energy consumption needs to be considered, where power-rate-distortion

tradeoff was analyzed [42]. For multimedia attackers, there are works on study-

ing the risk-distortion tradeoff for video collusion attacks [18]. Many anti-forensic

schemes also try to maximize their concealability under some distortion constraint.

However, there is no existing work that considered the rate-distortion tradeoff

when the attack or manipulation was applied on compressed multimedia content,

while this is usually the case when the size of the multimedia signal is big. Thus,
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in this chapter, we introduce the rate-distortion tradeoff to the field of multimedia

forensics and anti-forensics and characterize the C-R-D tradeoff using the double im-

age compression anti-forensics as an example. We believe that the C-R-D tradeoff

also exists for other forensic and anti-forensic systems, like the video frame dele-

tion/addition anti-forensic system.

The rest of the chapter is organized as follows: first, we give an overview of

image compression forensics and anti-forensics in Section 5.1. Then, in Section 5.2,

we give the system model of double compression anti-forensics, and define the three

tradeoff factors, concealability, rate and distortion. In Section 5.3, flexible anti-

forensic dither is proposed for balancing the tradeoff between concealability, rate,

and distortion. Section 5.4 introduces our anti-forensic transcoder, which combines

decompression, flexible anti-forensic dither, and recompression into one process.

Experimental results on the C-R-D tradeoff are shown and discussed in Section 5.5.

Lastly, Section 5.6 summarizes this chapter.

5.1 Background

While our proposed C-R-D tradeoff exists in general image compression anti-

forensic systems, we choose one of the most commonly used compression standards,

JPEG, to characterize the tradeoff and show the effectiveness of our model. This

section reviews the important concepts and techniques of JPEG compression foren-

sics and anti-forensics which will be used in this case. Specifically, we start with a

brief introduction of JPEG compression. Then, as an important set of fingerprints
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in forensics, double JPEG compression fingerprints are discussed. Among those

double JPEG compression forensic detectors, without loss of generality, we choose

one of the most popular and effective techniques to review in the next subsection.

At last, we review the compression anti-forensic technique, which will be a special

case in our proposed flexible anti-forensic scheme.

5.1.1 JPEG Compression

JPEG format is one of the most commonly used formats for images. We

briefly overview the JPEG compression procedure as follows [72]: first, the image is

separated into 8 by 8 blocks. Within each block, discrete cosine transform (DCT)

is applied on the pixel values to obtain the DCT coefficients xij, i, j = 0, 1, ..., 7,

where xij is the coefficient in subband (i, j). Then, quantization is applied on each

DCT coefficient using a quantization table Q, with each element denoted as qij. The

quantized coefficients are

aij = round
(xij

qij

)
, for i, j = 0, 1, . . . , 7. (5.1)

Finally, lossless entropy coding is applied on the quantized DCT coefficients to

obtain the data ready for transmission or storage.

Decompression has the reverse procedure of compression. Yet, it cannot re-

cover the original image due to the lossy quantization process of JPEG compression.

Specifically, during dequantization, the quantized DCT coefficients aij will be multi-

plied by its quantization steps qij to obtain the dequantized coefficients yij = aijqij,

which is different from xij. These dequantized coefficients will instead only have

161



−100 −50 0 50 100
0

100

200

300

400

500

Coefficient Value

H
is

to
gr

am

(a)

−100 −50 0 50 100
0

50

100

150

200

250

300

350

400

Coefficient Value

H
is

to
gr

am

(b)

−100 −50 0 50 100
0

100

200

300

400

500

600

700

Coefficient Value

H
is

to
gr

am

(c)

Figure 5.1: Histograms of DCT coefficients subtracted from sub-band (0,2) of a nat-

ural image been (a) single compressed with specific quantization step 5, (b) doubly

compressed with quantization step 3 followed by 5, and (c) doubly compressed with

quantization step 7 followed by 5.

values of integer multiples of the quantization step. We use the commonly applied

model, Laplace distribution, to model the DCT coefficients in a certain subband

of an uncompressed image [54]. Then, the histogram of the DCT coefficients from

a JPEG compressed image can be modeled as a quantized Laplace distribution.

Fig. 5.1(a) shows an example of the DCT coefficient histogram of a single JPEG

compressed image.

5.1.2 Double JPEG Compression Fingerprints

If a forger modifies a JPEG image, it may be saved as JPEG again after

modification. In such a case, the image has undergone two instances of JPEG

compressions. If the quantization tables used in these two JPEG compressions are

not exactly the same, double JPEG compression fingerprints will be left in the

image. Since double JPEG compression happens in most forgeries, detecting its
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fingerprints is important in forensics to identify the existence of possible forgeries

ever been applied on the image.

To see the double JPEG compression fingerprints, we examine the DCT coef-

ficients of a double JPEG compressed image. Let Q(1) and Q(2) denote the quan-

tization tables used in the first and second JPEG compressions, respectively. Then

the quantized DCT coefficients of this double JPEG compressed image is

bij = round

(
yij

q
(2)
ij

)
= round

(
round

(
xij

q
(1)
ij

)
q
(1)
ij

q
(2)
ij

)
, (5.2)

where q
(1)
ij and q

(2)
ij are elements of Q(1) and Q(2), respectively. If we decompress the

image, the DCT coefficients observed are wij = bijq
(2)
ij .

Although we still observe quantized DCT coefficients with step size q
(2)
ij from

double JPEG compressed images, these coefficients cannot be modeled as quantized

Laplace. During the second quantization, uneven numbers of bins of the single

quantized histogram are collected into the new bins. Thus, the magnitudes of the

double quantized bins will present periodic peaks or zeros [74, 76]. These periodic

characteristics of the DCT coefficient histogram are identified as the fingerprints of

double JPEG compression.

For illustration, let us take a DCT subband where the quantization steps in

two compressions are different. Let q1 and q2 denote the quantization steps in this

subband during the first and second JPEG compressions, respectively. Fig. 5.1(b)

and 5.1(c) show the double JPEG compression fingerprints for q1 < q2 and q1 > q2,

respectively.
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5.1.3 Double JPEG Compression Detection

Due to the forensic significance of double JPEG compression fingerprints, there

are many forensic techniques to detect such trace [19, 35, 44, 55, 64, 66, 73, 74, 76].

Various features are used to identify the double compression fingerprints, such as

the DCT histograms and their Fourier transforms [35,64,73,74,76], the histograms of

the first digit of DCT coefficients [66], and the number of DCT coefficients changed

when recompressing with the same quantization table [44]. Among them, we choose

one of the most popular and best performing detectors in [74] to review and use in

this work.

In [74], Pevný and Fridrich modeled the double JPEG compression detection

problem as a classification of images between two classes:

C1 : The image is single compressed. (5.3)

C2 : The image is double compressed. (5.4)

Given the distinctive fingerprints of double JPEG compression in DCT coefficient

histograms, they took the magnitudes of quantized bins in the histogram as the

feature and fed them to a support vector machine.

Specifically, they chose the low frequency subbands where double JPEG com-

pression fingerprints are most obvious. For each subband, the numbers of occur-

rences at integer multiples of q2 were counted, where q2 is the quantization step in

the second compression. The feature vector was composed by concatenating the
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data from all chosen subbands:

v =

{
1

cij

(
hij(0), hij(1), . . . , hij(15)

)∣∣∣(i, j) ∈ L
}
, (5.5)

where hij(m) denotes the number of occurrences at ±mq2 in subband (i, j), and

cij is a normalization constant, i.e., cij =
∑15

m=0 hij(m). The set of low frequency

subbands was chosen as

L =
{
(1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (0, 3)

}
. (5.6)

Given the feature vector v described above, the classification was done by

using a soft-margin support vector machine with the Gaussian kernel [10] k(x, y) =

exp(−γ||x − y||2). k(x, y), also known as radial basis function, is a popular kernel

function used in SVM classification. It can be interpreted as a similarity measure

between two feature vector samples x and y. γ is a free parameter, which defaultly

equals to 1/num features in LIBSVM open source machine learning library.

5.1.4 JPEG Compression Anti-Forensics

There are also anti-forensic techniques that can falsify the image compression

history and confuse the forensic detectors [26, 30, 57, 87]. Among them, we choose

one of the most popular techniques in [87], which can successfully attack the forensic

detector in [74], for illustration in this work. Yet, the applicability of other anti-

forensic techniques will also be discussed. In [87], single quantized DCT coefficients

were added pre-designed dither so that the histogram will be smooth and look like

the one from an uncompressed image. Then, when the forger modifies a JPEG
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image, as long as the traces of the first compression are removed, the recompressed

image will only present single compression fingerprints. In this way, the forger can

escape the forensic detection of double JPEG compression.

We briefly review the anti-forensic scheme proposed in [87] as follows: let

random variable X denote the DCT coefficient of a certain sub-band (i, j) from

an uncompressed image. f(x, λ) is the modeled Laplace distribution of X with

parameter λ, i.e.,

P(X = x) = f(x, λ) =
λ

2
e−λ|x|. (5.7)

After JPEG compression, let Y denote the DCT coefficient of a JPEG compressed

image and its distribution will be a quantized Laplace:

P(Y = kq) =


1− e−λq/2 if k = 0,

e−λ|kq| sinh(λq
2
) otherwise,

(5.8)

where q is the quantization step and k ∈ Z. Then, in order to remove the fingerprints

of JPEG compression, an anti-forensic dither, denoted as D, is added on the DCT

coefficients of the JPEG compressed image. The resulting anti-forensically modified

coefficients are Z = Y + D. Given a carefully designed anti-forensic dither, the

distribution of Z can be equal to that of X. The distribution of the anti-forensic

dither D in [87] is given by

P(D = d|Y = kq) =
f(kq + d, λ̂)∫ (k+

1
2
)q

(k−1
2
)q

f(x, λ̂)dx

1(− q
2
≤ d < q

2
), (5.9)

where λ̂ is the estimated parameter using coefficients Y and 1(·) is an indicator

function.
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Figure 5.2: The system model considered in this chapter.

5.2 Concealability-Rate-Distortion Tradeoff

In this chapter, we assume that the forger wishes to recompress an image

that has previously been JPEG compressed. This may happen under a variety of

scenarios. For example, a forger may wish to falsify the content of the image. In

this case, the forger must decompress the image, perform some manipulation, then

recompress the image. Alternatively, if the forger does not wish to alter the content

of the image but just wishes to falsify its origin, they must recompress the image

using the quantization matrix used by the target camera [87]. In both scenarios,

standard recompression will cause double JPEG fingerprints to occur.

To analyze both of these scenarios, we adopt the following system shown in Fig.

5.2. First, the forger receives a JPEG compressed image, which we refer to as the

unaltered image. The forger will then decompress the image and perform any desired

image manipulation. After this, they will apply anti-forensics to remove JPEG

compression fingerprints, then recompress the image using their desired compression

parameters. During this process, the forger is able to adjust the strength with

which they apply anti-forensics, as well as the quality factor or quantization tables

used during compression. Because we are interested primarily in characterizing
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the tradeoff among rate, distortion and the amount of double JPEG compression

fingerprints that can be concealed, we neglect any effects caused by other possible

manipulations for the purposes of this work.

Intuitively, when a forger applies anti-forensic techniques, he/she must balance

a tradeoff between the amount of double JPEG compression fingerprints that can

be concealed and the distortion introduced by anti-forensic modification. The forger

can vary the anti-forensic strength to adjust the amount of modification caused by

the anti-forensic technique, and thus balance this tradeoff. When recompressing the

forgery, there is a well-known tradeoff between the data rate and the distortion. In

addition, since anti-forensics modifies the distribution of the DCT coefficients, it is

possible that it can also affect the data rate during recompression. On the other

hand, the performance of double JPEG compression detection depends on the rela-

tionship between the primary and the secondary quality factor. Thus, the secondary

quality factor may also affect the possibility that the double JPEG compression will

be detected. In other words, the amount of double JPEG compression fingerprints

that can be concealed is also affected by the secondary quality factor.

Therefore, the amount of double JPEG compression fingerprints that can be

concealed, the data rate, and the distortion are all related in the system. Adjusting

either the strength of anti-forensics or the quality factor in recompression process

will result in change of all three factors. Therefore, in order to achieve a certain

requirement, the forger must balance the tradeoff among these three factors.

We note that, given the existence of many compression anti-forensic detectors,

i.e., counter anti-forensic schemes, [52, 56, 98], our system model can be extended
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to include their effect in the following ways: 1) generalize the definition of conceal-

ability by including the amount of anti-forensic fingerprints that can be concealed

2) introduce another dimension in the tradeoff to reflect the detectability of anti-

forensic techniques.

In order to characterize the tradeoff between how much the double JPEG

compression fingerprints can be concealed, the data rate, and the distortion, we

first define the term concealability as the measure of how much the fingerprints

can be concealed. Since the accuracy of a detector is one measure of how well the

fingerprints have been concealed, we define concealability in terms of the detection

rate.

When detecting manipulation fingerprints, a simple hypothesis test is often

used, where two hypotheses are defined as

H0 : Manipulation fingerprints do not present.

H1 : Manipulation fingerprints do present.

A forensic investigator will apply a certain decision rule to a suspicious signal to

determine which hypothesis it belongs to. The decision rule results in a probability

that the fingerprints are correctly detected, which is called the detection rate; and

a probability that an unmanipulated signal is identified as a falsified one, which is

called the false alarm rate. Different decision rules often results in different pairs

of detection rates and false alarm rates. A receiver operating characteristic (ROC)

curve plotting all reachable pairs of detection rates and false alarm rates character-

izes the overall performance of the detector.
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We define concealability as follows: let I denote the image edited by the

forger. Let function m(·) be the modification made by the forger. Then, m(I) is

the forger modified image. In the system describe in Fig. 5.2, I represents the

single compressed JPEG image and m(I) represents the double JPEG compressed

and anti-forensically modified image. For a given detector and a certain false alarm

rate Pf , there is a corresponding decision rule δPf
(·). Then the concealability of the

forger edited image m(I) is defined as

C(m,Pf ) = min

(
1− P

(
δPf

(
m(I)

)
= H1

)
1− Pf

, 1

)
. (5.10)

We explain the definition of concealability by using ROC curves, as it is shown

in Fig. 5.3. When no anti-forensics has been applied, the best performance of a

forensic detector is perfect detection. That is, the detector can achieve detection rate

of 100% at false alarm rate of 0%. Under this scenario, manipulation fingerprints

can be detected without any error, and we say that the fingerprints have been

fully exposed to the investigators. Thus, the concealability in this case will be its

minimum value 0.

On the other hand, if anti-forensics are applied, it will reduce the accuracy of

the forensic detector and increase the false alarm rate. Such degradation reaches

its maximum when the detection rate becomes the same as the false alarm rate. In

this case, the detector will act as an equal probability random decision process, i.e.,

the decision is made equivalently to randomly flipping a coin. Under this scenario,

forger edited images will have no difference with those that have no been edited by

the forger. Thus, we say that manipulation fingerprints have been fully concealed to
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Figure 5.3: Examples of concealabilities related to ROC curves. When the detector

achieves perfect detection, the forger has concealability of the fingerprints as 0.

When the ROC curve is at or below the random decision line, we say that the

forger has achieved concealability as 1. Then for those ROC curves between perfect

detection and random decision, the concealability ranges from 0 to 1 and depends

on a certain false alarm rate.
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the forensic investigators. We define the concealability in this case as its maximum

value 1. We note that since the forensic detection strategy is determined regardless

of the possible existence of anti-forensic technique, one may obtain a ROC curve

below the random decision line, where detection rates equal to false alarm rates.

However, because this scenario also implies that the forger has fully concealed the

fingerprints, we define the concealability in such case also as 1.

For scenarios between these extreme cases, the concealability is defined as a

measure dependent on the false alarm rate. Since it is inversely proportional to

the detection rate and the value is limited between 0 and 1, we use a normalized

decreasing function of the detection rate 1−Pd

1−Pf
to characterize the concealability at

a certain false alarm rate.

To evaluate the distortion, we define a measure that is based on the mean

structural similarity (MSSIM) between the image that has not been edited by the

forger and the one after the forger’s editing [99]. MSSIM is a popular similarity

measure between 0 and 1 that matches well with human perception. In order to

let the distortion equal to zero when the two images are identical, i.e., when the

similarity is 0, we define the distortion between I and m(I) as

D(m) = 1−MSSIM
(
I,m(I)

)
. (5.11)

We note that similar results can be obtained for other measures of distortion such

as mean square error (MSE), which will be shown in simulation results.

Lastly, we use bits per pixel as the measure of rate. Specifically, the rate is

calculated by examining the size of the forger edited image and dividing it by the
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number of pixels in that image:

R(m) =
number of bits of m(I)

number of pixels in m(I)
. (5.12)

5.3 Flexible Anti-Forensic Dither

In order to balance the tradeoff of concealability and distortion during the

anti-forensic process, the forger needs to vary the strength of anti-forensics. Though

there exists anti-forensic techniques to fully conceal the fingerprints of double JPEG

compression [4, 26, 30, 87], these techniques do not provide the flexibility to control

the strength of anti-forensics. However, in order to characterize the C-R-D tradeoff

and find the best choice, flexible anti-forensic schemes are necessary. In this section,

we propose a flexible anti-forensic dither for the technique in [87] that enables the

forger to adjust the strength of anti-forensics. Similar concept can be applied on

other anti-forensic techniques, which we will discuss in the end of this section.

As we discussed in section 5.1, double JPEG compression fingerprints are

presented in DCT coefficients. Thus, in order to remove the fingerprints, our flexible

anti-forensic dither will also be applied on DCT coefficients. To develop flexible

dither, let us examine the procedure that a DCT coefficient in a certain subband of

an image will go through during the whole process described in Fig. 5.2. First of

all, the unaltered image will go through its first JPEG compression. Let q1 denote

the quantization step of the examined subband used in this compression. Then, the

DCT coefficient of the single compressed image is obtained by

Y = q1 round(X/q1). (5.13)
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We assume that X obeys a Laplace distribution (5.7). Thus, Y will be distributed

as a quantized Laplace distribution with quantization step size q1.

Secondly, the flexible anti-forensic dither is applied on Y . Let α denote the

anti-forensic strength. We define that 0 ≤ α ≤ 1. The corresponding flexible

anti-forensic dither is denoted as Dα. Thus, the anti-forensically modified DCT

coefficient becomes to

Zα = Y +Dα. (5.14)

Lastly, after recompressing Zα with a quantization step q2, the double JPEG com-

pressed and anti-forensically modified DCT coefficient is

Wα = q2 round(Zα/q2). (5.15)

If no anti-forensics has been applied, which means that the anti-forensic strength

is 0, then W0 = q2 round(Y/q2). The histogram of W0 will present the fingerprints

of double JPEG compression, as it is shown in Fig. 5.1(b) or Fig. 5.1(c). The

periodic peaks or zeros in the histogram distinguish W0 from those of single com-

pressed images, who have quantized Laplace distribution shape as shown in Fig.

5.1(a). Thus, by measuring the distance between the normalized histogram of W0

and the quantized Laplace distribution, forensic analysts can detect double JPEG

compression.

If anti-forensics are fully applied, as it is the case in [87], the anti-forensic

strength is 1, and the distribution of D1 is the same as (5.9) with q substituted with

q1. Then, the distribution of Y will be the same as that of X. Consequently, the dis-

tribution of W1 will be a quantized Laplace distribution. In such a case, the double
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JPEG compressed and anti-forensically modified image is hard to be distinguished

from single JPEG compressed images through DCT coefficient histograms.

When anti-forensic strength is not applied in full, we can reduce the anti-

forensic distortion by sacrificing the exposure of fingerprints to the forensic detector.

That is, the histogram of Wα will be less like a quantized Laplace distribution

when less anti-forensic strength is applied. By examining (5.9), we can see that the

distribution of the dither D1 has a bounded support [−q1/2, q1/2). The shape of this

distribution is a normalized and shifted version of the target distribution f(x, λ̂) on

support
[
(k − 1/2)q1, (k + 1/2)q1

)
with left shifting of kq1. Such design is to make

the conditional probability P(Z1 = z|Y = kq1) be the same as f(z, λ̂) normalized

by P(Y = kq1) with z ∈ [kq1 − q1/2, kq1 + q1/2). Then, with Y taken all integer

multiplies of q1, the distribution of Z1 will be the same as f(z, λ̂).

When α < 1, we shrink the support of the anti-forensic dither to decrease

distortion. Meanwhile, the similarity between the distribution of Zα and f(z, λ̂) will

be reduced. We note that because of the shrink of the dither’s support, the anti-

forensically dithered coefficients will not spread out the entire quantization interval.

Consequently, the support of the histogram of the anti-forensically modified image

before recompression will not match the support of the histogram of an uncom-

pressed image. Nevertheless, the image will be recompressed, where all coefficients

are requantized to integer multiples of the new quantization step. The use of anti-

forensic dither can cause some coefficients that would normally get quantized to lq2

to instead be mapped to (l−1)q2 or (l+1)q2. In this way, the strength of the double

compression fingerprints are weakened by the anti-forensic dither.
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Let S
(k)
α denote the support of Zα given Y = kq1, which means that the support

of Dα is S
(k)
α left shifted by kq1. Then the range of S

(k)
α will be decreased when less

anti-forensic strength is applied, i.e., α decreases. We will give the explicit expression

of S
(k)
α in later paragraphs. We still take the shape of the dither’s distribution to

be a normalized and shifted version of f(x, λ̂). The distribution of the flexible

anti-forensic dither is proposed as

P(Dα = d|Y = kq1) =
f(kq1 + d, λ̂)∫
S
(k)
α

f(x, λ̂)dx
1
(
kq1 + d ∈ S(k)

α

)
. (5.16)

We define S
(k)
1 as

S
(k)
1 =

{
t ∈ R

∣∣(k − 1
2
)q1 ≤ t < (k + 1

2
)q1
}
, (5.17)

then (5.9) becomes a special case of (5.16). By our definition, S
(k)
0 is the support

of Z0 given Y = kq1, which results in W0. However, due to the second compression

described by (5.15), there are multiple choices of S
(k)
0 which can lead to the same

W0 after requantization. Specifically, let lq2 be the quantized bin that Y = kq1 will

be mapped into during the second compression, i.e.,

l = round

(
kq1
q2

)
. (5.18)

Then, any dither within the range
[
(l − 1/2)q2, (l + 1/2)q2

)
will be mapped into

the same bin lq2. We define S
(k)
0 as the one that has the largest range while any

dither within this support will be mapped into the same W0 = lq2. In addition, the

property of S
(k)
α needs to be satisfied, i.e., S

(k)
0 ⊆ S

(k)
1 . Thus, the expression of S

(k)
0

is given as

S
(k)
0 =

{
t ∈ S

(k)
1

∣∣(l − 1
2
)q2 ≤ t < (l + 1

2
)q2
}
. (5.19)
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Figure 5.4: An illustration of how to determine S
(k)
0 and S

(k)
1 for a certain value

of Y = kq1. The vertical arrows denote the position of a certain quantized bin

in the coefficient histogram. The horizontal line segment at the bottom of each

arrow represents the quantization interval where all values within this range will be

mapped into the quantized bin indicated by the arrow. lq2 is the quantized bin that

kq1 will be mapped into during the recompression. According to different positions

of lq2 and its quantization intervals, there are four cases for S
(k)
0 , while S

(k)
1 keeps

the same for the same kq1.
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Fig. 5.4 shows an illustration of how to find S
(k)
0 and S

(k)
1 for a certain quan-

tized bin Y = kq1. Four cases are listed in the figure regarding the relative po-

sitions of the quantization intervals of Y in the first compression and W0 = lq2

in the second compression. Basically, S
(k)
0 is the intersection between the intervals[

(k − 1
2
)q1, (k + 1

2
)q1
)
and

[
(l − 1

2
)q2, (l +

1
2
)q2
)
.

Given the extreme cases of S
(k)
α when α = 0 and α = 1, we pick up S

(k)
α , 0 <

α < 1, from the convex hull of the supports of S
(k)
0 and S

(k)
1 . Formally, let bα,1 and

bα,2 be the lower and upper bounds of support set S
(k)
α , respectively. We have the

extreme cases

b0,1 = max
(
(k − 1

2
)q1, (l − 1

2
)q2
)
, b1,1 = (k − 1

2
)q1,

b0,2 = min
(
(k + 1

2
)q1, (l +

1
2
)q2
)
, b1,2 = (k + 1

2
)q1. (5.20)

Then, S
(k)
α , 0 < α < 1 is defined as

S(k)
α =

{
t ∈ R

∣∣bα,1 ≤ t < bα,2
}
,

where

bα,j = (1− α)b0,j + αb1,j, for j = 1, 2. (5.21)

Using (5.21) and (5.16), our flexible anti-forensic dither can be generated from

this pre-determined distribution.

The flexible anti-forensic scheme can be summarized as follows:

1. Obtain DCT coefficients by decompressing the single compressed image for all

subbands.
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2. In each subband, estimate the parameter λ̂ of the Laplace distribution function

f(x, λ̂) using Y statistics [87].

3. For a certain anti-forensic strength α, calculate S
(k)
α and P(Dα = d|Y = kq1)

for each kq1 using (5.21) and (5.16).

4. For each Y = kq1, randomly generate a value of Dα from the distribution

function (5.16), and add it to Y to obtain Zα.

5. Obtain the anti-forensically modified image by modifying all coefficients in all

subbands and mapping them to pixel domain.

We note that the concealability-distortion tradeoff also occurs in other anti-

forensic techniques, where the forger can vary the anti-forensic strength to balance

them [4, 26, 30, 57]. In [30], the authors modified pixel values of an image to con-

ceal JPEG compression fingerprints. Specifically, they minimized the total variance

and variance difference between boundary areas and interior areas of blocks while

limiting the modified DCT coefficients in a distortion constraint set. The smaller

the minimized function is, the higher the concealability will be. Then, by shrinking

the range of the constraint set, less distortion is allowed to be introduced to the

image, but a larger minimized function will be obtained, and thus concealability de-

creases. Techniques in [4, 26] concealed manipulation fingerprints by modifying the

manipulated histogram to one that is closest to an unaltered histogram under some

distortion constraints. Similarly, by varying the distortion constraints, the forger is

able to vary how close the anti-forensically modified histogram is to an unaltered

one, and thus vary the concealability. Lastly, in [57], the fingerprints of double
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JPEG compression with the same quantization table were concealed by modifying

the DCT coefficients in textural regions. Then, the less the DCT coefficients were

modified, the less distortion it introduces to the image. However, the fingerprints

are less concealed, and thus concealability becomes smaller. In all cases, the tradeoff

between concealability and distortion exists and flexible anti-forensic techniques can

be applied to characterize them.

5.4 Anti-Forensic Transcoder

As a post-processing technique, anti-forensic dither can be used whenever a

forgery needs to be recompressed without leaving double JPEG compression finger-

prints. Yet, there are some cases, for example when modifying the quantization table

of the compressed image, where the forger simply wants to recompress the JPEG

image without performing other manipulations. In such cases, the forger do not need

to decompress the JPEG image, apply anti-forensic dither, and then recompress the

image. Instead, the forger can use an integrated anti-forensic transcoder to directly

falsifies the DCT coefficients from the JPEG file and transcodes them into the co-

efficients associated with another quantization table while no double compression

fingerprints will be detected. In this section, we propose this anti-forensic transcoder

to reduce the time and computational complexity associated with decompressing a

JPEG image, applying anti-forensics, then recompressing it, and efficiently perform

all these tasks in one step.

To propose this anti-forensic transcoder, let us review the modifications of
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Figure 5.5: Histograms of DCT coefficients of an anti-forensically modified and

double compressed image with anti-forensic strength (a) α = 0, (b) α = 0.4, and (c)

α = 1.

DCT coefficients made by the anti-forensic dither and recompression. As described

in Section 5.3, the decompressed DCT coefficient Y will be added with the anti-

forensic dither Dα to obtain the anti-forensically modified coefficient Zα. This mod-

ification dithers each Y = kq1 to some nearby values. When we examine the coef-

ficients’ histogram, we will see that the anti-forensic dither spreads each quantized

bin within a certain range. Then, Zα will be mapped into pixel domain where re-

compression is applied. During recompression, Zα is again transformed into DCT

domain and then quantized. In quantization process, some of the dithered values

will be mapped into one bin while some of them may be mapped into other bins.

Thus, even though these dithered coefficients are all coming from the same value of

Y = kq1, they will be mapped into different values of Wα = jq2, jmin ≤ j ≤ jmax.

If we figure out what portions of coefficients valued as Y = kq1 will be mapped

into Wα = jq2, jmin ≤ j ≤ jmax, we can then directly map some of the coefficients

Y = kq1 to one of Wα without the intermediate state of Zα. Different anti-forensic

strengths will affect these portions and also the range that kq1 will be mapped into,
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i.e., jmin and jmax.

Fig. 5.5 shows the transition of the histograms of Wα when increasing the

anti-forensic strength. When no anti-forensics is applied, each Y = kq1 can only be

mapped into one bin valued as W0 = lq2 during the second quantization. Without

loss of generality, we consider the case where q1 > q2. Then, some integer multiples

of q2 may even not have corresponding coefficients. This results in those nearly zero

bins in Fig. 5.5(a). With anti-forensics applied, some of the coefficients valued as

kq1 can be mapped into nearby bins other than the lq2 bin. Thus, those nearly zero

bins can be gradually filled up by its neighboring bins to finally obtain the quantized

Laplace shape histogram, as it is shown in Fig. 5.5(b) and Fig. 5.5(c).

We derive the direct map between Y and Wα using the intermediate state Zα

described in Section 5.3. First, we decide the range that kq1 can be mapped into.

Recall that S
(k)
α is the support of Zα given Y = kq1. Thus, when quantizing Zα to

obtain Wα = jq2, all candidates of j will be bounded by

jmin = round

(
bα,1
q2

)
,

jmax = round

(
bα,2
q2

)
. (5.22)

Next, we let γkj denote the probability that the anti-forensic transcoder maps

a coefficient valued as kq1 to jq2. Then, we can describe the mapping of the anti-

forensic transcoder on DCT coefficients by using the following transition probability

function,

P(Wα = jq2|Y = kq1) =


γkj if jmin ≤ j ≤ jmax,

0 otherwise.

(5.23)
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The value of γkj depends on the extent that the anti-forensic dither spreads

the single bin kq1, which is also determined by the anti-forensic strength. From

(5.16) and (5.14), we have

P(Zα = z|Y = kq1) =
f(z, λ̂)∫

S
(k)
α

f(x, λ̂)dx
1
(
z ∈ S(k)

α

)
. (5.24)

When quantizing Zα, those values belonging to the range
[
(j − 1

2
)q2, (j +

1
2
)q2
)
will

be mapped to valueWα = jq2. Let Rj denote this quantization interval forW = jq2,

i.e.,

Rj =
{
t ∈ R|(j − 1/2)q2 ≤ t < (j + 1/2)q2

}
. (5.25)

Then, we have

γkj = P(Wα = jq2|Y = kq1)

=

∫
Rj

P(Zα = z|Y = kq1)dz

=

∫
S
(k)
α ∩Rj

f(z, λ̂)dz∫
S
(k)
α

f(x, λ̂)dx
(5.26)

Given jmin, jmax, and γkj well defined by (5.22) and (5.26), the anti-forensic

transcoder can be described as follows: Let U be a uniformly distributed ran-

dom variable within [0, 1). Then, for a coefficient valued as kq1, the anti-forensic

transcoder with anti-forensic strength α will map it to

Wα =

jmax∑
j=jmin

jq21(

j−1∑
t=jmin

γkt ≤ U <

j∑
t=jmin

γkt), (5.27)

where
∑j−1

t=jmin
γkt = 0 when j = jmin.

We summarize the anti-forensic transcoder as follows:

1. Obtain DCT coefficients by directly reading the JPEG file.
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2. In each subband, estimate the parameter λ̂ of the Laplace distribution function

f(x, λ̂) using Y statistics [87].

3. For a certain anti-forensic strength α, calculate jmin, jmax, and γkj using (5.22)

and (5.26).

4. For each Y = kq1, transcode it to Wα according to equation (5.27).

5. Apply lossless entropy coding similar as that used in JPEG compression to

obtain the undetectable double JPEG compressed file.

We note that, for a certain anti-forensic strength and recompression quanti-

zation table, by either applying the anti-forensic dither and then recompressing, or

directly applying the anti-forensic dither, the forger can obtain the same double

JPEG compressed and anti-forensically modified image file.

5.5 Simulation Results and Analysis

In order to characterize the C-R-D tradeoff, we set up an experiment to obtain

the reachable C-R-D values. We used the flexible anti-forensic dither to apply anti-

forensics with adjustable strength. During the experiment, different strengths of

anti-forensics and different quality factors of the recompression were used. Then,

based on the data, we characterized the tradeoff using polynomial surfaces. Two

surprising results were found during the analysis of the simulation results.
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5.5.1 Two C-R-D Tradeoffs Revealed From Simulation

To experimentally characterize the C-R-D surface, we compressed, then anti-

forensically modified and recompressed a set of images using a variety of JPEG

quality factors and anti-forensic strengths. We then measured the concealability,

rate, and distortion of each pairing of quality factor and anti-forensic strength, and

used the resulting data to characterize the C-R-D surface.

We set up the simulation database based on the 1300 natural unaltered images

from UCID database [82]. We examine the behavior of the forger, who can vary

the anti-forensic strength and the quality factor of the recompression. So we fixed

the first quality factor Q1 = 75, and varied the secondary quality factor Q2 from 60

to 90 with incremental interval 1. Then, we took 1000 unaltered images from the

UCID database and JPEG compress each one using quality factors Q2 to build the

single compressed image database for training. The training database of double com-

pressed images were obtained by compressing the same 1000 unaltered images using

quality factor 75 and then recompressing them using secondary quality factors Q2.

Thus, the training database in our simulation contained 1000× 31× 2 = 62000 im-

ages. Our testing database involved single compressed images, double compressed

images and double compressed but anti-forensically modified images. The single

compressed images for testing were composed by compressing the rest 300 unal-

tered images from the UCID database using quality factors Q2. The double com-

pressed images and double compressed but anti-forensically modified images were

obtained by first compressing the same 300 unaltered images using quality factor
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75, then applying anti-forensic dithers with strengths taken from range [0, 1], and

lastly recompressing them using secondary quality factors Q2. We used 11 different

anti-forensic strengths from [0, 1] for each secondary quality factor. Therefore, we

finally built up a testing database containing 300× (31+31× 11) = 111600 images.

The numbers of images used in our experiment are summarized in Table 5.1.

Table 5.1: Numbers of images in (a) training database and (b) testing database that

were used in our experiment.

(a)

# of different # of Total # of

image content different Q2 images

H0 1000 31 31000

H1 1000 31 31000

(b)

# of different # of # of Total # of

image content different Q2 different α images

H0 300 31 1 9300

H1 300 31 11 102300

In order to characterize the C-R-D tradeoff, we calculate the concealability,

rate, and distortion for each pair of anti-forensic strength and secondary quality

factor. The detection technique described in Section 5.1.3 developed by Pevný et al.
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Figure 5.6: Concealability, rate, and distortion triples for all tested anti-forensic

strengths and secondary quality factors with distortion defined based on (a) MSSIM

in (5.11) and (b) MSE.
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was used to perform double JPEG compression detection. Different detectors were

trained for each secondary quality factor using images from the training database

described in the above paragraph. The false alarm rate is taken as 5%. Rate

and distortion are calculated as the mean values of all the testing images with the

same anti-forensic strength and secondary quality factor. Besides using (5.11) to

calculate distortion, we also calculated mean square errors as an illustration of the

results by applying other distortion measures. Based on the concealabilities, rates,

and distortions obtained for different anti-forensic strengths and secondary quality

factors, we plot each triple of concealability, rate, and distortion as a point in three

dimensional figures in Fig. 5.6. Fig. 5.6(a) shows the tradeoff for using our definition

of distortion in (5.11), and Fig. 5.6(b) is the tradeoff when we measure the distortion

using the mean square error.

We find that, in both figures of Fig. 5.6, the points are separated into two

surfaces. The lower surface is composed by the points where the secondary quality

factor is lower than the primary quality factor. We call the tradeoff described by

them as the lower quality factor tradeoff. The higher surface contains the points

where the secondary quality factor is higher than the primary quality factor. This

tradeoff is called the higher quality factor tradeoff. We note that the authors in

[98] have found the similar phenomenon about separated cases for lower quality

factors and higher quality factors when they studied the counter detector of the

anti-forensic dither. Yet, they only considered the change on distortion, while our

work characterizes the whole C-R-D tradeoff. We will study these two tradeoffs

separately in the following two subsections. For the sake of space limitation, we
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only give the detailed analysis to Fig. 5.6(a), while the other one can be analyzed

similarly.

5.5.2 C-R-D Tradeoff for Lower Secondary Quality Factors

To characterize the C-R-D tradeoff for lower secondary quality factors, we

plot those triple points obtained by using lower secondary quality factors in Fig.

5.7(a). Different markers represent different secondary quality factors. Each marker

has several points obtained by using different anti-forensic strengths. Among them,

the one with higher concealability implies that more anti-forensic strength has been

applied to get this point. It is easy to see that increasing anti-forensic strength will

increase concealability but also introduce more distortion.

Since anti-forensic dither adds noise to DCT coefficients, and typically a noisy

signal is harder to be compressed, we would expect to get a higher rate when applying

anti-forensics. However, we surprisingly find that, in the case of a lower secondary

quality factor, applying anti-forensics will actually decrease the rate. We use a 2-D

figure to more explicitly present this surprising result in Fig. 5.8.

This phenomenon happens due to the entropy coding procedure of JPEG com-

pression. When quantization table is fixed, the rate of the compressed image depends

on the entropy of the DCT coefficients. Since the coefficient histogram describes its

probability density function, we can use the normalized histogram to compare the

entropy. Furthermore, when the normalized histogram is closer to the uniform dis-

tribution, it implies a higher entropy of the coefficient. With anti-forensics applied
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Figure 5.7: Tradeoff of concealability, rate, and distortion for the case where the

second quality factor is smaller than the first one. (a) plots the reachable (C,R,D)

points, where the points with the same marker and color are those who have the same

secondary compression quality factor but have been applied different anti-forensic

strengths. The higher the concealability, the more the anti-forensic strength. (b) is

the polynominal fitting surface of (a).
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Figure 5.8: Rate changes with anti-forensic strength for lower secondary quality

factor case.

to the double compressed image, it gradually changes the coefficient histogram from

a double compressed histogram to a single compressed one. Thus, we can compare

the entropies of these two cases to see how does anti-forensics affect the rate. Re-

call the typical coefficient histograms for single compressed and double compressed

images shown in Fig. 5.1. It is easy to see that the entropy of the single compressed

coefficient (histogram is shown in Fig. 5.1(a)) is less than that of the double com-

pressed one for lower quality factor case (histogram is shown in Fig. 5.1(b)), where

q2 > q1, i.e., Q2 < Q1. Thus, when anti-forensics change the histogram from the

double compressed one to the single compressed one, it decreases the rate. However,

similar argument implies that the result will be reversed for higher secondary quality

factor scenario.

Next, we characterize the lower secondary quality factor tradeoff using a poly-
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nomial surface, as it is shown in Fig. 5.7(b). The expression for the surface is

R = 0.1018 + 0.0088C − 0.238D − 0.0025C2 − 0.1037CD − 2.771D2,(5.28)

where C, R, and D are concealability, rate, and distortion calculated from (5.10),

(5.12), and (5.11), respectively. We obtain this equation by modeling R as a poly-

nomial function of C and D. Then, we varied the degrees of freedom on both C and

D to obtain the best fitting that yielding the minimum fitting error. We used the

curve fitting toolbox in Matlab to implement this process. Similar approaches will

be applied to obtain the tradeoff surfaces for the higher secondary quality factor

case.

In (5.28), for a fixed C, R decreases with D, which matches the property of

conventional R−D curve. The C −D tradeoff for a certain R is that increasing C

will increase D. When D is fixed, by a little calculation on (5.28) we find that for

most of the cases where D < 0.037, R increases with C. In this case, there exists

a R − C tradeoff, where increasing concealability will increase the rate. We note

that this R−C tradeoff is different from our previously mentioned surprising result,

where increasing anti-forensic strength results in increase on the concealability and

decrease on the rate. The former is a tradeoff for a certain distortion value, while

the latter implies changes on distortion with the increase of anti-forensic strength.

5.5.3 C-R-D Tradeoff for Higher Secondary Quality Factors

To characterize the C-R-D tradeoff for higher secondary quality factors, we

plot the rest triple points obtained by using higher secondary quality factors in Fig.
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Figure 5.9: Tradeoff of concealability, rate, and distortion for the higher secondary

quality factor case. (a) plots the R-D-C points. Points with the same marker

and same color are those obtained by using the same secondary quality factor but

different anti-forensic strengths. (b) is the polynominal fitting surfaces of (a).
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5.9(a). Again, different markers represent different secondary quality factors. Each

marker has several points obtained by using different anti-forensic strengths. Among

them, the one with higher concealability implies that more anti-forensic strength has

been applied to get this point. In this tradeoff, the reachable points of concealability,

rate, and distortion depict three surfaces, which we use polynomial surfaces to fit.

As it is shown in Fig. 5.9(b), the main tradeoff surface for higher secondary

quality factor is expressed as

R = 0.1146− 0.0038C + 0.5474D − 0.15CD + 3.738D2. (5.29)

In this tradeoff, the R − D tradeoff for a certain C is that the increase rate will

also increase distortion. It is inconsistent with the conventional R − D tradeoff,

where distortion is reduced by the increase of data rate. This phenomenon happens

due to the fact that, in higher secondary quality factor case, anti-forensic modifica-

tion introduces much more distortion than recompression. Specifically, when using

higher secondary quality factors, as the quality factor increases, double compression

fingerprints will be more obvious and harder to conceal. Thus, more anti-forensic

modification is needed to achieve the expected concealability. This results in the in-

crease of distortion for higher secondary quality factor and consequently higher rate.

From the expression, we can find the R−C tradeoff for a fixed D is that increasing

C will decrease R. This is also a result due to the distortion of the anti-forensic

modification: when C increases, it implies that more anti-forensic strength has been

applied, and thus more distortion has been introduced by anti-forensic modification.

Then, in order to keep D unchanged, the distortion from recompression must be re-
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duced, which means the secondary quality factor should be closer to the first quality

factor. Since Q2 > Q1, it results in a lower R. Additionally, when we fix R, D will

increase with higher C.

Besides the higher secondary quality factor tradeoff surface, there are two walls

along the concealability axis and distortion axis. Which we call the concealability

wall:

R = 0.1378− 2.0084C + 2.9504D, (5.30)

and the distortion wall:

R = 39.7255 + 118.4314C − 392.1569D. (5.31)

The concealability wall is generated for small anti-forensic strengths. Specifically,

because the double compression fingerprints for Q2 > Q1 is very distinctive, when

anti-forensic strength is small, the increase on anti-forensic strength hardly changes

C. However, the distortion introduced by anti-forensic modification increases pro-

portionally with the strength, and thus it leads to the increase of R and D. There-

fore, while R and D are increasing, the little change on C results in the conceal-

ability wall. The distortion wall happens for much higher quality factors, where

recompression distortion decreases with finer quantization, i.e., higher quality fac-

tor, but anti-forensics distortion increases with higher quality factor. Thus, the

summation of these two distortions results in the little change on overall distortion

and the distortion wall appears.

When comparing the higher secondary quality factor tradeoff with the lower

secondary quality factor tradeoff, we notice that the lower secondary quality factor
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tradeoff locates entirely below the higher secondary quality factor tradeoff, as it is

shown in Fig. 5.6. This implies that using a lower secondary quality factor can

achieve the same concealability and distortion as the one obtained by using a higher

quality factor, while the rate is lower. Note that we consider the data rate in this

chapter, which is inversely proportional to the compression rate. Thus, such phe-

nomenon induces the forger to choose a lower secondary quality factor rather than

a higher one to obtain a lower rate without increasing the distortion or decreasing

the concealability. This surprising behavior happens because that the anti-forensic

modification introduces much more distortion in higher secondary quality factor case

than in lower secondary quality factor case. Since double compression fingerprints

are more obvious in higher secondary quality factor case than in the lower one, in

order to achieve the same concealability, anti-forensic modification will introduce

much more distortion when the forger decides to use a higher secondary quality fac-

tor. Thus, to achieve a certain concealability, using higher secondary quality factors

will not only results in more distortion but also higher rate than the case of using

lower secondary quality factors. As a consequence, the forger will always tend to

use a lower secondary quality factor rather than a higher one.

5.6 Summary

In this chapter, we proposed a concealability-rate-distortion tradeoff in anti-

forensic systems. Specifically, we defined concealability and characterized the C-R-

D tradeoff in double JPEG compression anti-forensics. To obtain the tradeoff, we
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proposed a flexible anti-forensic dither to vary the strength of anti-forensics. We

also provided an anti-forensic transcoder to more efficiently accomplish the tasks of

anti-forensics and recompression. We then experimentally characterized the C-R-D

tradeoff by polynomial surfaces regarding whether the secondary quality factor is

lower or higher than the first one. From the experimental results, we found two

surprising results. The first one is that if the forger recompresses using a lower

secondary quality factor, applying anti-forensics with greater strength will decrease

the data rate. The second one is that the forger is always incentivized to recompress

using a lower secondary quality factor. This is because our results have shown that,

for any pairing of concealability and distortion values achieved by a higher secondary

quality factor, the forger can choose a lower secondary quality factor that will achieve

the same concealability and distortion values yet at a lower data rate.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we studied the fundamental limits in multimedia forensics

and anti-forensics. First, by acknowledging the limit of existing forensic techniques

when new technologies emerge, we proposed a set of forensic tools to conquer this

scenario. Furthermore, we explored the capability of forensic investigators when

estimating the processing history of multimedia content. Information theoretical

frameworks have been proposed to formulate conventional forensic problems, where

mutual information based measurements and criteria were used to determine the

limit of what we can do. By studying the behavior of forgers, we proposed and

characterized the fundamental tradeoff in compression anti-forensics. More specif-

ically, this dissertation contributes to the following aspects of multimedia forensics

and anti-forensics.

In chapter 2, we proposed a set of forensic techniques to identify if a given signal

was captured by compressive sensing. To do this, we categorized feasible signals that

can be compressively sensed into three classes and found the fingerprints of compres-

sive sensing in each class of signals. Then, depending on the amount of knowledge

we know about the signal model, zero ratio detector and distribution-based detector

were proposed to distinguish compressively sensed signals from traditionally sensed
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signals. Specifically for images, because wavelet-based compressed images can be

easily confused with compressively sensed images by existing forensic techniques, we

proposed a two step detector to distinguish compressively sensed images from both

traditionally sensed images and traditionally sensed but wavelet-based compressed

images. In addition, we proposed a technique to estimate the number of compressive

measurements used to acquire a compressively sensed signal. Experimental results

have shown the effectiveness of our proposed techniques on a wide variety of signals.

In chapter 3, we proposed information theoretical frameworks for operation

forensics to find how many operations we can detect at most. We have introduced

the concept of forensicability as the maximum information that extracted features

contain about the considered multimedia states. We used mutual information be-

tween features and multimedia states to quantify forensicability. Given forensica-

bility, we obtained the lower bound of error probabilities for all estimators based on

certain features. Then, using this lower bound, we proposed the concept of expected

perfect detection to determine when we cannot detect any more operations. A case

study of multiple JPEG compression detection has been examined in this chapter.

By applying our framework and based on experimental results, we have found that,

under typical forensic settings, the maximum number of JPEG compressions we can

detect is 4. In addition, optimal strategies for both investigators and forgers have

been discussed based on forensicability.

In chapter 4, we studied the forensic problem of detecting the order of opera-

tions and proposed information theoretical criteria to determine when we can and

cannot detect the order. The problem of order detection has been formulated as
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a multiple hypotheses estimation problem. Then, the mutual information between

estimated hypotheses and true hypotheses has been used as a measure to evaluate

the best estimation performance. Based on this criterion, conditions of when we

can and cannot detect the order of operations have been proposed. Furthermore,

by introducing the concept of conditional fingerprints, we were able to analyze the

reason of why we cannot detect the orders. Three case studies have been involved in

demonstrating the effectiveness of our proposed framework and criteria. The exist-

ing problems of double JPEG compression detection and order detection of resizing

and contrast enhancement were examined to show that the results obtained by our

framework match those from existing literatures. In addition, we examined the or-

der detection of resizing and blurring. A forensic technique was proposed to detect

their order. Based on our framework, we have found the regions of detectable cases

for the order detection of resizing and blurring.

In chapter 5, we explored the fundamental tradeoff in compression anti-forensics.

We have found that, in anti-forensic systems where compression is applied in the end

for storage or transmission, there are three factors that forgers concern: concealabil-

ity, rate and distortion. We defined the fundamental measurement of anti-forensic,

concealability, as how effective the anti-forensic technique can conceal the manipu-

lation fingerprints. Then, a case study of double JPEG compression anti-forensics

was used to demonstrate the fundamental tradeoff between concealability, rate and

distortion. In order to characterize this tradeoff, we proposed a flexible anti-forensic

dither and anti-forensic transcoder to vary the strength of anti-forensics. Then, we

experimentally characterize the tradeoff using polynomial surfaces. Two separated
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tradeoffs have been discovered regarding the relationship between two compression

quality factors. In addition, we have found two surprising phenomena from the anal-

ysis. One is that when forgers recompress using a lower secondary quality factor,

increasing anti-forensic strength will decrease the data rate. The other one is that

forgers are incentivized to recompress an image with a lower secondary quality factor

because it can achieve lower data rate with the same concealability and distortion.

6.2 Future Work

As we have shown in this dissertation, exploring fundamental limits is an in-

evitable trend in multimedia forensics and anti-forensics. Various theoretical frame-

works will be needed to formulate different types of forensic problems and obtain

their own fundamental limits or constraints. In this dissertation, we have exam-

ined the fundamental limits in operation forensics, order forensics, and compression

anti-forensics. There are many other challenging forensic and anti-forensic scenarios

where I will continue to explore their fundamental limits.

In our proposed information theoretical framework for operation forensics, a

single set of features are considered. Thus, the analysis involves only one abstract

channel between the features and the multimedia states. Similarly, in order forensics,

we considered one set of estimators in the framework and analyzed a single abstract

channel between estimated hypotheses and true hypotheses. However, as forensic

techniques develop, different features or different sets of estimators have been found

and used for the same forensic purpose [19,55,76]. While our frameworks provide a
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way to compare the fundamental performance of forensic techniques using different

features or estimators, it would be more interesting to find the optimal performance

of combining all feasible features or estimators. This involves in introducing multiple

abstract channels in the analysis and formulating the relationships among these

channels. Based on appropriate frameworks, we want to find the fundamental limit

of fusing different features or estimators towards the same forensic purpose and find

the optimal fusion algorithm for the best detection performance.

In this dissertation, we have examined anti-forensics where forgers use anti-

forensic techniques to confuse forensic investigators. With the development of anti-

forensic techniques, counter anti-forensic schemes have been developed by forensic

investigators to detect the trace of anti-forensics [40, 98, 102]. By understanding

counter anti-forensic techniques, forgers may, again, developing corresponding anti-

forensics to attack these new forensic schemes. As such interactions between foren-

sics and anti-forensics continue, it is interesting to know whether they will come to

an equilibrium and when it will happen. To answer these, we need to formulate

the relationship between forensicability and concealability, the two fundamental

measurements we proposed in this dissertation for multimedia forensics and anti-

forensics respectively. By appropriately choosing theoretical frameworks, we want

to know how forensicability and concealability change during the interplay between

investigators and forgers. Furthermore, we would like to explore the maximum num-

ber of interactions needed to achieve the equilibrium, if any, and what the ultimate

state would be.
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