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Radio technology has been widely used for high-speed wireless communica-

tions. In the near future, radio technology would provide sensing capabilities to

enable a diversified indoor applications in the era of Internet of Things (IoT). This

is because that the electromagnetic (EM) wave, emitted from the transmitter prop-

agates through multipath before arriving at the receiver, is varied by the environ-

mental perturbations. Such variations in EM waves reveal important environmental

changes useful for IoT applications. Thus, in IoT networks, radios are not only the

ubiquitous communication interfaces but also exhibit augmented sensing potential.

Despite the wide variety of IoT devices, most of them are equipped with WiFi

which is a very mature and cost-effective connectivity solution and has evolved

significantly ever since its standardization. Meanwhile, as people are spending more

and more time indoors, most indoor spaces have been already equipped with WiFi

infrastructures, which makes the IoT devices empowered by WiFi to blend into

the existing WiFi infrastructures without efforts. Therefore, it is highly valuable



to adopt radio analytics to analyze the WiFi radio signals to facilitate key IoT

applications.

In this dissertation, we explore the viability of using WiFi for two important

IoT applications: indoor localization and vital sign monitoring. In the first part, we

propose two indoor localization systems (IPSs) leveraging the time-reversal (TR)

technique on off-the-shelf WiFi devices. The proposed IPSs utilize the location-

specific features, i.e., the channel frequency response (CFR), which is a fine-grained

information readily available on off-the-shelf devices that depicts the propagation of

EM waves from the transmitter to different locations. The proposed IPSs consist

of an offline phase which collects CFRs from locations-of-interest, and an online

phase which compares the instantaneous CFRs with those captured in the offline

phase. To calculate the similarities among locations, the TR focusing effect is eval-

uated quantitively between each pair of CFRs associated with these locations using

the TR resonating strength (TRRS). Realizing that the bandwidth limit on main-

stream WiFi devices could lead to location ambiguity, we exploit two diversities

inherent in WiFi devices, i.e., frequency diversity and spatial diversity, to expand

the effective bandwidth. Extensive experiments show a localization accuracy of 1

to 2 centimeters even under strong non-line-of-sight (NLOS) conditions as well as

enhanced robustness against environmental dynamics.

In the second part, we investigate the feasibility of high accuracy vital sign

monitoring using CFRs. First of all, we present a highly accurate breathing mon-

itoring system. Realizing that breathing injects tiny but periodic signals into the

WiFi signal, we project the CFR time series onto the TRRS feature space to amplify



such CFR perturbations. Integrated with machine learning techniques, the proposed

scheme could distinguish breathing rates associated with different people. In addi-

tion, it could detect the presence of breathing and count the number of people. The

performance is demonstrated by extensive experiments in multiple environments.

Secondly, we present a lightweight vital sign monitoring solution with a much re-

duced computational complexity. Moreover, we supplement the proposed vital sign

monitoring system with a finite state machine (FSM) to remedy the impact of mo-

tions on the monitoring performance. Extensive experimental results demonstrate

the excellent performance of both breathing monitoring schemes.
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Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) is a novel paradigm that is gaining ground in

the scenarios of modern wireless communications. The fundamental idea of this

paradigm is: the things or objects — such as sensors, actuators, and mobile devices

— are able to communicate with each other to accomplish common goals through

unique addressing schemes. IoT has been envisioned for a long time and has finally

become a reality thanks to the unprecedented development of integrated circuit (IC)

technology which significantly shrinks device dimensions and costs. In terms of ap-

plicability of IoT, recent years have witnessed the revolutionary paradigm shift from

mere sensor utilizations to highly complicated IoT applications covering diversified

areas ranging from consumer electronics to business users, including assist-living,

healthcare, enhanced learning, transport, home automation, industrial manufactur-

ing, logistics, and so on [13]. As the IoT technology is expected to dramatically

change everyday lives and behaviors of people, organizations such as Industrial In-

ternet Consortium and IoT Acceleration are established to foster the standardiza-

tion and commercialization of IoT technology. Moreover, due to its potentially huge
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impact, IoT is included by the US National Intelligence Council in the list of six

”Disruptive Civil Technologies” [31].

To facilitate wireless communications, IoT devices are equipped with one or

even multiple radio interfaces such as WiFi [6], Bluetooth [1], Zigbee [8], Z-wave [7],

etc. In addition to provide seamless connectivity among IoT devices, these radio

technologies have the sensing capability to comprehend the environment [50]. This

is because that the electromagnetic (EM) waves emitted by radios for information

delivery propagates through the multipath environment before arriving at the re-

ceiver and is very sensitive to environmental perturbations. Such variations are

embedded in EM waves and could be extracted at the receiver to reveal crucial

information about the environment. Thus, IoT radios are not only the ubiquitous

communication interfaces but also incorporated with augmented sensing potential.

This makes radio analytics for IoT applications possible.

Among different IoT radio technologies, WiFi is a very mature technology.

Since its standardization in 1997, WiFi technology undergoes significant improve-

ments in terms of coverage, signal quality, and security [6]. Moreover, as people are

spending more and more time indoor, WiFi access points (APs) have been deployed

everywhere, and they could be the infrastructure to accommodate a large number

of IoT devices. Therefore, it is highly valuable to implement IoT applications us-

ing WiFi signals, which is the motivation of this dissertation. More specifically, we

study two IoT applications — indoor localization and vital sign monitoring.

Indoor localization is a very important application in IoT with high pragmatic

value. It could enable many location-based services such as indoor navigation and
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object tracking. A straightforward solution is to utilize the Global Positioning Sys-

tem (GPS) for indoor localization, which is, unfortunately, a non-starter due to

a variety of reasons including poor signal strength, multipath effect, and limited

on-device computation and communication power [45]. Thus, a WiFi-based indoor

positioning system (IPS) is highly valuable since it leverages the WiFi infrastructure

available in almost all indoor spaces.

Vital sign monitoring is another paramount IoT application. Thanks to the

advancements in on-body sensors and wearable devices, people can now monitor

their health status anywhere anytime with IoT devices. Meanwhile, the wearable

monitoring systems could provide long-term, prompt, and accurate physiological

data to doctors remotely. The integration of IoT technology and wearable sensors

have already made the remote vital sign monitoring a reality and could potentially

improve the life qualities of millions of people. The WiFi-based vital sign monitoring

solutions could make the IoT-based healthcare system even better since it is non-

invasive, infrastructure-free, and could work remarkably well even if the subject

under monitoring is not in the same room as the WiFi radio.

1.2 Dissertation Outline and Contributions

From the previous discussions, we can see the significance of using WiFi sig-

nals to accomplish IoT applications. In this dissertation, we focus on WiFi-based

indoor localization and vital sign monitoring. For the proposed systems, we exploit

the channel frequency response (CFR), a location-specific WiFi signal available on
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off-the-shelf WiFi devices that contains rich information about the environment.

The first part of this dissertation focuses on the implementation of centimeter-level

indoor localization systems using the TR technique, and the second part of this

dissertation focuses on the implementation of breathing monitoring systems with

different complexities and architectures. The rest of this dissertation is organized

as follows.

1.2.1 Channel Frequency Response and Time-Reversal (Chapter 2)

In this chapter, firstly, we introduce the CFR models in the presence of in-

evitable phase distortions caused by synchronization errors in WiFi systems. Then,

we explain the way to extract CFRs from WiFi signals by introducing the channel

estimation algorithms in both single-input-single-output (SISO) and multiple-input-

multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) WiFi

systems. After that, we present the CFR models for indoor localization and vital

sign monitoring.

Secondly, we elaborate on the TR technique and present the calculation of

TR resonating strength (TRRS) to quantify the similarities among CFRs, which

lays the foundation of the proposed indoor localization and vital sign monitoring

systems.
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1.2.2 Time-Reversal Indoor Positioning with Frequency Diversity (Chap-

ter 3)

In this chapter, we propose a centimeter-level accuracy indoor localization

system using commercial WiFi. Considering the lack of physical bandwidth on

mainstream WiFi systems which leads to location ambiguity, we propose to utilize

frequency hopping to obtain CFRs from a multitude of WiFi channels and concate-

nate these CFRs into location fingerprints. This leads to a much larger effective

bandwidth and greatly reduces the location ambiguity. The proposed system con-

sists of an offline phase to collect CFRs from locations-of-interest and an online

phase for indoor localization based on instantaneous CFRs. The similarities among

locations are characterized by the TRRS calculated based on the associated CFRs

with these locations as introduced in Chapter 2. Extensive experimental results

show that a centimeter-level indoor localization is achievable even under a strong

NLOS condition.

1.2.3 Time-Reversal Indoor Positioning with Spatial Diversity (Chap-

ter 4)

In this chapter, we propose an indoor localization system harvesting spatial di-

versity to achieve a centimeter-level localization accuracy. Different from Chapter 3

where frequency hopping is adopted, we make full use of the multiple antenna links

in MIMO-OFDM systems to achieve a large effective bandwidth. In addition to

demonstrating the centimeter-level accuracy, we conduct many experiments in the
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presence of environmental dynamics to show the robustness of the proposed system.

1.2.4 High Accuracy Vital Sign Monitoring (Chapter 5)

In this chapter, we propose a high accuracy vital sign monitoring system using

commercial WiFi and TR signal processing technique, termed as TR-BREATH.

TR-BREATH extracts useful information relevant to human breathing embedded

in CFRs by performing TRRS calculation and spectral analysis via Root-MUSIC

algorithm. Moreover, TR-BREATH is able to detect the presence of breathing

leveraging machine learning techniques. In case that the people number under

monitoring is unknown, TR-BREATH could formulate an estimation of the people

number as well. Extensive experimental results demonstrate that TR-BREATH

could resolve the breathing rates from a total of 12 people under a LOS condition

and up to 7 people under an NLOS condition, and TR-BREATH could estimate

the number of people within an error of 1 person. Meanwhile, TR-BREATH can

achieve a perfect detection performance.

1.2.5 Robust Vital Sign Tracking (Chapter 6)

In this chapter, we present a robust and lightweight vital sign tracking sys-

tem. To concentrate the energy of breathing signal, the proposed scheme performs

inverse Fourier transform to convert CFRs into CIRs. Then, it performs spectral

analysis on multiple channel taps in CIRs and combines the spectrum from multiple

antenna links. To mitigate the impact of motion, the proposed scheme incorporates
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a finite state machine (FSM) to automatically tune the parameters for breathing

monitoring under different scenarios. Extensive experiments show the robustness of

the proposed system.
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Chapter 2

Channel Frequency Response and Time-Reversal

In the proposed indoor localization and vital sign monitoring systems, CFR

plays a paramount role as it captures centimeter-level changes of device locations as

well as centimeter-level chest displacement. In this chapter, we present a detailed

introduction to CFR, including a brief discussion of the phase distortion that affects

the CFR quality and an explanation on why CFRs can be used for indoor localization

and vital sign monitoring.

Then, we introduce the time-reversal signal processing technique which is uti-

lized in the proposed indoor localization and Root-MUSIC-based vital sign moni-

toring systems for both SISO-OFDM and MIMO-OFDM systems. Furthermore, we

introduce the concept of effective bandwidth to measure the available bandwidth

resources for IoT applications.

2.1 Channel Frequency Response

2.1.1 Multipaths Propagation

In wireless telecommunications, multipath is the propagation phenomenon

that results in radio signals reaching the receiving antenna by two or more paths.
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Causes of multipath include atmospheric ducting, ionospheric reflection and refrac-

tion, and reflection from water bodies and terrestrial objects such as mountains and

buildings [34].

TX RX

Path #0

Path #1

Path #2

Path #3

Figure 2.1: Illustration of multipath propagation

Due to this phenomenon, the received signal is a superposition of multiple

scaled, phase shifted, and delayed replicas of the transmitted signal. Denote the

transmitted waveform as x(t), the received signal y(t) can be written as

y(t) =
L−1∑
`=0

h`(t)x(t− τ`(t)) + w(t) (2.1)

where w(t) is the receiver noise and τ`(t) is the time delay of the `-th channel

coefficient. h`(t) is the complex channel coefficient at time t and can be expressed

as α`(t)e
jφ`(t) where α` is the magnitude of multipaths component (MPC) ` and

φ`(t) is the phase of MPC ` at time t. Eqn. (2.1) shows that the received signal

y(t) can be either significantly attenuated in case that h`(t)x(t−τ`(t)) are combined

incoherently, or improved in case that h`(t)x(t− τ`(t)) are accumulated coherently.
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In a static environment, (α`(t), φ`(t), τ`(t)) can be considered as time-invariant

and substituted as (α`, φ`, τ`). In this scenario, the multipath channel can be treated

as a time-invariant finite impulse response (FIR) filter given as

h(t) =
L−1∑
`=0

α`e
jφ`δ(t− τ`) (2.2)

where δ(t) is the Dirac function. h(t) is generally referred as CIR with continous

time.

Fig. 2.1 visualizes the multipaths propagation. There are in total 4 MPCs, with

MPC #1 as one line-of-sight (LOS) MPC and the others non-line-of-sight (NLOS)

MPC. MPC #2 is a fully occluded path that experiences reflection and diffraction.

As EM wave penetrates through objects, signals traveled on MPC #2 can still reach

the receiver with a much reduced energy.

2.1.2 Multipath Channel in OFDM Systems

The multipath propagation could introduce very severe inter-symbol-interference

(ISI) in single-carrier communication schemes [46, 69]. To mitigate this impact,

multi-carrier communication schemes such as the orthogonal frequency-division mul-

tiplexing (OFDM) are generally used. In OFDM systems, data are transmitted on

multiple subcarriers in parallel. The waveform of each subcarrier is orthogonal to

the waveforms on the other subcarriers. An example is shown in Fig. 2.2 with four

subcarriers f1, f2, f3, f4. As we can see, there is no interference between different

subcarriers under ideal situations. Since the spacing between adjacent subcarriers

is very narrow, the multipath channel can be regarded as a one-tap complex scalar
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Figure 2.2: An illustration of the orthogonal waveforms used in OFDM systems

for each subcarrier.

Therefore, the multipath channel exhibits itself as a vector composed by the

complex scalars on each subcarrier in OFDM systems [24, 53, 54], known as CFR.

Mathematically, CFR is the discrete Fourier transform (DFT) of the discrete CIR

presented in (2.2) that takes the form

Huk =
L−1∑
`=0

α`e
jφ`e−2πτ`

uk
NTs , k = 1, 2, · · · , K (2.3)

where uk is the subcarrier index for the k-th subcarrier, K is the total number of

usable subcarriers which is the number of subcarriers used for data transmission, N

is the size of the DFT as well as the number of samples for each OFDM symbol.
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Long Training Preamble, cyclic prefix

Long Training Preamble

Signal Field, cyclic prefix

Signal Field

Data Payload #1, cyclic prefix

Data Payload #1

16 32 64 16 64 16 64

Figure 2.3: Frame structure in 802.11a OFDM systems.

2.1.3 Channel Estimation in SISO-OFDM Systems

First of all, we introduce the channel estimation scheme in single-input-single-

output (SISO) OFDM systems. To facilitate accurate channel estimations, OFDM

transmitter emits specialized OFDM symbols, known as the training preambles,

to the receiver. The training preambles can be further classified into two classes:

short training preambles (STP) and long training preambles (LTP). STP is utilized

for symbol timing synchronization and coarse carrier frequency offset estimation,

while LTP is used for fine carrier frequency offset estimation as well as channel

estimation [24]. Cyclic prefix (CP) blocks are also inserted to protect different

OFDM symbols against multipath propagation. An example of the frame structure

for 802.11a OFDM system is shown in Fig. 2.3. Denote the length of a STP as

LSTP , the length of a LTP as LLTP , the length of a CP for the LTP as LCP,LTP , the

length of a CP for the data block as LCP , the length of a data block as Ldata, we

have LSTP = 16, LLTP = 64, LCP,LTP = 32, LCP = 16, Ldata = 64 for the 802.11a

OFDM system.

Here, we focus on the LTP since it provides us the estimated CFR. Assume

that the received OFDM symbols in frequency domain on subcarrier uk is written
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as Yuk and the transmitted OFDM symbol on subcarrier uk as Xuk , we have

Yuk = HukXuk +Wuk , k = 1, 2, · · · , K (2.4)

where Wuk is the frequency-domain noise on subcarrier uk and is considered as white

Gaussian noise with zero mean and variance σ2
w. (2.4) can be written into its matrix

form as

Y = XH + W (2.5)

where Y is theK×1 column vector for the received signal expressed as [Yu1 , Yu2 , · · · , YuK ]T ,

X is the K×K diagonal matrix with its diagonal elements given by {Xuk}k=1,2,··· ,K ,

H is the K × 1 column vector given as [Hu1 , Hu2 , · · · , HuK ]T .

The most intuitive way of estimating H from Y is the least-square (LS) esti-

mation [56] which aims at minimizing ||Y − XH||22, i.e, the `2 norm of Y − XH,

which leads to the estimation Ĥ = X−1H where X−1 is the inverse matrix of X. In

other words, the k-th element of Ĥ can be written as

Ĥuk =
Yuk
Xuk

= Huk +
Wuk

Xuk

. (2.6)

Eqn. (2.6) is also known as the zero-forcing solution and suffers from noise amplifi-

cation when Xuk is very small on some k. However, due to its low complexity, the

LS channel estimator is widely used in commercial WiFi chips.
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2.1.4 Impacts of Timing and Frequency Synchronization Errors on

CFRs

Eqn. (2.6) is only valid in the absence of timing and frequency synchronization

errors, which cannot be neglected in reality. The synchronization errors mainly stem

from two sources:

Misalignment of RF components: the RF components on the transmitter and re-

ceiver are not exactly the same even if they are manufactured by the same

vendor.

• The first discrepancy is the up-conversion and down-conversion center

frequencies at the transmitter and receiver. More specifically, during the

up-conversion process, the transmitter modulates the baseband signal

onto a much higher center frequency known as the carrier frequency and

denoted as fTxc . The receiver down-converts the carrier signal to the

baseband by a carrier frequency fRxc which is not necessarily the same

as fTxc , known as the carrier frequency offset (CFO) given as ∆f =

fTxc − fRxc . Given LLTP samples for each LTP and a sampling interval of

Ts, the normalized CFO ε can be written as ∆fLLTPTs in the duration

of LTP blocks.

• The second discrepancy is the sampling frequency at the transmitter and

receiver, known as the sampling frequency offset (SFO) denoted as η.

Given a sampling interval of Ts at the transmitter side and a sampling
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Original Phase

Linear Phase Distortion

Initial Phase Distortion

Observed Phase

Figure 2.4: Observed phase under the influence of CFO, SFO, and STO.

interval of T ′s at the receiver side, η can be expressed as (T ′s − Ts)/Ts.

Error in Coarse Timing synchronization: OFDM receivers perform coarse timing syn-

chronization to localize the starting position of the first OFDM symbol utiliz-

ing the STFs appended before LTFs [57]. Nevertheless, the presence of channel

noise and multipath propagation give rise to estimation errors of the starting

position. Assume that the ground-truth starting position of the first OFDM

symbol is n0 and the estimated starting position is n′0 instead, the difference

∆n0 = n0 − n′0 is known as the symbol timing offset.

Both SFO and STO introduces linear phase offset which grows with the subcarrier

index, and CFO introduces initial phase offset which is constant for each OFDM

symbol. In Fig. 2.4, we show an example of the impact of different synchronization

errors on the overall phase.

The OFDM receiver performs timing and frequency synchronizations to re-
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move the major part of these errors before channel estimation. However, the residual

errors cannot be neglected and thus affect the CFRs. Denote the residual CFO, SFO,

and STO errors as ∆ε, ∆η, and ∆n0 respectively, and write the estimated CFR as-

sociated with the i-th received OFDM symbol on the k-th subcarrier as Ĥi,uk . With

residual synchronization errors and channel noise, Ĥi,uk can be modified from (2.6)

into [24]

Ĥi,uk = sinc(π(∆ε+ ∆ηuk))Huke
j2π(βuk+ζ) +Wi,uk (2.7)

for k = 1, 2, · · · , K, where

β =
∆n0

LLTP
+

(
1

2
+
iLs + LCP,LTP

LLTP

)
∆η (2.8)

ζ =

(
1

2
+
iLs + LCP
LLTP

)
∆ε (2.9)

are the initial and linear phase distortions respectively. sinc(π(∆ε + ∆ηuk)) is the

amplitude attenuation. Ls is given as LLTP +LCP , and Wi,uk is the estimation noise

on subcarrier uk for the i-th OFDM symbol that can be modeled as white Gaussian

noise [54].

For typical values of ∆ε and ∆η, sinc(π(∆ε + ∆ηuk)) can be approximated

as 1. Ignoring the subscript i in Ĥi,uk , the approximated expression of the channel

estimation under synchronization errors and channel noise is

Ĥuk = Huke
j2π(βuk+ζ) +Wuk (2.10)

2.1.5 Channel Estimation in MIMO-OFDM Systems

The scheme of channel estimation in SISO-OFDM can be extended to the

multiple-input-multiple-output (MIMO) OFDM systems [55]. Given a MIMO-OFDM
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system equipped with Ntx transmitting antennas and Nrx receiving antennas, the

CFR between transmitting antenna ntx and receiving antenna nrx can be written as

Ĥntx,nrx
uk = Hntx,nrx

uk
ej2π(βntx,nrxuk+ζntx,nrx ) +W ntx,nrx

uk
(2.11)

where βntx,nrx is the linear phase offset slope for the i-th OFDM symbol on link

(ntx, nrx), ζ
ntx,nrx is the initial phase offset for the i-th OFDM symbol on link

(ntx, nrx), and W ntx,nrx
uk

is the channel noise of the i-th OFDM symbol on link

(ntx, nrx).

Fig. 2.5 visualizes a conventional scheme for estimating CFRs in a MIMO-

OFDM system with Ntx = 3, Nrx = 3. As we can observe, when any transmit-

ting antenna is emitting training symbols, the other two remain silent so that each

receiving antenna could uniquely estimate the channel between the transmitting

antenna to itself. For example, when transmitting antenna 1 is emitting signals,

the three receiver antennas could estimate {Ĥ1,1
uk }k=1,2,··· ,K , {Ĥ1,2

uk }k=1,2,··· ,K , and

{Ĥ1,3
uk }k=1,2,··· ,K respectively. When transmitting antenna 2 is emitting, the re-

ceiver obtains {Ĥ2,1
uk }k=1,2,··· ,K , {Ĥ2,2

uk }k=1,2,··· ,K , and {Ĥ2,3
uk }k=1,2,··· ,K , respectively.

The same procedure is repeated until CFRs on all links are estimated.

To illustrate the impact of phase distortions on CFRs in MIMO-OFDM sys-

tems, we show the normalized amplitudes and phases of 200 CFRs captured within

4 seconds in Fig. 2.6(a) and Fig. 2.6(b). The total number of usable subcarriers

is 114 with {uk}k=1,2,··· ,114 = {−58,−57, · · · ,−2, 2, 3, · · · , 57, 58}. Despite the con-

sistency in the normalized amplitudes, the variations in the phases caused by the

aforementioned initial and linear phase distortions are very distinctive.
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TX2

TX3

RX2

RX3

Figure 2.5: Channel estimation in MIMO-OFDM WiFi system.

(a) (b)

Figure 2.6: A snapshot of CFRs of 9 links in a 3×3 MIMO-OFDM system collected in

4 seconds with a bandwidth of 40 MHz. (a) Normalized amplitudes (b) Unwrapped

phases.
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In the next two sections, we explain why CFRs can be utilized for indoor

localization and vital sign monitoring. For convenience, SISO-OFDM CFR model

is utilized.

2.1.6 Channel Frequency Response Model for Indoor Localization

Fig. 2.7 shows the multipath profiles associated with two different locations.

The location difference leads to very different channel profiles and thus different

CFRs. In fact, under an ideal scenario, two CFRs would be highly uncorrelated

if they are obtained at two locations with a distance larger than the half wave-

length, which is around 2.5862 cm for the 5 GHz industrial, scientific, and medical

radio (ISM) band for WiFi systems. This indicates the feasibility of using CFR as

the location-specific feature, denoted as the fingerprint, for centimeter-level indoor

localization.
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Figure 2.7: Model of CFR for indoor localization.
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2.1.7 Channel Frequency Response Model for Vital Sign Monitoring

Fig. 2.8 shows the interaction between the subject under vital sign monitoring

and the CFR. Different from the indoor localization scheme shown in Fig. 2.7, the

location of the transmitter and receiver are fixed in this scheme, known as the

device-free scheme. As can be seen from Fig. 2.8, the chest displacement of the

subject on the order of several centimeters incorporates very small variations into

MPC #0. Under the scenario of breathing, such displacement is periodic in time

and thus introduces periodic variations of MPC #0. Since MPC #0 contributes

to the overall multipath profile and thus perturbs CFR, it is feasible to perform

breathing monitoring utilizing CFRs.

TX RX

Figure 2.8: Model of CFR for vital sign monitoring.

Now, we study the impact of chest displacement on CFRs in details. Using

the simplified model in Fig. 2.7, the gain of MPC #0 is time-varying and takes the
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form [34]

α0(t) = α0 ×
(

1 +
∆d0

d0

sin θ sin(
2πb

60
t+ φ)

)−ψ
(2.12)

where α0 and d0 are the path gain and path length of MPC #0 without breathing,

∆d0 is the displacement of MPC #0 under breathing, ψ is the path-loss exponent,

θ is the angle between the subject and the impinging EM wave, b is the breathing

rate measured in BPM, φ is the initial phase of breathing. Given that d0 � ∆d0,

we can approximate α0(t) with the time-invariant MPC gain α0.

On the other hand, breathing affects the phase of MPC #0 by changing its

path length d0(t) expressed as

d0(t) = d0 + ∆d0 sin θ sin(
2πb

60
t+ φ) . (2.13)

Now, (2.10) can be rewritten as

Ĥuk(t) =

[
α0e

−j2π d0(t)
λuk +

L−1∑
`=1

α`e
−j2π d`

λuk

]
ej2π(β(t)uk+ζ(t)) +Wuk(t) , (2.14)

which can be further written as

Ĥuk(t) =

[
α0e

−j2π d0
λk e
−j2π∆d0 sin θ sin( 2πb

60 t+φ)

λuk +
L−1∑
`=1

α`e
−j2π d`

λuk

]
ej2π(β(t)uk+ζ(t)) +Wuk(t) ,

(2.15)

where λuk is the wavelength of subcarrier uk given by

λuk =
c

fc + uk
LLTPTs

, (2.16)

where fc is the carrier frequency, c is the speed of the light, Ts is the sampling

interval given as Ts = 1/B where B is the baseband bandwidth of the WiFi signal.
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The first term on the right hand side of Ĥi,uk(t) in (2.15) can be decomposed

into an infinite summation according to the Jacobi-Anger expansion [10] as

e
−j2π∆d0 sin θ sin( 2πb

60 t+φ)

λuk =
+∞∑

m=−∞

(−1)mJm(νuk)e
jm 2πb

60
tejmφ (2.17)

where νuk = 2π sin θ∆d0/λuk and Jm(x) is the m-th order Bessel function with

argument x. It can be seen that in addition to the spectral line at b, there also

exists an infinite number of harmonics with spectral lines at mb where m is a non-

zero integer.

In practice, Jm(νuk) decays quickly for |m| ≥ 2 given the typical values of νuk ,

and (2.17) can be approximated as

e
−j2π∆d0 sin θ sin( 2πb

60 t+φ)

λuk ≈
+1∑

m=−1

(−1)mJm(νuk)e
jm 2πb

60
tejmφ (2.18)

which consists of two spectral lines at ±b with respect to m = ±1 as well as a DC

component with respect to m = 0. Thus, Ĥuk(t) can be expressed as

Ĥuk(t) ≈

α0e
−j2π d0

λuk

+1∑
m=−1

(−1)mJm(νuk)e
jm 2πb

60
tejmφ︸ ︷︷ ︸

Suk (t)

+
L−1∑
`=1

α`e
−j2π d`

λuk︸ ︷︷ ︸
Iuk


× ej2π(β(t)uk+ζ(t)) +Wuk(t) , (2.19)

where Suk(t) stands for the useful signal for breathing monitoring on subcarrier

uk, and Iuk represents the time-invariant part due to the static environment and

regarded as the interference. Eqn. (2.19) shows that the temporal variation of CFR

contains the breathing frequency along with the harmonic frequencies.
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2.2 Time-Reversal

In this section, we introduce the time-reversal technique, the core algorithm

that calculates the similarity among CFRs used in indoor localization and vital sign

monitoring. First of all, we briefly introduce the history of time-reversal (TR) tech-

nique. Secondly, we introduce the calculation of time-reversal resonating strength

(TRRS), a metric that evaluates the TR focusing effect quantitatively, in both SISO-

OFDM and MIMO-OFDM systems.

2.2.1 History of Time-Reversal

TR is a signal processing technique that could focus the energy of the wave

onto the source location from where the wave is emitted [30]. The history of TR

dates back to 1950’s when Bogert uses TR to correct delay distortion in a slow-

speed picture transmission system [16]. Later, it is shown by Amoroso that the TR

waveform is the optimal solution to a constrained optimization problem in digital

communications [12]. An important property of TR is the spatial-temporal focusing

effect: the energy of signal waves is concentrated at a specific location in the space

and at a specific time instance. This effect is verified experimentally using ultrasonic

and acoustics waves [28, 29], and later with electromagnetic waves [59].

Thanks to the focusing effect, TR is widely used in a variety of applications.

In [27], Devaney utilized TR-MUSIC algorithm to resolve targets within a certain

area, known as TR imaging. The performance of TR-MUSIC is studied in [25] and

its stability is analyzed in [26]. Moura and Jin adopted TR in a single antenna
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system and later an antenna array for target detection in highly cluttered environ-

ment [38, 42]. Moreover, TR is a promising candidate in future 5G communication

systems, since it could collectively address the major challenges in indoor wireless

communications, thanks to its massive multipath effect, high capacity, and scalabil-

ity [22]. In [35], Han et al. presented a TR-based multi-user multiple access wireless

communication system.

Additionally, TR is a promising paradigm for green internet-of-things (IoT) by

extending the battery life, accommodating low-cost and heterogeneous terminals,

and providing physical layer security [23, 36]. Applications of TR in IoT include

centimeter-level indoor localization [21, 61], human recognition [64], event detec-

tion [65], speed estimation [68], and monitoring of vital signs [20].

2.2.2 Calculating Time-Reversal Resonating Strength in SISO-OFDM

Systems

To characterize the time-reversal focusing effect quantitatively, TRRS is cal-

culated as follows.

T R[Ĥ, Ĥ′] =
∣∣∣T Rφ? [Ĥ, Ĥ′]

∣∣∣2, (2.20)

T Rφ? [Ĥ, Ĥ′] =
η√

Λ
√

Λ′
, (2.21)
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with

η =
K∑
k=1

ĤukĤ
′∗
uk
e−jukφ

?

(2.22)

φ? = argmax
φ

∣∣∣∣∣
K∑
k=1

ĤukĤ
′∗
uk
e−jukφ

∣∣∣∣∣ (2.23)

Λ =
K∑
k=1

|Ĥuk |2 (2.24)

Λ′ =
K∑
k=1

|Ĥ ′uk |
2 (2.25)

where Ĥ = [Ĥu1 , Ĥu2 , · · · , ĤuK ]T and Ĥ′ = [Ĥ ′u1
, Ĥ ′u2

, · · · , Ĥ ′uK ]T represent two

CFR vectors either from the same locations or two different locations, x∗ is the

conjugate of argument x, η is the modified cross-correlation between Ĥ and Ĥ′ with

synchronization error compensated, and Λ,Λ′ are the channel energies of Ĥ and Ĥ′,

respectively. Notice that in calculating T R[Ĥ, Ĥ′], we compensate the initial and

linear phase distortions by employing e−jukφ
?

in η as well as taking absolute value

on T Rφ? [Ĥ, Ĥ′].

Eqn. (2.20) implies that T R[Ĥ, Ĥ′] ∈ [0, 1]. More specifically, a larger TRRS

indicates a higher similarity between two fingerprints and thus the two associated

locations.

Notice that, we use T R[Ĥ, Ĥ′] for indoor localization and T Rφ? [Ĥ, Ĥ′] for

vital sign monitoring, mainly because that the phase information is more important

in the latter case.

Due to the bandwidth limit on mainstream WiFi systems, the TRRS calcu-

lated in SISO-OFDM systems is in general insufficient to characterize the differences

between two locations centimeters away from each other. To clearly illustrate the
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(a) (b) (c)

Figure 2.9: Ambiguity among nearby locations under (a) 40 MHz bandwidth (b)

120 MHz bandwidth (c) 360 MHz bandwidth.

impact of bandwidth on localization performance, we have conducted experiments

to collect CSIs under different bandwidths in a typical indoor environment. Two

channel sounders are placed in an NLOS setting, where one of them is placed on a

customized experiment structure with 5 mm resolution.

The corresponding TRRS between the target location and nearby locations are

illustrated in Fig. 2.9 under different bandwidth settings. It is shown in Fig. 2.9(a)

that with 40 MHz bandwidth, a large region of nearby locations is ambiguous with

the target location in terms of the TRRS. Enlarging the bandwidth shrinks the area

of ambiguous regions. As demonstrated in Fig. 2.9(c), when the bandwidth increases

to 360 MHz, the ambiguous region is reduced to a ball of 1 cm radius which implies

centimeter accuracy in localization.

The experiment results motivate us to formulate a large effective bandwidth

by exploiting diversities on WiFi devices to facilitate centimeter accuracy indoor

localization as shown in Section 2.2.3.

26



2.2.3 Calculating Time-Reversal Resonating Strength with Frequency

and Spatial Diversity

Based on extensive experimental results, The TRRS calculation in 2.2.2 for

SISO-OFDM systems is not sufficient to characterize differences of location finger-

prints associated with locations centimeter away. As mentioned in Chapter 1, this

is mainly because that the 20/40 MHz bandwidth only provides a very vague mul-

tipath profile and leads to ambiguity among locations. To enhance the quality of

TRRS calculation, we exploit diversities inherent in modern WiFi systems empow-

ered by MIMO-OFDM techniques, namely, the frequency diversity and the spatial

diversity.

According to IEEE 802.11n, 35 WiFi channels are dedicated to WiFi trans-

mission in 2.4GHz and 5GHz frequency bands with a maximum bandwidth of 40

MHz. The multitude of WiFi channels leads to frequency diversity in that, they

provide opportunities for WiFi devices to perform frequency hopping when experi-

encing deep fading or severe interference. On the other hand, spatial diversity can

be exploited on MIMO-OFDM WiFi devices, a mature technique that significantly

boosts the spectral efficiency. MIMO has not only become an essential component

of IEEE 802.11n/ac but also been ubiquitously deployed on numerous commercial

WiFi devices. Both diversities can be harvested to provide fingerprints with much

finer granularity and lead to less ambiguity in comparison with the fingerprint mea-

sured with a bandwidth of only 40 MHz.

The calculation of TRRS is modified for MIMO-OFDM systems with frequency
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diversity such that CFRs on different antennas as well as channels contribute to the

overall TRRS weighted by their channel powers. In particular, η, Λ, and Λ′ are

modified as

η =
Ntx∑
ntx=1

Nrx∑
nrx=1

F∑
f=1

ηntx,nrx,f , Λ =
Ntx∑
ntx=1

Nrx∑
nrx=1

F∑
f=1

Λntx,nrx,f , Λ′ =
Ntx∑
ntx=1

Nrx∑
nrx=1

F∑
f=1

Λ′ntx,nrx,f ,

(2.26)

where Ntx, Nrx, F are the number of transmitting antennas, receiving antennas, and

WiFi channels respectively, and

ηntx,nrx,f =
K∑
k=1

̂Hntx,nrx,f
uk

̂H
′∗ntx,nrx,f
uk e−jukφ

?
ntx,nrx,f (2.27)

where

φ?ntx,nrx,f = argmax
φ

∣∣∣∣∣
K∑
k=1

̂Hntx,nrx,f
uk

̂H ′∗ntx,nrx,fuk e−jukφ

∣∣∣∣∣ (2.28)

represents the modified cross-correlation on the resource block (ntx, nrx, f). Λntx,nrx,f

and Λ′ntx,nrx,f are given by

Λntx,nrx,f =
K∑
k=1

| ̂Hntx,nrx,f
uk |2 (2.29)

Λ′ntx,nrx,f =
K∑
k=1

| ̂H ′ntx,nrx,fuk |2 . (2.30)

Finally, TRRS is calculated as

T R[Ĥ, Ĥ′] =
∣∣∣T Rφ? [Ĥ, Ĥ′]

∣∣∣2, (2.31)

T Rφ? [Ĥ, Ĥ′] =
η√

Λ
√

Λ′
, (2.32)

where Ĥ stands for the fused CFRs from multiple links given as

Ĥ =

[
Ĥ1,1,1
u1 Ĥ1,1,1

u2 · · · Ĥ1,1,1
uK · · · ̂HNtx,Nrx,F

uK

]
︸ ︷︷ ︸

Ntx×Nrx×F×K

(2.33)
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Fig. 2.10 visualizes an example of harvesting frequency and spatial diversity

independently/jointly on WiFi devices.

Figure 2.10: Leveraging frequency and spatial diversities in WiFi to achieve large

effective bandwidth.

2.2.4 Effective Bandwidth

Since we fully utilize the information contained in multi-antenna WiFi systems

in TRRS calculation, we achieve an effective bandwidth We of

We =
KNtxNrxFB

N
, (2.34)

where B is the bandwidth per link. In 802.11n WiFi systems, B can be as large as

40 MHz. K/N illustrates the ratio of available subcarriers over the total number of
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subcarriers.

The effective bandwidth acts as a metric that quantifies the available resources

in a fingerprint-based IPS that can be harnessed for localization. A large effective

bandwidth generally leads to an improved localization performance in terms of the

detection rates and the false alarm rates.

2.3 Summary

In this chapter, we have introduced the CFR models for indoor localization

and vital sign monitoring. We also show the concept of TR techniques and present

the calculation of TRRS in SISO-OFDM and MIMO-OFDM systems with frequency

diversity. The concept of effective bandwidth is also presented.
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Chapter 3

Time-Reversal Indoor Positioning with Frequency Diversity

From the previous discussion, it is clear that indoor localization is crucial in

IoT applications. Sampling the rich literature, we find that the indoor positioning

systems (IPSs) can be classified into two classes: ranging-based and fingerprint-

based [66]. Details of both classes are elaborated below.

• For the ranging-based methods, at least three anchors are deployed into the

indoor environment to triangulate the device through measuring the relative

distances between the device to the anchors. The distances are generally

obtained from other measurements, e.g., RSSI, ToA, ToF, and AoA. RSSI-

based ranging methods [37, 44, 70] utilizes the path-loss model to derive the

distance and can typically achieve an accuracy of 1 ∼ 3m on average under

LOS scenarios, while ToA-based ranging methods retrieve the ToA of the first

arrived multipath component from the CIR. To achieve a fine timing resolu-

tion, ToA-based methods require a large bandwidth, which is achievable with

ultra-wideband (UWB) techniques that lead to an accuracy of 10 ∼ 15cm in a

LOS setting [5,18]. In [58], Vasisht et al. present a decimeter-level localization

using a single WiFi access point. They utilize frequency hopping to acquire

CFRs. Leveraging the non-uniform discrete Fourier Transform (NDFT), they
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recover the time-domain CIR and use the time delay of the dominant peak

in the recovered CIR as the ToF measurement. However, in a strong NLOS

environment, the dominant peak of CIR does not necessarily characterize the

direct path between the WiFi devices which leads to an increased localization

error. The AoA-based schemes proposed in [33] and [63] have the same issue

that degrades localization accuracy in a complicated NLOS indoor environ-

ment.

• The fingerprint-based approaches harness the naturally existing spatial fea-

tures associated with different locations, e.g., RSSI, CIR, and CFR. In these

schemes, fingerprints of different locations are stored in a database during

the offline phase. In the online phase, the fingerprint of the current location

is compared against those in the database to estimate the device location.

In [14, 48, 67], RSSI values from multiple access points (APs) are utilized as

the fingerprint, leading to an accuracy of 2 ∼ 5m. In [60], Wu et al. utilize

multi-dimensional scaling to construct a stress-free floorplan as well as its asso-

ciated fingerprint space containing the RSSI values obtained from locations on

the stress-free floorplan for crowdsourcing-based indoor localization. The av-

erage error is around 2m with the maximum error of 8m. The accuracy can be

further improved to 0.95 ∼ 1.1m by taking CFRs as the fingerprint [19,52,62].

In [61], Wu et al. obtain CIR fingerprints under a bandwidth of 125 MHz and

calculate TRRS as the similarity measure among different locations, leading

to an accuracy of 1 ∼ 2cm under NLOS scenarios.
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Summarizing the ranging-based and fingerprint-based schemes, we find that

1. The accuracy of the ranging-based methods are susceptible to the correctness of

the physical rules, e.g., path-loss model, which degrades severely in the complex

indoor environment. The existence of a large number of multipath components

and blockage of obstacles in indoor spaces impair the precision of the physical

rules.

2. The fingerprint-based methods, which can work under strong NLOS environ-

ment, require a large bandwidth for accurate localization. Since the maxi-

mum bandwidth of the mainstream 802.11n is 40 MHz, IPSs utilizing WiFi

techniques cannot resolve enough independent multipath components in the

environment which introduces ambiguities into fingerprints associated with

different locations. Thus, the localization performance is degraded. On the

other hand, a bandwidth as large as 125 MHz that leads to centimeter accu-

racy [61] can only be achieved on dedicated hardware and incurs additional

costs in deployment.

In this chapter, we propose an IPS that achieves centimeter accuracy using only one

pair of single-antenna WiFi devices.By frequency hopping, the presented scheme

collects CFRs from a large multitude of channels and concatenate the CFRs into

a location fingerprint with a very large effective bandwidth. The scheme can work

very well under strong NLOS conditions in a complicated indoor environment. It

is also robust against RF interference. Moreover, it is an infrastructure-free scheme

built upon WiFi infrastructures readily available indoor. The performance of the
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proposed IPS is verified by extensive experiments in a typical office environment to

demonstrate the centimeter accuracy within an area of 20cm×70cm under strong

NLOS conditions.

The rest of this chapter is organized as follows. In Section 3.1, we elaborate

on the proposed localization algorithm. In Section 3.2, we present the frequency

hopping mechanism. In Section 3.3, we demonstrate the experiment results in a

typical office environment. In Section 3.4, we present some discussions on several

aspects of the proposed IPS. Finally, we draw conclusions in Section 3.5.

3.1 Proposed Algorithm

3.1.1 Indoor Localization Based on TRRS

The proposed localization algorithm consists of an offline phase and an online

phase. The details of the two phases are elaborated below.

3.1.1.1 Offline Phase

In the offline phase, the CFRs are measured from a total of F different chan-

nels, denoted by 1, 2, · · · , f, · · · , F , and from L locations-of-interest, denoted by

1, 2, · · · , `, · · · , L. The CFR matrix Ĥ is given as (2.31).

3.1.1.2 Online Phase

The CFRs from an unknown location are formulated into the location finger-

print in the same manner as described in the offline phase. Assume that the location
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fingerprint from the unknown location `′ is given by Ĥ`, the TRRS between location

`′ and location ` is computed as T R
[
Ĥ`, Ĥ`′

]
based on (2.31) with Ntx = 1 and

Nrx = 1. Define `? = argmax
`=1,2,··· ,L

T R
[
Ĥ`, Ĥ`′

]
, the estimated location ˆ̀′ takes the form

ˆ̀′ =


`?, if T R

[
Ĥ`? , Ĥ`′

]
≥ Γ

0, Otherwise ,

(3.1)

where Γ is a tunable threshold. In case of T R
[
Ĥ`? , Ĥ`′

]
< Γ, the proposed IPS fails

to localize the device, and the algorithm returns 0 to imply an unknown location.

In Fig. 3.1, we show an example of location fingerprints generated at two

different locations in different colors. For each location, we formulate 5 location

fingerprints. As we can see, the differences among the location fingerprints at the

same location are minor, while the differences of location fingerprints between the

two different locations are much more pronounced.
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Figure 3.1: A snapshot of location fingerprints after bandwidth concatenation at

two different locations.
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3.2 Frequency Hopping Mechanism

In this section, we elaborate on the implementation details of the proposed

IPS.

3.2.1 CFR Acquisition using USRPs

We build two Universal Software Radio Peripherals (USRP) N210 [2] into pro-

totypes for localization. Each USRP is equipped with one omni-directional antenna.

In [15], Bastian et al. develop a WiFi transceiver supporting WiFi standards

802.11a/g/p under the framework of GNU Radio [4]. The proposed WiFi transceiver

in [15] extracts the CFRs by the 4 frequency-domain subcarrier pilots followed by an

interpolation to fully recover the CFRs on the 48 usable data subcarriers. However,

due to the scarcity of the subcarrier pilots, the estimated CFRs are not accurate

enough to provide fine details about the environment to facilitate indoor localization.

To acquire CFRs with high quality, we extend the framework in [15] by in-

cluding a channel estimator leveraging the two LTPs as shown in the WiFi frame

structure in Fig. 2.3. Each LTP is composed by 56 data subcarriers which are known

in advance at the receiver side. The CFRs are extracted based on the LTPs which

are further used to equalize the signal field frame that contains the information of

the coding rate as well as the signal constellation of the transmitted OFDM symbols.

Then, the receiver decodes the data payloads based on this information.

We also notice that the framework in [15] lacks the mechanism of carrier sense

multiple access (CSMA) and interference from other WiFi devices is unavoidable.
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In light of this issue, we only keep those CFRs associated with data payloads suc-

cessfully decoded.

3.2.2 Implementing the Frequency Hopping Mechanism

In the proposed IPS, frequency hopping is used to acquire CFRs from a mul-

titude of frequency bands. In Fig. 3.2, we demonstrate the timing diagram of the

mechanism of synchronous frequency hopping with feedback between two devices

from the center frequency f0 to f1. Here, ACK stands for the acknowledgement

frame, and REQ denotes the frequency hopping request frame. Device 2 initializes

the procedure by tuning its center frequency at f0. Then, device 1 starts trans-

mission at f0 as well to facilitate CFR acquisition on device 2. Assume that the

minimum number of CFRs per frequency band is Mmin. After obtaining Mmin CFRs

at f0, device 2 sends an ACK frame to device 1, and device 1 feedbacks a REQ frame

to device 2. On reception of the REQ frame, device 2 adjusts its center frequency

to f1, and device 1 begins transmission at f1.

In Fig. 3.2, we assume that the two devices perform full-duplex communication,

i.e., transmitting signals while listening simultaneously to acquire the ACK and

REQ frames. However, in practice, the USRP N210 devices in the proposed IPS are

half-duplex, i.e., one device cannot perform WiFi transmitting and receiving at the

same time. Thus, each device needs to switch between the transmitting mode and

the receiving mode in different time slots. Fig. 3.3 shows an example of frequency

hopping from f0 to f1. The details for each time-of-interest denoted as t1, t2, · · · , t12
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Figure 3.2: Timing diagram of the frequency hopping mechanism.
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in Fig. 3.3 are presented below.

t0: Device 2 (D2) tunes its center frequency to f0 and stays in the receiving mode.

t1: Device 1 (D1) tunes its center frequency to f0 and begins data transmission. D2

detects the presence of data transmission and performs channel estimation to

extract CFRs from each data frame. Device D2 stays in the receiving mode

until the number of CFRs exceeds Mmin.

t2: D1 switches to receiving mode to determine whether D2 sends an acknowledge-

ment signal (ACK) by encoding the message in the data payloads. Suppose

that at this moment, D2 obtains M ′ < Mmin CFRs. Since the number of CFRs

is insufficient, D2 still stays in the receiver mode. Notice that, if D2 acquires

sufficient CFRs in this stage, D2 would switch to the transmitter mode and

send an ACK frame to D1, and the procedure would continue from t7.

t3: D1 does not receive the ACK frame from D2 and thus switches back to the

transmitter mode and continues data transmission.

t4: D2 receives the targeted Mmin CFRs and switches to the transmitter mode. It

then transmits an ACK signal to D1. Nevertheless, since D1 is in transmitter

mode, the ACK signal transmission fails.

t5: D2 switches to receiver mode to decide whether D1 sends a frequency hopping

request (REQ) which is encoded into the data payloads. Due to the failure of

the ACK signal transmission at t4, D1 is unable to send the REQ signal.

t6: D1 switches to the receiver mode again.
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Figure 3.3: The timing diagram for frequency hopping.

t7: D2 switches to the transmitter mode again and sends out another ACK signal.

t8: D1 receives the ACK signal and switches to the transmitter mode to send out an

REQ. However, Device 2 is still in the transmitter mode and cannot receive

the request at this moment.

t9: D2 switches to the receiver mode and receives the REQ signal because that D1

stays in the transmitter mode.

t10: D2 begins the process of tuning its center frequency to f1.

t11: D2 successfully tunes its center frequency to f1 and awaits the transmission

from D1 at f1 as well. Since D1 is still transmitting using f0, D2 is unable to

decode the signal.

t12: D1 also tunes its center frequency to f1 and begins transmission.

The same protocol is repeated until CFRs from all desirable frequency bands are

measured.
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3.3 Experimental Results

3.3.1 Experimental Settings

RX

TX

Door

Figure 3.4: Experimental settings.

Fig. 3.4 shows the setups of the experiments with details given below.

3.3.1.1 Environment

The experiments are conducted in a typical office suite composed by a large

and a small office room in a multi-story building. The two office rooms are blocked

by a wall. In addition to the two large desks, the indoor space is filled with other

(a) (b) (c) (d)

Figure 3.5: TRRS matrix under different We.
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Figure 3.6: Histogram of diagonal and off-diagonal entries under different We.

furniture including chairs and computers, which are not shown in Fig. 3.4 for brevity.

3.3.1.2 Configurations

Two USRPs are used to obtain the CFRs with bandwidth configured as

W = 10 MHz. The two USRPs coordinate with each other to perform synchronous

frequency hopping using the mechanism discussed in Section 3.2. The step size of

frequency hopping is fixed at ∆f = 8.28 MHz∗. The minimum number of CFRs per

channel is set as Mmin = 10.

∗Considering the null subcarriers at both edges of the WiFi channel spectrum, we adjust the

frequency hopping step size such that the entire spectrum can be covered without spectrum holes.

Notice that the proposed IPS does not require the measured frequency band to be contiguous.
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Figure 3.7: Cumulative density functions of diagonal and off-diagonal entries of the

TRRS matrix under different We.
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(ii) PTP ≥ 95% and PFP ≤ 5%.

3.3.1.3 Details of Measurement

One USRP is placed on the grid points on a measurement platform in the small

room as shown in Fig. 3.4. The center of the USRP is aligned with the grid point.

The distance between two adjacent grid points is 5cm. The other USRP is placed on

the table of the larger room. CFRs from L = 75 different grid points are measured

within an area of 70cm×20cm. For each measurement, the two USRPs sweep the

frequency band from 4.9 to 5.9 GHz, leading to a total of F = 124 measured WiFi

channels with a step size of 8.28 MHz. The effective bandwidth We is thus 1 GHz.

For each of the 75 locations, we formulate M = 10 location fingerprints.
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3.3.2 Metrics for Performance Evaluation

For the M = 10 fingerprints collected at each location, we store the first

M1 = 5 CFRs into the fingerprint database in the offline phase, and consider the

other M2 = 5 fingerprints as samples collected in the online phase. Denote the m-th

location fingerprint formulated at location ` as Ĥ`, we calculate the TRRS matrix

R with the (i, j)-th entry of R given by T R[Ĥ`, Ĥ`′ ], where m = Mod(i,M1) + 1,

` = i−m−1
M1

+ 1, n = Mod(j,M2) + 1, and `′ = j−n−1
M2

+ 1. Here, Mod is the modulus

operator, i is termed as the training index, and j is termed as the testing index.

We define the entries of R calculated from CFRs obtained at the same locations

as the diagonal entries, while those calculated using CFRs obtained from different

locations as the off-diagonal entries. We demonstrate the histograms and cumulative

density functions for the diagonal and off-diagonal entries.

Based on R, we evaluate the localization performances using the metrics of

the true positive rate, denoted as PTP, and the false positive rate, denoted as PFP.

PTP is defined as the probability that the IPS localizes the device to its correct

location, while PFP captures the probability that the IPS localizes the device to a

wrong location, or fails to localize the device.

In the performance evaluation, the CFR sifting parameter τ is set as 0.8.
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3.3.3 Performance Evaluation

3.3.3.1 TRRS Matrix under Different We

Fig. 3.5 demonstrates R with We ∈ [10, 40, 120, 1000] MHz. We observe that

when We = 10 MHz, there exists many large off-diagonal entries in R, indicating

severe ambiguities among different locations. When the total bandwidth We in-

creases, the ambiguities among different locations are significantly eliminated, while

the TRRS within the same location are almost unchanged.

3.3.3.2 Distribution of Diagonal and Off-diagonal Entries under Dif-

ferent We

Fig. 3.6 visualizes the distribution of the diagonal and off-diagonal entries of

R with different We ∈ [10, 40, 120, 1000] MHz using histograms. Statistics of the di-

agonal and off-diagonal entries are shown as well. As we can see, the TRRS values

at the same locations are identical with different We, implying high stationarity of

the proposed IPS. On the other hand, the off-diagonal entries are more suppressed

and approach a Gaussian-like distribution when We increases. We also observe an

enlarged gap between the diagonal and off-diagonal entries when We increases, in-

dicating a better separability among different locations. The increase of We also

reduces the variations of diagonal and off-diagonal entries, as shown by the decreas-

ing standard deviations. Moreover, a large We removes the outliers in the diagonal

entries: when We = 10 MHz, the minimum value of diagonal entries is 0.153, while
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the minimum value increases to 0.915 when We = 1000 MHz. Thus, a large We

improves the robustness of the IPS against outliers.

3.3.3.3 Cumulative Density Functions of Diagonal and Off-diagonal

Entries under Different We

In Fig. 3.7, we demonstrate the cumulative density functions of diagonal and

off-diagonal entries with We ∈ [10, 20, 40, 80, 120, 300, 500, 1000] MHz. As can be

seen from the figure, a large We reduces the spread of both the diagonal and off-

diagonal entries, which agrees with the results shown in Fig. 3.6.

3.3.3.4 Mean and Standard Deviation Performances under Different

We

Fig. 3.8 depicts the impact of We on the mean and standard deviation perfor-

mances for both diagonal and off-diagonal entries. The upper and lower bars indicate

the ±σ bounds with respect to the average, where σ stands for the standard de-

viation. We conclude that: a large We improves the distinction among different

locations, but also reduces the variation of the TRRS at the same locations as well

as among different locations. In other words, a large We makes the IPS performance

more stable and predictable.
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3.3.3.5 Threshold Γ Settings under Different We

Fig. 3.9 depicts the smallest threshold Γ under We = [20, 60, 100, · · · , 1000]

MHz to achieve (i) PTP = 100% and PFP = 0% (ii) PTP ≥ 95% and PFP ≤ 5%. We

observe a decreasing in Γ when We is larger, which can be justified by the fact that

the gap between the diagonal and off-diagonal entries enlarges when We becomes

larger. When We = 20 MHz, the IPS fails to achieve PTP = 100% and PFP = 0%.

Fig. 3.9 also implies that we can achieve a perfect 5cm localization if Γ is chosen

appropriately.

Based on the experimental results, we conclude that a large We is imperative

for the robustness, stability, and performance of the proposed IPS. By formulat-

ing the location fingerprint that concatenates multiple channels, the proposed IPS

achieves a perfect centimeter localization accuracy in an NLOS environment with

one pair of single-antenna WiFi devices.

3.4 Discussion

3.4.1 Achievable Localization Accuracy

In Section 3.3, we demonstrate the centimeter-level localization accuracy of

the proposed IPS with a fine-grained measurement of 5cm resolution. In a recent

experiment, we refine the measurement resolution to 0.5cm to study the accuracy.

The TRRS near the intended location is shown in Fig. 3.10 with We = 125 MHz,

which demonstrate that the localization accuracy can reach 1 ∼ 2cm in an NLOS
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Figure 3.10: TRRS near the intended location with a measurement resolution of

0.5cm.

environment.

3.4.2 Complexity of Fingerprint Collecting

In this work, the CFRs are collected in a two-dimensional (2D) space. In prac-

tice, localization of an object requires CFR measurement from a three-dimensional

(3D) space with a centimeter-level granularity. In this case, the complexity of CFR

measurement can be too high to be practical, especially for a large indoor space.

The burden of measurement can be significantly reduced since we only need

to obtain the fingerprints of a limited number of areas which are more critical than

the others. For instance, in an office, the main entrance and exit of the office as

well as the entrance to some office rooms are of higher importance than the other
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areas, while in a museum, areas closer to the paintings could be more important.

Fine-grained CFR measurements can be confined to these areas-of-interest. On the

other hand, the efficiency of measurement can be boosted by automation techniques

such as robotics.

3.4.3 Scalability

We notice that most of the calculations in the offline phase and online phase

can be interpreted as linear operations. Thus, the computational complexity of the

proposed IPS scales linearly with the number of location fingerprints stored in the

database. As the offline phase can in general tolerate a large delay, the increase in

the computational complexity of the offline phase is less significant. On the other

hand, the increase of the complexity imposes a challenge to the online phase since

the online phase is much more time-sensitive than the offline phase. This issue

becomes more severe when a huge number of fingerprints are stored in the database.

To deal with this problem, other information such as the sensory information

or the RSSI values can be retrieved to supplement the proposed IPS with a coarse

position estimation. Then, the proposed IPS can choose a subset of the fingerprints

from the database that are collected nearby the estimated location to formulate a

refined estimation.
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3.5 Summary

In this chapter, we have proposed a WiFi-based IPS that exploits the fre-

quency diversity to achieve centimeter accuracy for indoor localization. The IPS

fully harnesses the frequency diversity by CFR measurements on multiple channels

via frequency hopping. Impacts of synchronization errors and interference are miti-

gated by CFR sanitization, sifting, and averaging. The averaged CFRs of different

channels are then concatenated together into location fingerprints to augment the

effective bandwidth. The location fingerprints are stored into a database in the

offline phase and are used to calculate the TRRS in the online phase. Finally, the

proposed IPS determines the location based on the TRRS. Extensive experiment

results of measurements on a 1 GHz frequency band demonstrate the centimeter lo-

calization accuracy of the proposed IPS in a typical office environment with a large

effective bandwidth.
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Chapter 4

Time-Reversal Indoor Positioning with Spatial Diversity

As discussed in Chapter 3, a large effective bandwidth can be achieved on

WiFi devices via frequency hopping to facilitate centimeter accuracy localization.

A drawback with this approach lies in that frequency hopping is time-consuming and

not power efficient. Moreover, as the proposed system co-exists with other WLAN

networks, the dynamics of the WiFi traffic from the other WLAN networks could

inject random interferences into the CFRs that undermines the indoor localization

performance, especially in areas with a dense deployment of WiFi APs.

Realizing these potential issues of indoor localization using frequency diver-

sity, in this chapter, we turn to the spatial diversity available in MIMO-OFDM

systems. We demonstrate that a large effective bandwidth can also be formulated

MIMO-OFDM devices via the exploitation of spatial diversity. Compared with the

frequency-hopping approach, the multi-antenna-based approach chapter is more ef-

ficient both in time and power.

The proposed multi-antenna-based scheme optimally concatenates available

bandwidths on antenna links to formulate a much larger effective bandwidth. Sim-

ilar to the scheme shown in Chapter 3, the proposed scheme consists of an offline

phase and an online phase. In the offline phase, the proposed IPS combines CFRs
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from multiple locations-of-interest on several antenna links which are combined into

location fingerprints, while in the online phase, the IPS obtains instantaneous CFRs

from multiple antennas and calculates TRRS between the instantaneous CFRs and

those in the online phase. The residual synchronization errors are mitigated in

the computations of TRRS. Finally, the IPS determines the locations based on the

TRRS.

We conduct extensive experiments in an office environment using a single pair

of off-the-shelf WiFi devices to illustrate that the proposed IPS can achieve detec-

tion rates of 99.91% and 100%, while triggering negligible false alarm rates of 1.81%

and 1.65% under line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios respec-

tively for locations with a unit distance of 5cm. We also show that the proposed IPS

is robust against environment dynamics. Moreover, experiment results with a unit

distance of 0.5cm demonstrate that 1 ∼ 2cm accuracy is achievable with the pro-

posed IPS. To the best of our knowledge, this is the first work that achieves 1 ∼ 2cm

localization accuracy under NLOS scenarios using a single pair of off-the-shelf WiFi

devices leveraging spatial diversity.

The rest of this chapter is organized as follows. In Section 4.1, we elaborate on

the localization algorithm for the IPS. In Section 4.2, we demonstrate the experiment

results. Finally, conclusions are drawn in Section 4.3.
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4.1 Localization Algorithm

In this section, we introduce the indoor localization algorithm with multi-

antenna WiFi devices.

4.1.1 Offline Phase

During the online phase, we collect R CFRs from each of the L locations-of-

interest. The L×R CFRs are stored into the CFR database denoted as Dtrain. The

i-th column of Dtrain is given by Ĥi with Ĥi, and i is the training index. Denote

the realization index as r and the location index as `, the training index i can be

mapped from (r, `) as i = (`− 1)R + r.

4.1.2 Online Phase

The problem of determining the device location can be cast into an multi-

hypothesis testing problem. More specifically, assume that we collect an instanta-

neous CFR Ĥ′ from a location `′ to be estimated. Then, we calculate the com-

bined TRRS between each CFR in Dtrain and Ĥ′ shown as (2.31), which leads to

{T R[Ĥi, Ĥ′]}i=1,2,··· ,LR. After that, we take the maximum of the multiple combined

TRRS evaluated at the same training location ` but with different realization index

r, expressed by

T R` = max
i=(`−1)R+r
r=1,2,··· ,R

T R[Ĥi, Ĥ′] , (4.1)

Now, we define a total of L+1 hypothesis H0,H1,H2, · · · ,H`, · · · ,HL, where H`,` 6=0

stands for the hypothesis that the device is located at location ` in the training
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phase, and H0 represents the hypothesis that the device is located at an unknown

location excluded from the training phase. We determine that H`,` 6=0 is true, i.e.,

the device is located at the `-th location in the training database, if the following

two conditions are satisfied:

T R` ≥ Γ, T R` = max
`′=1,2,··· ,L

T R`′ , (4.2)

where Γ is a threshold in the range of [0, 1]. On the other hand, if T R` ≤ Γ, ∀` =

1, 2, · · · , L, we determine that H0 is true, i.e., we are unable to localize the device

since there is no match between the instantaneous CFRs and those in Dtrain.

4.1.3 Configuration of Threshold

The IPS performance is significantly affected by Γ. A well-chosen Γ leads to

a high detection rate and incurring negligible false alarm rate. The detection rate,

denoted by PD(Γ), characterizes the probability that the IPS successfully determines

the correct locations of the device under Γ, while the false alarm rate, denoted as

PF (Γ), captures the possibility that the IPS makes incorrect decisions on the device

location under Γ.

With a constraint imposed on the detection rate as PD,0 and the false alarm

rate as PFA,0, the IPS learns Γ automatically from CFRs in Dtrain in the training

phase. First of all, the IPS computes the TRRS matrix R based on all CFRs in the

training database Dtrain, with the (i, j)-th entry of R given by T R[Ĥi, Ĥj], where

Ĥi and Ĥj are the i-th and j-th CFR captured in the training phase, respectively.

Notice that [R]i,i , 1. Then, the IPS evaluates (PD(Γ), PFA(Γ)) for a variety for Γ,
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until it finds a specific Γ? such that PD(Γ?) ≥ PD,0 and PFA(Γ?) ≤ PFA,0. Finally,

Γ? is utilized as the threshold in the positioning phase shown in (4.2).

Figure 4.1: Setups for the experiments.

Figure 4.2: The WiFi prototype for the proposed IPS and the measurement structure

used in the experiments.
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4.2 Experimental Results

4.2.1 Experimental Settings

4.2.1.1 Environment

The experiments are conducted in a typical office in a multi-storey building.

The indoor space is occupied by desks, computers, chairs, and shelves.

4.2.1.2 Devices

We build several prototypes equipped with off-the-shelf WiFi devices. Each

WiFi device is equipped with 3 omnidirectional antennas to support 3 × 3 MIMO

configuration. Based on functionalities, these WiFi devices can be further classified

as APs and Stations (STAs). The center frequency of each AP is configured as 5.24

GHz. The prototype is shown in Fig. 4.2.

4.2.1.3 Details of Experiments

We conduct 7 experiments in total to assess the performance of the proposed

IPS with settings illustrated in Fig. 4.1. Experiment (Exp.) 1 ∼ 4 are conducted

under a measurement resolution of 5cm to analyze the performance under a static

and a dynamic environment with details given below.

Exp. 1 investigates the localization performance of the proposed algorithm with a

5cm resolution. The WiFi devices are placed under the LOS setting, denoted

as Exp. 1a, as well as the NLOS setting, denoted as Exp. 1b. For each
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experiment, we measure the CFRs of 100 locations on a measurement structure

as shown in Fig 4.2. The measurement resolution is d = 5cm. For each

location, 10 CFRs are measured.

Exp. 2 sheds light on the impact of human activities. One participant is asked to

walk randomly in the vicinity of the STA on the measurement structure with

d = 5cm as the unit distance. The distances between the participant and the

STA range from 8 to 10 feet. The AP is placed at the same NLOS position as

in Exp. 1b. CFRs from 40 different locations on the structure are collected,

with 10 CFRs per location.

Exp. 3 analyzes the localization performance when we introduce environment dy-

namics via moving the furniture in the office. We measure a total of 5 locations

on the measurement structure with a resolution of 5cm. For each location, we

first measure 10 CFRs without furniture movement, followed by another 10

CFRs measured after we move the position of a desk near the measurement

structure. Then, we measure 10 CFRs after we move a chair in the conference

room and the last 10 CFRs after we move another chair in the conference

room.

Exp. 4 studies the impact of door opening/closing on the localization performance.

The AP is placed in an office room, with STA located in a closet near the

entrance of the office suite. The direct link between the AP and the STA is

blocked by two concrete walls. Then, a participant is asked to open and close

the door of a room in the middle between the AP and STA. CFRs from 4
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positions in the closet are captured with 10 CFRs per location for each door

status.

On the other hand, Exp. 5 ∼ 7 studies several important aspects of the proposed

IPS, where

Exp. 5 studies the achievable accuracy of proposed IPS. The STA is placed at the

same measurement structure with Exp. 1, but with a much finer resolution

with d = 0.5cm. CFRs from a total of 400 locations on the grid points of a

rectangular area are measured, with 5 CFRs per location.

Exp. 6 studies the effect of the variations in the synchronization parameters. The

positions of the AP and the STA are fixed, and we turn on and off the power

of the AP to enforce the reinitialization the phase locked loop at the AP. The

power cycling is repeated 20 rounds with 10 CFRs for each round.

Exp. 7 analyzes the long-term behavior of the IPS. One AP and four STAs are

deployed in the office with positions shown in Fig. 4.1(g). The CFRs are

collected every 10 minutes from the four STAs. The IPS is kept running for 631

hours (26 days) continuously. For each measurement, we collect 5 CFRs from

each STA. In the 26 days of measurement, the office is fully occupied by around

ten people during weekdays and occasionally occupied during weekends. Also,

the furniture is moved randomly every day.

The effective bandwidths We in the experiments is calculated from (2.34) with Nu =

114, N = 128, and D = 1, 2, 3, · · · , 9, with the maximum We as 321 MHz obtained

by exploiting all available links under the 3× 3 MIMO configuration, e.g., D = 9.
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4.2.2 Metrics for Performance Evaluation

For Exp. 1, 2, 3, 4, we evaluate the detection rate PD(Γ?) and the false alarm

rate PFA(Γ?) under threshold Γ?. More specifically, we choose 5 out of the 10 CFRs

of each location randomly and consider them as the CFRs obtained in the training

phase for each location-of-interest, which are assembled into the training database

Dtrain. The remaining 5 CFRs of each location are considered as the CFRs obtained

in the positioning phase and are arranged into the testing database denoted by Dtest.

Using the scheme presented in Section 4.1, we calculate PD(Γ) and PFA(Γ) for

Γ ∈ [0, 1] based on the TRRS matrix R calculated from Dtrain. By comparing PD(Γ)

against PFA(Γ) under various Γ, we demonstrate the receiver operating characteristic

(ROC) curve to highlight the trade-offs between detection and false alarm. Then, we

choose the minimum Γ? that satisfies the objective PD(Γ?) ≥ 95%, PFA(Γ?) ≤ 2%

as the threshold. Lastly, we calculate the TRRS matrix R′ from Dtest and evaluates

P ′D(Γ?) and P ′FA(Γ?) based upon R′ and Γ?. To fully utilize the collected CFRs, we

repeat this process 5 times by randomizing the selections of CFRs for the training

phase and positioning phase. Finally, we compute the average of Γ?, P ′D(Γ?), and

P ′FA(Γ?), denoted as Γ?, P
′
D, and P

′
FA, respectively.

In Exp. 5, we illustrate the distribution of the TRRS on the measurement

structure. In particular, we assemble the CFRs obtained from the middle point of

the 10cm × 10cm rectangular grid into Dtrain, and keep the CFRs of all locations

into Dtest. Then, we compute the TRRS matrix R based on Dtrain and Dtest.

In Exp. 6, we build Dtrain with all CFRs, with Dtest the same as Dtrain. Thus,
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the TRRS matrix R encapsulates the impact of time-varying synchronization pa-

rameters on the localization performance.

In Exp. 7, for each STA, we construct Dtrain using the 5 CFRs collected in the

first measurement, and keeps all CFRs measured at different time into Dtest. After

calculating the TRRS matrix R, we take the column average of R, denoted as R,

which represents the average TRRS between the CFR in Dtrain and those in Dtest of

every 10 minutes. Using R, we evaluate the detection rate and false alarm rate.

4.2.3 Performance Evaluation
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Figure 4.3: Results of Exp. 1a under LOS.
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Exp. 1a: LOS with 5cm Resolution

In Fig. 4.3(a), (b), (c), we demonstrate the TRRS matrix R with different We

under the LOS scenario. As we can see, increasing We shrinks the off-diagonal

components of R. In other words, a larger We alleviates the ambiguity among

different locations. On the other hand, the TRRS values measured at the same

location only degrades slightly and are still close to 1 with a large We. The net effect

of using a large We is a larger margin between the TRRS calculated at the same

location and among different locations, evidencing an enhanced location distinction.

The ROC curve in Fig. 4.3(d) demonstrates that the IPS achieves nearly perfect

localization performance with P
′
D ≥ 99.84% and P

′
FA ≤ 1.93% under different We.

When We = 36 MHz, we can achieve P
′
D = 100% and P

′
FA = 1.92%, which implies

that even there exists ambiguity among locations as shown in Fig. 4.3(a) when

We = 36 MHz, we are able to find a good Γ? to distinguish different locations.

However, in general, the threshold Γ? is large when We is small. Therefore,

under a small We, the IPS is highly sensitive to noise and deterioration of CFRs

associated with different locations, e.g., when there exists significant environment

dynamics due to human or object movement. On the other hand, Γ? is much smaller

when We is large, which leaves a larger margin for noise and dynamics and thus im-

proves the robustness of the proposed IPS. This is justified by Fig. 4.4, where we

demonstrate Γ? under different We for Exp. 1a. It can be seen that a threshold

as large as 0.86 is required when We = 36 MHz, which decreases as We increases.

When We = 321 MHz, the threshold drops to 0.63.
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Figure 4.4: Γ? under different We.

Exp. 1b: NLOS with 5cm Resolution

In Fig. 4.5(a), (b), (c), we show the TRRS matrix R with different We under the

NLOS scenario. Comparing with Fig. 4.3(a), (b), (c), we see that the location am-

biguity is lower for the NLOS scenario than the LOS scenario, indicating by the

smaller TRRS values measured between different locations. This can be justified by

that the channel energy spreads over more multipath components under NLOS than

LOS and provides richer information of the environment. Similar to the results of

Exp. 1a, we find that a larger We mitigates the location ambiguity and enhances

the overall IPS performance, with P
′
D = 100% and P

′
FA = 1.65% when We = 321

MHz. Additionally, from Fig. 4.4, we observe that Γ? decreases more rapidly when

We enlarges than the LOS case, reducing Γ? from 0.78 under We = 36 MHz to 0.53

when We = 321 MHz.
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Figure 4.5: Results of Exp. 1b under NLOS.
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The negligible false alarm rates in Exp. 1 also imply that the localization error

is 0cm under most cases. In fact, the false alarm rates can be further reduced by

increasing Γ?, leading to a false alarm rate of 0.06% and a detection rate of 99.48%

under Γ? = 0.74 for the LOS case, and 0% false alarm rate and a detection rate of

99.45% under Γ? = 0.71.

Exp. 2: Effect of Human Activities
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Figure 4.6: Results of Exp. 2 with human dynamics.

Fig. 4.6 shows the impact of human activities on the performance of the proposed

IPS. From Fig. 4.6(a), (b), (c), we find that a large We improves the robustness

65



against environment dynamics. Fig. 4.6(d) illustrates the ROC curve using different

We and further verifies that a large We can enhance the localization performance,

leading to P
′
D = 99.88% and P

′
FA = 1.66% when We = 321 MHz. As shown in

Fig. 4.4, when We = 321 MHz, a threshold of 0.52 suffices to achieve a good perfor-

mance.
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Figure 4.7: Results of Exp. 3 with furniture movement.

Exp. 3: Impact of Furniture Movement

In Fig. 4.7, we show the performance in the presence of furniture movement. Simi-
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lar to the observations in Exp. 1 and Exp. 2, a larger We enhances the robustness

against the dynamics from furniture movement and reduces ambiguity among loca-

tions. As can be seen from Fig. 4.7, location 1 and location 2 are highly correlated

implied by a large TRRS value, and the ambiguity between location 1 and 2 is

alleviated when We increases to 178 MHz and 321 MHz, leading to an improved

detection rate and false alarm rate. When We = 321 MHz, we achieve P
′
D = 98.86%

and P
′
FA = 1.95% under a threshold of 0.50 as shown in Fig. 4.4.

Also, we notice that the performance does not improve monotonically with

We. This is because the quality of different links in the multi-antenna WiFi system

differs due to the discrepancy in their noise and interference levels. Thus, combin-

ing multiple links based on the channel energies might not be optimal in this case.

This can be solved by calculating the TRRS using criterion robust against noise and

interference on different WiFi links.

Exp. 4: Impact of Door

The impact of door status on localization is more severe than the human activities

when the door acts as a major reflector in the propagation of electromagnetic waves

and thus its status greatly affects the CFRs.

In Fig. 4.8, we illustrate the results under different We. Obviously, a large We

is indispensable in this case, since the TRRS values measured at location 1 and 2

degrade to 0.42 and 0.17 under different door status with We = 36 MHz, and the

IPS fails to find a Γ? to achieve at least 95% detection rate and at most 2% false

67



10 20 30 40

Testing Index

5

10

15

20

25

30

35

40

T
ra

in
in

g
 I
n
d
e
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) We = 36 MHz

10 20 30 40

Testing Index

10

20

30

40

T
ra

in
in

g
 I
n
d
e
x

0

0.2

0.4

0.6

0.8

1

(b) We = 178 MHz

10 20 30 40

Testing Index

10

20

30

40

T
ra

in
in

g
 I
n
d
e
x

0

0.2

0.4

0.6

0.8

1

(c) We = 321 MHz

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

False Positive Rate

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru
e
P
o
si
ti
v
e
R
a
te

We = 36 MHz, NA

We = 107 MHz, NA

We = 178 MHz, NA

We = 249 MHz, P
′

D = 96.94%, P
′

F = 1.67%

We = 321 MHz, P
′

D = 98.39%, P
′

F = 1.43%

(d) ROC curve

Figure 4.8: Results of Exp. 4 with door effect.
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alarm rate. On the other hand, increasing We increases to 321 MHz partially recov-

ers the similarities of the CFRs collected at the same location with different door

status, and we achieve P
′
D = 98.39% and P

′
FA = 1.43%. This could be justified

by the inherent spatial diversity naturally existing in multi-antenna WiFi systems

since different links can be considered uncorrelated and thus sense the environment

from different perspectives. Therefore, even the door affects a majority of the mul-

tipath components on some WiFi links, its impact on other WiFi links is much less

pronounced. Fig. 4.4 shows that the target of more than 95% detection rate and

less than 2% false alarm rate is achievable when We ≥ 249 MHz. In conclusion, a

large We is paramount for the proposed IPS when there exists strong environmental

dynamics.

(a) (b) (c) (d) (e)

Figure 4.9: Impact of We on the TRRS. (a) Exp. 1a, LOS under static environment

(b) Exp. 1b, NLOS under static environment (c) Exp. 2, dynamic environment

with human activities (d) Exp. 3, dynamic environment with furniture movement

(e) Exp. 4, dynamic environment with door opening and closing.

Impact of Effective Bandwidth on the CDF of TRRS
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We observe from the analysis on the results of Exp. 1, 2, 3, and 4 that the gap

between the TRRS measured at the same locations and among different locations

enlarges with respect to an increased We. To further validate the observation, we

draw the cumulative density functions (CDFs) of the TRRS values in Fig. 4.9 under

various We, where the solid lines represent the CDFs with We = 321 MHz. It shows

that the TRRS values among different locations are more concentrated in a region

with a small average of TRRS when We is large, while the TRRS values measured

at the same locations are still highly concentrated in a region with an average TRRS

close to 1 for Exp. 1a and Exp. 1b. The decrease of the TRRS at the same location

is more significant for Exp. 2, 3, and 4. Yet, the degradation is still within the

tolerance level as implied by the P
′
D and P

′
FA performances. Therefore, it is crucial

to use a large We to enhance both performance and robustness.

(c)(b)(a)

Figure 4.10: Results of Exp. 5 under a measurement resolution of 0.5cm. (a)

We = 36 MHz (b) We = 178 MHz (c) We = 321 MHz.

Exp. 5: Results under 0.5cm Measurement Resolution
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Fig. 4.10(a), (b), (c) visualize the TRRS matrix R calculated under different We.

We observe that large TRRS values are highly concentrated within a small and

uniform circular area with a radius of 1 ∼ 2cm surrounding the middle point when

We ≥ 178 MHz, while the TRRS are more decentralized when We = 36 MHz.
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Figure 4.11: Decaying of TRRS with distance in Exp. 5.

Fig. 4.11 shows the average TRRS decay along different directions calculated

using R. A larger We accelerates the decay of the TRRS values and improves the

location distinction. With a distance larger than 1cm, the TRRS drops below 0.75.

Therefore, with an appropriate threshold, the proposed IPS can achieve an accuracy

of 1 ∼ 2cm.

Exp. 6: Impact of Power Cycling on Localization Performance
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(b)(a) (c)

Figure 4.12: Results of Exp. 6. (a) We = 36 MHz (b) We = 178 MHz (c) We = 321

MHz.

Fig. 4.12 shows R with different We for Exp. 7. Clearly, when We = 36 MHz, there

exists large fluctuation in the TRRS and the localization performance is deterio-

rated. The performance loss can be remedied by using We ≥ 178 MHz, which again

demonstrates the importance of a large We.

Exp. 7: Localization Performance over 26 Days

In Fig. 4.13, we sketch the time evolution of the TRRS evaluated at the same STA

locations and among different STA locations for different STAs in the 26 days of

measurement. We observe that the TRRS changes with time due to the environ-

ment variations. We also find that when We = 321 MHz, the decay in TRRS is less

severe than the case with We = 36 MHz.

In Fig. 4.13(e),(j),(o), we display the ROC curves for the 4 STAs under dif-

ferent We. Obviously, in comparison with the results of We = 36 MHz, using a We

as large as 178 MHz and 321 MHz combats the degradation incurred by inevitable

environment changes and improves the IPS performance by a large margin. There-
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Figure 4.13: Results of Exp. 7 over 26 days of measurement.
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fore, using a large We can greatly reduce the overhead introduced by the training

phase since it becomes unnecessary to update Dtrain frequently.

Although the distances between the STAs in this experiment exceed 5cm, the

results would be very similar if these STAs are placed closer at a centimeter level

with a large We. This is because the TRRS values calculated between two locations

are identical as long as the distance between them exceeds 5cm as shown in Fig. 4.3

and Fig. 4.5.

Results under a Universal Γ?

In Exp. 1, 2, 3, 4, we assume that the proposed IPS learns a specific Γ? from Dtrain

to achieve P
′
D ≥ 95% and P

′
FA ≤ 2%. In practice, due to the randomness of the

environment, we might only be able to roughly find a fixed Γ? based on a very lim-

ited training database without much dynamics and the performance might degrade

consequently. To investigate the performance loss under a fixed Γ?, we configure Γ?

as 0.6 and We as 321 MHz.

The performances are summarized into Table 4.1, which shows that except

Exp. 4, the proposed IPS still achieves a detection rate higher than 96.61% with a

false alarm rate smaller than 3.96%. The performance of Exp. 4 degrades but still

maintains a detection rate of 85% and a false alarm rate of 0.

In practice, we perform a large number of experiments in a variety of environ-

ment. The results reveal that the 1 ∼ 2cm accuracy is universal instead of limited

only to a small area, given that the number of multipath components is sufficient.
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Exp. 1

LOS

Exp. 1

NLOS

Exp. 2

Human

Activities

Exp. 3

Furniture

Movement

Exp. 4

Door

Effect

Detection Rate (%) 99.94 100 99.72 96.61 85.00

False Alarm Rate (%) 3.96 0.14 0.01 0 0

Table 4.1: Performances with Γ = 0.60 and We = 321 MHz.

4.3 Summary

In this chapter, we have proposed a WiFi-based IPS leveraging the TR focusing

effect that achieves centimeter-level accuracy for indoor localization. The proposed

IPS fully utilize the spatial diversity in MIMO-OFDM WiFi systems to formulate a

large effective bandwidth. Extensive experimental results show that with a measure-

ment resolution of 5cm, the proposed IPS achieves true positive rates of 99.91% and

100%, and incurs false positive rates of 1.81% and 1.65% under the LOS and NLOS

scenarios, respectively. Meanwhile, the IPS is robust against the environment dy-

namics caused by human activities and object movements. Experiment results with

a measurement resolution of 0.5cm demonstrate a localization accuracy of 1 ∼ 2cm

achieved by the proposed IPS.
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Chapter 5

High Accuracy Vital Sign Monitoring

In addition to centimeter accuracy indoor localization presented in Chapter 3

and Chapter 4, vital sign monitoring is another very important functionality in the

IoT ecosystem. In this chapter, we show the feasibility of using CFRs and time-

reversal technique for vital sign monitoring by proposing TR-BREATH, a WiFi-

based contact-free breathing monitoring system that detects and monitors multi-

person breathing.

Conventional breathing monitoring schemes are invasive in that physical con-

tact with human bodies is a must. Contact-free breathing monitoring schemes are

developed to overcome the drawbacks of conventional schemes for in-home breathing

monitoring. Among them, schemes driven by RF techniques are the most promising

candidates due to their abilities to sense breathing in a highly complicated indoor

environment by leveraging the propagation of EM waves. In terms of techniques,

these schemes can be classified into radar-based and WiFi-based. Among the radar-

based schemes, Doppler radar is commonly used which measures the frequency shift

of the signals caused by the periodic variations of the EM waves reflected from

human bodies [47]. Recently, Adib et al. present a vital sign monitoring system

that uses USRP as the RF front-end to emulate a frequency modulated continuous

76



radar (FMCW) [11]. However, the requirement of specialized hardware hinders the

deployment of these schemes.

On the other hand, WiFi-based schemes are infrastructure-free since they are

built upon the existing WiFi networks available indoor. RSSI is often used due to

its availability on most WiFi devices. In [9], Abdelnasser et al. present UbiBreathe

that harnesses RSSI on WiFi devices for breathing estimation. However, UbiBreathe

is accurate only when users hold the WiFi devices close to their chests. Another

exploitable information on WiFi devices is CFR, a fine-grained information that

portraits the EM wave propagation. The scheme proposed by Liu et al. in [40]

is one of the first few CFR-based breathing monitoring approaches. Nevertheless,

they assume the number of people to be known. Moreover, periodogram is used for

spectral analysis that needs a relatively long time for accurate breathing monitoring.

TR-BREATH characterizes the CFR temporal variations via TRRS. The TRRS

values are further analyzed by the Root-MUSIC algorithm to produce breathing

rate candidates. Key statistics are derived based on these candidates to facilitate

breathing detection. In detection of breathing, TR-BREATH estimates the multi-

person breathing rates via affinity propagation [32], likelihood assignment, and clus-

ter merging. Based on the resultant cluster likelihoods, TR-BREATH formulates

an estimation on the number of people. Also, TR-BREATH makes full use of the

sequence numbers in WiFi packets to enhance its robustness against packet loss,

which is very common in areas with a dense deployment of WiFi devices.

Extensive experiments in an office environment demonstrate a perfect detec-

tion rate for breathing within 63 seconds of measurements. Moreover, with only
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10 seconds of measurements, TR-BREATH achieves 99% accuracy for single-person

breathing rate estimation under NLOS scenarios. For multi-person breathing moni-

toring, TR-BREATH achieves a mean accuracy of 98.65% for a dozen people under

LOS and 98.07% for 9 people under NLOS, both with 63 seconds of measurement.

With the knowledge of the maximum number of people, TR-BREATH can count the

people number with an error around 1. Moreover, TR-BREATH is robust against

packet loss which is very common in indoor spaces.

The rest of this chapter is organized as follows. Section 5.1 elaborates on

the algorithm of TR-BREATH. Section 5.2 demonstrates the experimental results

for both single-person and multi-person LOS and NLOS scenarios. Section 5.3

demonstrates the performances of TR-BREATH in the presence of a few practical

issues. Finally, Section 5.4 concludes this chapter.

5.1 Algorithm

In this section, we first explain how to extract breathing information from the

TRRS matrix. Then, we present the details of different modules of TR-BREATH

in details.

Remark 1 In TR-BREATH, CFRs are collected from multiple links on a specific

WiFi channel, i.e., F = 1. The total number of links is given as D = Ntx ×Nrx.

Remark 2 In TR-BREATH, we calculate the complex-valued TRRS T Rφ[Ĥ, Ĥ′]

instead of the real-valued TRRS T R[Ĥ, Ĥ′]. This is mainly because that the phase

information embedded in the CFR is also very important for breathing monitoring
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in addition to the amplitude.

5.1.1 Extracting Breathing Rates using Root-MUSIC

Root-MUSIC is a variant to the well-known MUltiple SIgnal Classification

(MUSIC) algorithm [51]. It is a super-resolution subspace-based spectral analysis

algorithm widely used in signal processing applications [49]. Assume a total of N

CFRs sampled uniformly with an interval of Ts, we can calculate the N ×N TRRS

matrix R based on (2.31); the (i, j)-th element of R given as T Rφ

[
Ĥ[i], Ĥ[j]

]
where

Ĥ[i] stands for the i-th sampled multi-link CFR.

After calculating R, we perform an eigenvalue decomposition (EVD) on R to

produce

R = UΛU† , (5.1)

where † is the transpose and conjugate operator, U is a N ×N orthogonal matrix

such that U†U = I where I is a N ×N identity matrix, and Λ is a N ×N diagonal

matrix with descending real-valued diagonal entries equivalent to the eigenvalues of

R.

Secondly, the orthogonal matrix U is decomposed into a signal subspace and a

noise subspace. The signal subspace, denoted by Us, consists of the first p columns

of U, where p ≤ N − 1 is the signal subspace dimension. On the other hand, the

noise subspace, denoted by Un, consists of the last N − p columns of U.

Next, we calculate the matrix Q = UnU
†
n where X† stands for the Hermitian
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or conjugate transpose of matrix X. Then, we formulate the polynomial f(z) as

f(z) =
N−1∑
m=0

N−1∑
n=0

[Q]m,n z
gm,n , (5.2)

where [Q]m,n is the (m,n)-th element of Q, z = e−j
2πbTs

60 , and gm,n is the discrete

difference function highlighting the time difference between two CFRs normalized

to Ts which is given as

gm,n =


sm − sn, Considering Packet Loss

m− n, Otherwise .

(5.3)

By using gm,n = sm − sn, the Root-MUSIC algorithm is more robust against WiFi

packet loss. Yet, when the ambient WiFi traffic is not severe, setting gm,n as m− n

suffices.

Solving f(z) = 0 in (5.2) results in 2N − 2 complex roots denoted by ẑ =

{ẑ1, ẑ2, ẑ3, · · · , ẑ2N−2}. Since Q is Hermitian, if ẑ is a complex root of f(z) = 0,

then 1/ẑ∗ is also a complex root of f(z) = 0. In other words, the roots of f(z) = 0

come in pairs. Considering that only the phase of the complex roots carry the

information about the breathing rates, we keep the N − 1 complex roots inside the

unit circle. Then, we choose p out of the N − 1 complex roots closest to the unit

circle where p is the signal subspace dimension. The breathing rate estimation can

be formulated as

b̂i = 60× ]ẑi
2πTs

, i = 1, 2, · · · , p (5.4)

where ](x) takes the angle of the complex variable x.

Remark 3 When there exists interference from other moving objects nearby, some
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of these complex roots might be associated with the motion interference. In partic-

ular, under some circumstances, the power of the motion interference can be even

stronger than the breathing signal. Fortunately, as shown in Section 5.3, as long as

the WiFi devices are far away from the motions, the impact of motion can be largely

neglected, and most of the complex roots of f(z) in (5.2) are still associated with

breathing.

Moreover, we realize that the breathing rates are limited to a finite range

[bmin, bmax] since people cannot breathe either too fast or too slow, and we sift the

breathing rate estimations b̂ = [b̂1, b̂2, · · · , b̂p] by discarding those outside the range

of [bmin, bmax]. This leads to a reduced number of breathing rate candidates denoted

by b̃ = [b̂r1 , b̂r2 , · · · , b̂rp′ ], where p′ is the number of the remaining complex roots

and ri is the index of the i-th remaining estimation.

5.1.2 Architecture of TR-BREATH

The architecture of TR-BREATH is illustrated in Fig. 5.1. We assume the

availability of CFRs on a total of D = Ntx × Nrx links in a MIMO-OFDM WiFi

system.

5.1.3 CFR Sanitization

Due to the synchronization errors as introduced in Chapter 2, the CFRs must

be sanitized before they can be used. Different from the explicit sanitization pro-

posed in [52], the CFRs are sanitized implicitly when calculating the TRRS as shown
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Affinity Propagation

Likelihood Assignment

1 2 3 4 5

Figure 5.1: Overview of the architecture of TR-BREATH

in (2.31).

5.1.4 Breathing Feature Extraction

5.1.4.1 Calculating the TRRS Matrix

Assume that we obtain N CFRs for each link. Since breathing is not strictly

stationary in the long run, calculating the N×N TRRS matrix R using the sanitized
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CFRs using (2.31) is not optimal. Instead, TR-BREATH operates with multiple

time window blocks, where each block consists of M CFRs where M ≤ N . Assume

that two adjacent time window blocks overlap by P CFRs, TR-BREATH can obtain

a total of B = bN−P
M
c+ 1 blocks.

For each block, TR-BREATH further partitions the block duration into several

overlapping time windows with W CFRs for each, with the CFRs associated with

the i-th time window given by {Ĥ[i], Ĥ[i + 1], · · · , Ĥ[i + W − 1]}. Two adjacent

time windows overlap by 1 CFRs. Here, Ĥ[i] stands for the i-th CFR vector that

contains multi-link CFRs as shown in (2.33).

5.1.4.2 Temporal Smoothing of the TRRS Matrix

To suppress the spurious estimations due to interference, TR-BREATH per-

forms temporal smoothing on the TRRS matrix for each block. It also takes the

packet loss into consideration. Firstly, for link d, block b, TR-BREATH parses the

sequence numbers for the M CFRs inside that block, denoted by

sb(N−P )+1, sb(N−P )+2, · · · , sb(N−P )+M

Then, TR-BREATH calculates the difference M ′ between the maximum sequence

number smax = sb(N−P )+M and the minimum sequence number smin = sb(N−P )+1. If

M ′ = smax − smin > M , we infer that M ′ −M WiFi packets are missing due to

ambient WiFi traffic.

Secondly, TR-BREATH calculates the M ×M TRRS matrix for link d and

block b according to (2.31), denoted as Rb,d. Then, TR-BREATH forms an extended
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TRRS matrix R′b,d with dimension M ′×M ′. The entries of R′b,d are initialized with

zeros. TR-BREATH fills the (si, sj)-th entry of R′b,d with the (i, j)-th element of

Rb,d. Equivalently speaking, R′b,d is an interpolated version of Rb,d, with entries of

zero standing for the index of the missing packets ∗. With a time window size W ,

TR-BREATH could formulate Z = M ′−W + 1 time windows in total. Meanwhile,

TR-BREATH forms a counting matrix C′b,d for link d and block b such that

[C′b,d]i,j =


1, If [R′b,d]i,j > 0

0, Otherwise .

(5.5)

Next, TR-BREATH partitions R′b,d into Z square submatrix, with the z-th

submatrix given by R′b,d,z composed by the entries of Rb,d from row z to row z+W−1

and column z to column z+W−1. The same operation is performed on C′b,d, leading

to Z square submatrix {C′b,d,z}z=1,2,··· ,Z . {R′b,d,z}z=1,2,··· ,Z and {C′b,d,z}z=1,2,··· ,Z are

accumulated as R′b,d =
∑Z

z=1 R′b,d,z and C′b,d =
∑Z

z=1 C′b,d,z. Also, we replace the

sequence numbers with [1, 2, · · · ,W ].

Then, we locate and delete the rows and columns of R′b,d and C′b,d with at least

one zero, resulting in the matrix R′′b,d and C′′b,d, both with dimension W ′×W ′ where

W ′ ≤ W . The deleted index are also removed from the updated sequence numbers

in the previous step, leading to the updated sequence numbers s′′1, s
′′
2, · · · , s′′W ′ .

Finally, we calculate the temporal smoothed matrix Rb,d with its (i, j)-th ele-

∗For example, Rb,d =

 1 0.95

0.95 1

 and s1 = 1, s2 = 3. Then, R′b,d =


1 0 0.95

0 0 0

0.95 0 1

.
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ment given by [R′′b,d]i,j/[C
′′
b,d]i,j for further processing. Fig. 5.2 shows an example of

generating Rb,d under N = 5,M = 4,M ′ = 5,W = 4,W ′ = 2, P = 1, and B = 2.

Notice that the parameters indicate the lost of one WiFi packet since M ′ −M = 1.

H[0] H[1] H[2] H[3] H[4]

H[0] H[1] H[2] H[3] 

R'b,d,1 C'b,d,1

Rb,d

Figure 5.2: Procedure of TRRS matrix smoothing

5.1.4.3 Analysis via Root-MUSIC

The smoothed W ′ ×W ′ TRRS matrix Rb,d is analyzed via the Root-MUSIC

algorithm. An eigenvalue decomposition (EVD) is invoked on Rb,d, leading to a

W ′ × (W ′ − p) noise subspace matrix U′n and thus Q′ = U′n(U′n)†. The polynomial

is modified as

f(z) =
W ′−1∑
m=0

W ′−1∑
n=0

[Q′]m,n z
gm,n . (5.6)
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where gm,n = m− n if packet loss is not considered, and gm,n = s′′m − s′′n otherwise.

Here, p should be set to the maximum possible number of people, e.g., the capacity

of a room. When the polynomial in (5.6) cannot produce results in the range

[bmin, bmax], we call f(z) = 0 insolvable and put an empty solution into a set Nb,d.

Otherwise, we save the breathing rate candidates {b̂1, b̂2, · · · , b̂p′} into a set denoted

as Sb,d, where p′ is the number of candidates after filtering. After processing all D

links, the sets {Sb,d}d=1,2,··· ,D
b=1,2,··· ,B are combined together into S as ∪Dd=1 ∪Bb=1 Sb,d and N

as ∪Dd=1 ∪Bb=1 Nb,d, where ∪ denotes the set union operator.

5.1.5 Breathing Detection

Some of the breathing rate candidates generated by the breathing feature

extraction might still be noisy estimations caused by interference and/or thermal

noise in the CFRs. Therefore, we need to assess how likely these candidates are

caused by interference and noise. If with high probability, these candidates have no

correlation with human breathing, we determine that there is no people breathing.

Otherwise, we conclude that breathing is present.

We observe from extensive experiments that: the statistics of the set S and set

N are indicator functions of the presence of breathing. In the absence of breathing,

it is more likely that the polynomial in (5.6) is insolvable, which yields a large N

and a small S in terms of their cardinalities, i.e., number of unique set elements. On

the contrary, when breathing exists, solving the polynomial in (5.6) would produce

many breathing rate candidates, giving rise to a small N and a large S. We leverage
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this observation for breathing detection.

5.1.5.1 Calculating α and β

Firstly, we formulate two statistics α and β expressed as

α =
#(N )

#(S) + #(N )
, β =

#(S)

BDp
, (5.7)

where the denominator of β stands for the total number of possible breathing rate

candidates with B blocks, D links, and p estimations per link per time window.

#(·) denotes the cardinality of a set. α indicates the insolvability of (5.6), while β

indicates the diversity of (5.6). The correlation between (α, β) and the presence of

breathing motivates us to develop a detection scheme based on the observed (α, β)

values.

5.1.5.2 Automatic Label Learning

TR-BREATH can learn the labels y associated with each (α, β) obtained in the

training phase automatically. Write θ = (α, β) for convenience, and by convention,

y equals to +1 if the associated θ is measured in the presence of breathing, and y

equals to −1 otherwise.

During the training phase, TR-BREATH makes T observations of θ, writ-

ten as {θi}i=1,2,··· ,T . Based on the observations, TR-BREATH extracts the labels

{ŷi}i=1,2,··· ,T using unsupervised label learning consisting of two phases:

1. Partition {θi}i=1,2,··· ,T into 2 classes by invoking k-means clustering [41] with
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k = 2. Denote the centroids of cluster 1 and 2 as (α̂1, β̂1) and (α̂2, β̂2), respec-

tively.

2. If α̂1 > α̂2, label all members of cluster 1 with ŷ = −1 to indicate that they

are observed in the absence of breathing. Then, label the members of cluster

2 with ŷ = +1. Similar procedure applies to the case of α̂1 < α̂2. In the rare

case that α̂1 = α̂2, label the elements within the cluster with a larger β̂ with

ŷ = +1.

5.1.5.3 SVM Classification

Based on {θi}i=1,2,··· ,T and {ŷi}i=1,2,··· ,T , we train a support vector machine

(SVM) [17], a widely used classifier. Training of the SVM generates two weight

factors denoted as ωα and ωβ signifying the importance of α and β in breathing

detection. Additionally, the training produces a bias term ωb. ωα and ωβ. After

training of the SVM, given any θ = (α, β), TR-BREATH determines the existence

of breathing when ωαα + ωββ + ωb > 0 and non-existent otherwise.

5.1.6 Breathing Rate Estimation

If breathing is detected, TR-BREATH proceeds by formulating multi-person

breathing rate estimations.
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5.1.6.1 Clustering by Affinity Propagation

The breathing rate candidates in S are fed into the affinity propagation algo-

rithm [32]. It works by passing the responsibility message to decide which estima-

tions are exemplars, and the availability message to determine the membership of an

estimation to one of the clusters. Different from k-means [41], affinity propagation

does not require the knowledge of the cluster number. Here, we assume that affinity

propagation partitions the elements of S into U clusters.

5.1.6.2 Likelihood Assignment

For each cluster, TR-BREATH evaluates its population, variance, and cen-

troid, expressed as pi, vi, and ci. Then, pi and vi are normalized as pi = pi/
∑U

i=1 pi

and vi = vi/
∑U

i=1 vi. The likelihood of cluster i, denoted by li, is calculated as

li =


0, (vi = 0, pi = 1), or pi < 2%

eωppi−ωvvi−ωcci∑U
i=1 e

ωppi−ωvvi−ωcci
, Otherwise

, (5.8)

where ωp, ωv, and ωc are positive weighting factors to account for different scales of

the corresponding terms. The likelihood assignment in (5.8) incorporates a term re-

lated to the cluster centroid ci. The insight is that a high breathing rate is less likely

than a low breathing rate in real life. Meanwhile, high breathing rate candidates

are more likely to be caused by the harmonics of breathing rates. Also, (5.8) implies

that singletons, i.e., clusters with a single element (vi = 0 and pi = 1), should be

assigned with zero likelihoods. Clusters with pi < 2% are also considered as outliers

and are eliminated.
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5.1.6.3 Cluster Merging

Since the breathing rates are evaluated for each time window and for each

link independently, it is likely that breathing rate estimations for the same person

differ slightly in a small range. This results in several closely-spaced clusters, which

should be merged to improve the performance.

To identify the clusters to be merged, we calculate the inter-cluster distances

by calculating the differences in their centroids. Then, we merge clusters with inter-

cluster distance falling below a threshold, known as the merging radius denoted

by γ. For example, if |ci − ci+1| < γ, then, cluster i and i + 1 would be merged.

Denote the new cluster index as i′, the normalized population of cluster i′ is given

by pi′ = pi + pi+1 and the normalized variance vi′ is recalculated. The centroid of

cluster i′ is expressed as the weighted average of the merged two clusters, given by

ci′ = lici+li+1ci+1

li+li+1
.

Finally, the likelihood of cluster i′ is updated using (5.8). Merging of more

than two clusters can be generalized from the aforementioned steps and is omitted

here for brevity. The procedures for likelihood assignment and cluster merging are

highlighted in Fig. 5.1.

Assuming a total of K clusters after merging and that the number of people

K is known, TR-BREATH directly outputs Ko = min(K,K) centroids with the

highest likelihoods as the multi-person breathing rate estimations, i.e., b̂i = cidxi , i =

1, 2, · · · , Ko where idxi stands for the index of the i-th largest likelihood.
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5.1.7 Estimating the Number of People

Denote the set J as J = {j|
∑min(K,j)

i=1 lidxi ≥ λ} where λ is a threshold. In

other words, the set J contains the number of clusters with an accumulated likeli-

hood exceeding λ. When the exact people number is unknown, given the knowledge

of the maximum possible number of people, TR-BREATH formulates an estimation

K̂(λ) given by the minimum element of J denoted as K̂(λ) = min(J ), i.e., the

smallest j that satisfies
∑min(K,j)

i=1 lidxi ≥ λ.

5m

5.5m

8m

7m

5m

8m

6m

1m

(d.1) (d.2) (d.3)

(d.4) (d.5) (d.6)

(d.7)

(a) (b) (c) (d)

Figure 5.3: Experiment settings: (a) single-person, LOS (b) multi-person, LOS (c)

single-person, NLOS (d) multi-person, NLOS.

5.2 Experimental Results

In this section, we present the experimental results of TR-BREATH in different

indoor environment.
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5.2.1 Experimental Setups

5.2.1.1 Environment

We conduct extensive experiments to evaluate the performance of TR-BREATH.

The experiments are conducted in three different rooms in an office suite with di-

mensions 5.5m×5m, 8m×7m, and 8m×5m, respectively.

5.2.1.2 Devices

We build one pair of prototypes equipped with off-the-shelf WiFi cards. Each

prototype has 3 omni-directional antennas. Thus, the total number of links D is

9. One of the prototypes works as AP while the other works as the STA. The

center frequency is configured as 5.765 GHz with a bandwidth of 40 MHz. The

transmission power is 20 dBm or 100 milli-Watts. The set of usable subcarriers is

given as {−58,−57,−56, · · · ,−2, 2, 3, · · · , 56, 57, 58} with K = 114.

5.2.1.3 Placement of WiFi devices

The performance is evaluated in both LOS and NLOS scenarios. For the LOS

scenarios, the AP and STA are placed in the same room with people, while for the

NLOS scenarios, they are placed outside the room blocked by two walls and have

no direct line-of-sight path to the subject under monitoring. The locations of both

WiFi devices are marked in Fig. 5.3.
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5.2.1.4 Participants

A total of 17 different participants were invited for experiments. During the

experiments, slight movements, e.g., head or limb movements, were allowed.

5.2.1.5 Parameter Settings

The following parameters are used unless otherwise stated:

• Each experiment lasts for 2 minutes.

• The signal subspace dimension p is configured as 10.

• The merging radius γ is set as 0.5 BPM.

• The range of interest of the breathing rate is from bmin = 10 BPM to bmax = 50

BPM. This covers the adult breathing rate at rest (10 − 14 BPM), infant

breathing rate (37 BPM), and the breathing rate after workout [39,43].

• The packet rate of WiFi transmission is 10 Hz†.

• The sampling interval Ts is 0.1s where s stands for second. For notation

convenience, we write the time duration of each block measured in seconds

as Mt = MTs and the window size measured in seconds as Wt = WTs. The

overlap in terms of seconds between different blocks is Pt = PTs. As default

†The 10Hz packet rate agrees with the beaconing rate of a commercial WiFi AP, and the packet

size containing one CFR measurement is 2.5KB, resulting in a data rate of 25KB/s during CFR

acquisition. Therefore, the proposed system only introduces minor interference to the co-existing

WiFi networks on the same WiFi channel.
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values, we adopt the parameters Mt = 45s, Wt = 40.5s, Pt = 4.5s, and B = 5

unless otherwise stated. The total time of CFR measurements Ttot is thus

Mt + (B − 1)× Pt which equals to 63s.

During the experiments, we only observe 2 ∼ 3 WiFi networks sharing the

same WiFi channel with the experimental devices. The packet loss rate is merely

1% for all experiments. The impact of packet loss can be safely ignored in this case.

Therefore, (5.6) reduces to (5.2), and we use gm,n = m− n in (5.3). Also, M equals

to M ′ as shown in Fig. 5.2.

5.2.1.6 Ground-Truths

The performance of TR-BREATH is evaluated by comparing the breathing

rate estimations against the ground-truths. To obtain the ground-truths, we ask

each participant to synchronize his/her breathing according to a metronome. After

the controlled breathing experiments, we conduct experiments under a less con-

trolled and thus more practical setting, where the participants are asked to breathe

naturally and count their own breathing rates manually as baselines.

5.2.2 Metrics for Performance Evaluation

5.2.2.1 Breathing Detection Rate

The detection performance of the proposed system is directly linked to the

SVM classification accuracy, which is evaluated by performing K-fold cross-validation

on the trained SVM classifier.
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5.2.2.2 Breathing Rate Estimation Accuracy

Assume that the people number P is known in advance with ground-truths

given by b = [b1, b2, · · · , bP ], and the proposed system outputs Ko = min(P , P )

estimations denoted as b̂ = [b̂1, b̂2, · · · , b̂P ], the accuracy of estimation is calculated

as

Acc[b, b̂] =

(
1− 1

Ko

Ko∑
i=1

∣∣∣∣∣ b̂i − bibi

∣∣∣∣∣
)
× 100% . (5.9)

For instance, the accuracy calculated from b̂ = [25.1, 29.8] BPM and b = [25, 30]

BPM is 99.5%.

5.2.2.3 Average Ko

Still assuming that P is known and the monitoring system outputs Ko =

min(P , P ) estimations. In this case, there is no penalty if P ≥ P since the breathing

rates estimations are given by the first K estimations with the highest likelihoods.

On the other hand, when P < P , the breathing rates associated with P −P people

are missing in the estimations. Therefore, the average of Ko, denoted as Ko, is also

an important metric, as Ko closer to P indicates that most of the human breathing

rates can be resolved by TR-BREATH.

5.2.2.4 Estimation Error of Number of People

When P is unknown, we formulate an estimation on the number of people P

via P̂ (λ), with the performance evaluated by the function P (λ) = E(|P − P̂ (λ)|)

and E stands for the expectation operator.
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Figure 5.4: Classification performance for breathing detection.

5.2.3 Breathing Detection Performance

The proposed breathing detection scheme determines the existence of breath-

ing based on the output of the SVM algorithm. We use 84 CFR measurements

for evaluation, where 32 of them are collected in the presence of at least one person

breathing, and 52 measurements are obtained without people breathing in the room.

The devices are placed according to the NLOS setting shown in Fig. 3.4(c).

In Fig. 5.4, we demonstrate the breathing detection performance of the pro-

posed system. First of all, we observe that the labels ŷ can be inferred from (α, β)

without errors. Secondly, we observe that SVM returns a hyperplane that partitions

(α, β) perfectly, implying a 100% detection rate. This is further validated by per-

forming K-fold cross-validation on the results, leading to a 100% accuracy for each

cross-validation.
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5.2.4 Performance of Breathing Rate Estimation

In this part, we evaluate the performance of the proposed system based on the

ground-truth breathing rates using metronomes.

Figure 5.5: Accuracy with single-person breathing under the LOS scenario. Mt =

45s, Wt = 40.5s, Pt = 4.5s, B = 5, and Ttot = 63s.

5.2.4.1 Accuracy under Single-Person LOS Scenario

We ask one participant to sit at 5 positions as shown in Fig. 3.4(a) under the

LOS scenario. For each position, the participant breathes at 15 BPM in synchro-

nization to the metronome. After that, the participant switches the breathing rate

to 17.5 BPM and later 20 BPM. The accuracy performances at the 5 positions with

various breathing rates are depicted in Fig. 5.5. For comparison purpose, Fig. 5.5

also demonstrates the ground-truths. As can be seen from the figure, the proposed

system can estimate the breathing rate with an accuracy of 99.56% averaging over
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all cases. The worst case is when the participant sits at position 4 and breathes at

17.5 BPM with an accuracy of 98.58%, equivalent to an estimation error of ±0.249

BPM.
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Figure 5.6: Performance of estimating breathing rates of a dozen people under the

LOS scenario. Mt = 45s, Wt = 40.5s, Pt = 4.5s, B = 5, and Ttot = 63s.

5.2.4.2 Accuracy under Multi-Person LOS Scenario

A total of 12 people were invited into the conference room as shown in Fig. 3.4(b)

under the LOS scenario. The details of the position and breathing rate for each

participant are displayed in Fig. 3.4(b). The normalized population, variance, like-

lihood, and centroid for each cluster are presented in Fig. 5.6. It can be seen that

the proposed system resolves the breathing rates of 9 out of a dozen people with an

accuracy of 98.65%.
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Figure 5.7: Accuracy with single-person breathing under the NLOS scenario. Mt =

45s, Wt = 40.5s, Pt = 4.5s, B = 5, and Ttot = 63s.

Figure 5.8: Accuracy of breathing rate estimation with various distances. Mt = 45s,

Wt = 40.5s, Pt = 4.5s, B = 5, and Ttot = 63s.
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Figure 5.9: Accuracy of breathing rate estimation with 10 seconds of CFR measure-

ment. Mt = 10s, Wt = 9s, Pt = 0.5s, B = 1, and Ttot = 10s.

5.2.4.3 Accuracy under Single-Person NLOS Scenario

One participant was invited into the conference room to breathe with 15 BPM

at 6 different positions, with details shown in Fig. 3.4(c). Both WiFi devices are

placed outside the conference room. Fig. 5.7 shows that a mean accuracy of 98.74%

averaging over the 6 positions is achieved even when the two devices are blocked by

two concrete walls of the conference room, which validates the high accuracy under

the through-the-wall scenario.

To evaluate the impact of distances between WiFi devices on the performance,

we place the AP at 6 different locations with 1 meter resolution. The participant

breathes at 15 BPM in this experiment. The distance between the AP and the STA

ranges from 5 meters to 11 meters. As shown in Fig. 5.8, the proposed scheme
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achieves more than 98.38% in accuracy, with a mean accuracy of 99.37% averaging

over the results of various distances. Even when the device distance reaches 11

meters, the accuracy is maintained at 99.70%, demonstrating the robustness of the

proposed system under different device distances.

We further evaluate TR-BREATH by reducing Mt to 10s. Besides, we set

Wt = 9s, Pt = 0.5s, and Ttot = 10s. The packet rate is increased to 30 Hz. One

participant sits at position 1 of Fig. 3.4(c) and breathe at 15, 17.5, 20 BPM, with each

breathing rate lasting for 20 seconds. The total measurement time is 60 seconds.

Fig. 5.9 shows that TR-BREATH could track the breathing rate accurately with

a mean accuracy of 99%. Therefore, TR-BREATH can provide accurate breathing

rates every 10 second for single-person breathing monitoring that fits well to the

patient monitoring scenarios.

Figure 5.10: Accuracy with multiple people under the NLOS scenario. Mt = 45s,

Wt = 40.5s, Pt = 4.5s, B = 5, and Ttot = 63s.
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5.2.4.4 Accuracy under Multi-Person NLOS Scenario

We invite up to 7 people into one conference room with two devices placed

under the NLOS scenario. The positions and breathing rates associated with each

person are depicted in Fig. 3.4(d). Fig. 5.10 summarizes the accuracy performances,

which shows that an accuracy of 99.1% when K = 7 and a mean accuracy of 97.3%

averaging over all 7 cases can be achieved.

Figure 5.11: Ko with multiple people under the NLOS scenario. Mt = 45s, Wt =

40.5s, Pt = 4.5s, B = 5, and Ttot = 63s.

5.2.4.5 Ko under Multi-Person NLOS Scenario

Fig. 5.11 demonstrates the Ko performance for the multi-person NLOS sce-

nario. As we can see, with a various number of people P , Ko equals to P , which
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shows that the proposed system could resolve the breathing rates of all people.

Combining the results in Fig. 5.10, we conclude that given P people, the proposed

system resolves the breathing rates of P people with high accuracy.

Figure 5.12: Performance of estimating the natural breathing rates of one person

under the NLOS scenario. Mt = 45s, Wt = 40.5s, Pt = 4.5s, Ttot = 63s.

5.2.5 Performance of Natural Breathing Rate Estimation

In this part, we investigate the performance of the proposed system in a more

practical setting by asking the participants to breathe naturally. Instead of using

the metronomes, the participants were asked to memorize how many breaths they

took in a minute.

5.2.5.1 Accuracy under Single-Person NLOS Scenario

One participant is asked to breathe naturally at 4 different positions in the

same conference room as in Fig. 3.4(c). Then, the participant lies on the ground and

breathe. Fig. 5.12 shows that a mean accuracy of 97.0% can be achieved. Moreover,
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Figure 5.13: Performance of estimating the natural breathing rates of 9 people under

the NLOS scenario. Mt = 45s, Wt = 40.5s, Pt = 4.5s, Ttot = 63s.

the breathing rate of a person lying on the ground can be estimated accurately,

which shows the viability of the proposed scheme in monitoring the breathing rate

of a sleeping person.

5.2.5.2 Accuracy under Multi-Person NLOS Scenario

Nine participants breathe naturally in the conference room shown in Fig. 3.4(c).

The breathing rates are given as [16, 11.5, 10.5, 12, 13, 15.5, 16.5, 26.5, 12] BPM, where

two participants coincide in their breathing rates. Fig. 5.13 shows that 6 out of the

8 resolvable breathing rates are obtained with an accuracy of 98.07%.

104



Figure 5.14: Performance of people number estimation. Mt = 45s, Wt = 40.5s,

Pt = 4.5s, B = 5, and Ttot = 63s.

5.2.6 Estimating the Number of People P

Fig. 5.14 illustrates that the optimal P (λ) is 1.15 when λ = 0.88. Thus, the

proposed system can estimate the number of people with an error around 1.

5.3 Impact of Various Factors

In this section, we further investigate the performance of TR-BREATH in a

more practical application scenario. First of all, we study the performance under

the influence of packet loss with various severity. Then, we discuss the effects of

motions on TR-BREATH. Finally, we demonstrate the significant improvement of

TR-BREATH using both amplitude and phase information compared to the ap-
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proach using amplitude only in [40]. The parameters are configured to be the same

as Section 5.2.1.5 unless otherwise stated.

5.3.1 Impact of Packet Loss

We present the accuracy under the NLOS single-person at position 1 shown in

Fig. 5.3(c) with different packet loss rate. We consider two packet loss mechanism,

i.e., burst packet loss and random packet loss. The burst packet loss is mainly

caused by the continuous data transmission among few WiFi devices which fully

jams the medium for a long time. On the other hand, the random packet loss is due

to the random access of a large number of nearby WiFi devices which occupy the

medium occasionally.

To emulate packet loss, we intentionally discard collected CFR samples in the

experiments. More specifically, for the burst packet loss, we discard CFR samples

within a certain time period, while for the random packet loss, we discard CFR sam-

ples with index following a uniform distribution. When the packet loss compensation

is enabled, gm,n = s′′m − s′′n is used, otherwise gm,n = m− n.

The results with different packet loss rate with the aforementioned two mech-

anisms are shown in Fig. 5.15. We observe that the consequence of random packet

loss is much more severe than the burst packet loss when the packet loss compen-

sation is not enabled. With 10% random packet loss, the accuracy drops to 88.35%

from 99.35%. The accuracy further deteriorates to 74.13% and 62.83% with 20%

and 30% packet loss, respectively. The advantage of packet loss compensation is
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obvious since TR-BREATH maintains an accuracy of 99.70% even with 30% packet

loss. On the contrary, burst packet loss does not degrade the accuracy greatly. It

can be justified by the fact that most CFRs are still sampled uniformly under this

scenario.
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Figure 5.15: Impact of packet loss on accuracy

5.3.2 Impact of Motion

To study the effect of motion, we perform additional experiments involving am-

bient motions and subject motions. The experiment settings are shown in Fig. 5.16.

The participant breathes at 20 BPM.
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Figure 5.16: Experiment settings for investigation of ambient motions and subject

motions

5.3.2.1 Impact of Ambient Motion

Besides the participant under breathing monitoring, we ask another partici-

pant to walk randomly in the eight highlighted areas in Fig. 5.16, where S1 to S4

stands for the ambient motions in the conference room and S5 to S8 in the foyer.

We further classify these areas in terms of their distances to the WiFi AP as very

close, close, far, and very far. For instance, S1 is considered to be very close from

the WiFi AP, while S4 is regarded as very far away from the WiFi AP. Despite that

the impact of motion is location-dependent, in general, we find that the motions

introduce severe interference into TR-BREATH when they occur within 1m radius

to either the AP or the STA.

The results are depicted in Fig. 5.17. Clearly, when the ambient motion occurs

very close to the WiFi AP, the accuracy degrades significantly, especially for the case
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of ambient motions in the foyer area indicated by S5. When the distance between

the motion to the WiFi AP increases, the accuracy is improved. We observe similar

results when the ambient motion occurs close to the WiFi device. Thus, we conclude

that TR-BREATH can tolerate ambient motions as long as both WiFi devices of

TR-BREATH are far from these motions.
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Figure 5.17: Impact of ambient motion on accuracy

5.3.2.2 Impact of Subject Motion

In this experiment, we ask the participant under monitoring to move randomly

for a certain period of time, and then sit back to the original position as shown in

Fig. 5.16 to continue breathing. The results are shown in Fig. 5.18. We observe that

when the participant only moves for 10 seconds, the accuracy can be maintained at
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95.96%. The accuracy drops to 87.61% when the participant moves for 40 seconds,

corresponding to an error of ±2.48 BPM. This demonstrates that TR-BREATH can

tolerate the subject motions given that the participant stays still during most of the

time.

Figure 5.18: Impact of subject motion on accuracy

5.4 Summary

In this chapter, we have presented TR-BREATH, a contact-free and highly

accurate breathing monitoring system leveraging TR for breathing detection and

multi-person breathing rate estimations using commercial WiFi devices. The TR

resonating strengths are analyzed by the Root-MUSIC algorithm to extract features

for breathing detection and breathing rate estimation. Experiment results in a

typical indoor environment demonstrate that, with 63 seconds of measurements,

110



a perfect detection rate can be obtained. Meanwhile, the proposed system can

estimate the single-person breathing rate in the NLOS scenario with an accuracy of

99% with only 10 seconds of measurement. With 63 seconds of measurement, the

proposed system achieves a mean accuracy of 98.65% for a dozen people under the

LOS scenario and 98.07% for 9 people under the NLOS scenario even when the two

WiFi devices are blocked by two walls. The proposed system can also estimate the

number of people with an average error around 1. We also show that TR-BREATH

is robust against packet loss and motions in the environment. With the ubiquity

of WiFi-enabled mobile devices, TR-BREATH can provide real-time, in-home, and

non-invasive breathing monitoring in future medical applications.
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Chapter 6

Robust Vital Sign Tracking

In Chapter 5, we have presented a highly accurate scheme utilizing the TR

technique to characterize the periodic changes of breathing. It uses Root-MUSIC as

the spectral analysis tool and machine learning techniques to resolve the breathing

rates of multiple people. Two issues with the high accuracy method proposed in

Chapter 5 are

• Root-MUSIC is a high computational complexity algorithm that requires the

calculation of EVD in each time window. The addition of machine learning

techniques further increases the burden of computations and limits the scala-

bility of TR-BREATH.

• Since Root-MUSIC requires prior knowledge of the signal subspace dimension,

it is not robust against random environmental perturbations caused by the

subjects under monitoring and people moving near the subjects; these motions

could change the signal subspace dimension.

Due to the aforementioned issues, Root-MUSIC-based scheme is computational in-

tensive and is more suitable for circumstances requiring highly accurate breathing

monitoring in a relatively static environment. In light of this, in this chapter, we

consider the algorithmic complexity and robustness as first class citizens. More
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specifically, we present a robust scheme that utilizes FFT for spectral analysis us-

ing CFRs obtained from off-the-shelf WiFi devices. The proposed scheme leverages

finite state machine (FSM) to counteract the motion of the subject or from other

subjects to facilitate breathing tracking. The integration of FFT and FSM lead to

a scalable, low-complexity, and very robust scheme for breathing tracking ∗.

6.1 Algorithm

The proposed breathing tracking scheme starts by collecting CFRs on off-the-

shelf WiFi devices. Considering the phase distortions as introduced in Chapter 2,

the proposed system cleans the CFR phases by employing the linear regression

presented in [52]. Realizing that the energy of breathing signals are concentrated

on the first few CIR taps, we then transform the CFR from frequency domain to

the time domain CIR by a inverse fast Fourier Transform (IFFT), leading to K ′

CIR taps. Realizing that the human breathing rates are confined in a finite range,

say, f1 to f2, we design a bandpass filter with passband from f1 to f2 and apply the

bandpass filter onto the CIRs for each CIR tap. In Fig. 6.1, we show the magnitude

and phase response of the proposed bandpass filter with f1 = 0.133 Hz and f2 = 0.7

Hz corresponding to the breathing rates of 8 BPM to 42 BPM.

After that, we perform spectral analysis on each CIR tap with FFT. Here,

we write the spectrum on CIR tap k and frequency component u as Fk[u], where

∗Given N CFRs, the complexity of Root-MUSIC-based scheme is on the order of N3, while the

complexity of FFT-based scheme is on the order of N log2 N . For instance, when N = 512, the

FFT-based scheme is 29, 127 times faster than the Root-MUSIC based scheme.
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Figure 6.1: Filter coefficients for the passband 0.133 Hz to 0.7 Hz with 10 Hz CFR

sampling rate. Filter length is 81.

u ∈ [−N ′′/2, N ′′/2] where N ′′ is the size of FFT for spectral analysis. We sample

the spectrum components from u1 to u2 and calculate the energy of each frequency

bin written as {Fk[u]}u=u1,u1+∆f,··· ,u2 where ∆f is the frequency resolution and u1 =

d f1

∆f
e and u2 = d f2

∆f
e.

Assembling the spectrum on all CIR taps together leads to the matrix F such

that

F =



F−K′/2[u1] F−K′/2[u1 + ∆f ] · · · F−K′/2[u2]

F−K′/2+1[u1] F−K′/2+1[u1 + ∆f ] · · · F−K′/2+1[u2]

· · · · · · · · · · · ·

FK′/2−1[u1] FK′/2−1[u1 + ∆f ] · · · FK′/2−1[u2]

FK′/2[u1] FK′/2[u1 + ∆f ] · · · FK′/2[u2]


(6.1)

In Fig. 6.2, we show an example of matrix F on a specific link in linear scale,

with the ground-truth breathing rate as 12.5 BPM. We can observe strong spectral

components around 12.5 BPM on multiple CIR taps, especially the CIR taps with
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index −5 to 5. This is intuitive since the energy of the breathing signal concentrates

in the first few CIR taps.

Realizing that the breathing signal energy concentrates in the first few CIR

taps as indicated by Fig. 6.2, we then take average over the spectrum for k =

0, 2, · · · , S − 1 where S ≤ K ′ is the stripe width. The resultant averaged spectrum

is then given as

F [u] =
1

S

S−1∑
k=0

Fk[u], u ∈ [u1, u2] (6.2)
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Figure 6.2: 2-D spectrum of the breathing signal over all CIR taps on one antenna

link in one time window.

In a MIMO system, there are multiple antennas on either or both ends of the

transmitter and receiver which gives rise to diversity in wireless communication.

In the proposed scheme, we also harness the CFRs from multiple antenna links to

improve the overall performance of breathing tracking. For each antenna link m out

of a total of M links, we calculate the energy spectrum denoted by Fm[u], followed

by computing the averaged energy spectrum over the available antenna links given
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as

Ḟ [u] =
1

M

M∑
m=1

Fm[u], u ∈ {u1, u2} . (6.3)

For the convenience of further processing, we transform the linear scale energy spec-

trum into its dB scale counterpart as

ḞdB[u] = 10 log10 Ḟ [u] (6.4)

In Fig. 6.3, we show several snapshots of the link averaged spectrum obtained

from the same dataset that produces Fig. 6.2. Despite the temporal variations of the

spectrum, we can always observe a strong spectral peak around the ground-truth

breathing rate 12.5 BPM.
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Figure 6.3: Spectrum after performing link average.

The peaks in the energy spectrum ḞdB[u] lead to the breathing rate estima-

tions. To extract these peaks, we leverage the persistence-based approach presented

in [3] to obtain multiple pairs of local maximals and local minimals. For the i-th

pair of local maximum pmax[i] and minimum pmin[i], we evaluate their difference as
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vi = pmax[i] − pmin[i], which translates into the signal-to-noise ratio (SNR) for the

i-th peak.

Assuming a total of U ′ peaks remaining after the previous step and P breathing

rates to be detected, we pick the top P out of U ′ peaks and use the corresponding

peak locations {f̂i}i=1,2,··· ,U ′ measured in Hz as the breathing rate estimations for

P people. The breathing rate estimations with BPM as the unit are then given as

{b̂i}i=1,2,··· ,U ′ with b̂i = 60f̂i.

The proposed tracking system keeps updating the breathing rate estimations

from time to time. Here, we define another two parameters: window size Cwindow

and shift size Cshift, both measured in number of samples. The first set of breathing

rate estimations are generated by performing spectral analysis on CFRs with sample

index [0, Cwindow−1], and the second set of breathing rate estimations are generated

by the same procedure on CFRs with sample index [Cshift, Cwindow +Cshift− 1]; the

overlap between the two adjacent windows is then given as Cwindow − Cshift. A

smaller Cshift leads to a more prompt real-time updating rate.

6.2 Enhancing Breathing Monitoring using Finite-State-Machine to

Combat Motion Interferences

In a realistic environmental setting, there always exists motions from other

people and/or objects, which introduces motion interference to the breathing track-

ing system. At the same time, motions of the subject under monitoring also inject

interference. Both types of interference would significantly deteriorate the perfor-
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mance of breathing tracking.

In light of this issue, we supplement the proposed system with a finite-state-

machine (FSM) composed of several states into the proposed system so that the

proposed system could automatically tune its parameters such as peak detection

thresholds under different states. In this work, there are four different states in the

FSM which are illustrated below, namely, Initialization, Verification, PeakFound,

and Motion. For convenience, we show the transitions under the single-person

breathing tracking case. Details of each state are given as follows.

1. The Initialization state is the default state. In this state, the breathing track-

ing system keeps searching for a peak in the range [u1, u2]. In detection of

motion, it switches to the motion state. On the other hand, when it detects

a significant peak, it switches to the Verification state. It would also tune the

frequency of interest from [u1, u2] to [u′1, u
′
2].

2. The Verification state indicates that a peak has been detected and needs to

be verified for the next few time slots. In case that the same peak has been

detected for a number of times, the FSM switches to the PeakFound state.

Otherwise, it stays in the Verification state. Meanwhile, it switches back to

the Initialization state in case that no peak can be detected, and to the Motion

state if motion is detected.

3. The PeakFound state stands for the state in which the breathing tracking sys-

tem can detect a very stable breathing rate. In case that motion is detected,

it switches to the Motion state. When the peak is no longer detectable, it
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switches to the Initialization state. Otherwise, the FSM stays at the Peak-

Found state.

4. The Motion state indicates that major motions have been detected and no

credible breathing rate estimation can be made so far.

An illustration of these four states are presented in Fig. 6.4.

INIT Verification PeakFound

Motion

Significant
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Significant
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Detected
Detecting the
Same Peak

Consecutively

Motion
Detected

Motion
Detected

Motion
Detected

No Peak
Detected

Significant
Peak

Detected

No Peak
Detected

Figure 6.4: Illustration of FSM for single-person breathing tracking.

6.3 Multi-person Finite-State-Machine for Breathing Monitoring

In Section 6.2, we introduce the idea of FSM to overcome the motion inter-

ference issue under single-person case, which can be extended to the multi-person

case by running multiple FSMs in parallel, with each FSM captures the status of

one specific person.
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The FSMs associated with different people interact with each other, i.e., they

are not independent. To make the FSMs more predictable, we define the following

rules:

1. FSMs operating first would always select the strongest peak in its frequency

range. For example, the i-th FSM, denoted as FSM(i), selects the strongest

peak in its search range [u′1,i, u
′
2,i], where [u′1,i, u

′
2,i] is the breathing range of

interest for the i-th FSM.

2. To avoid duplication of breathing rate estimations, no two FSMs can pick

the same peak in each time window. For example, if FSM(i) selects peak at

location f̂i, then FSM(j), j > i would look for other peaks not located at f̂i.

6.4 Experimental Results

To show the performance of the proposed scheme, we collect extensive exper-

imental data in an office environment.

6.4.1 Parameter Settings

The experimental settings are demonstrated in Fig. 6.5. The adopted param-

eters are given in Table 6.1.

6.4.2 Environment

We perform the experiments in the same indoor environment as shown in

Section 5.2 of Chapter 5. The experimental settings are shown in Fig. 6.5.
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Table 6.1: Parameter settings for FFT-based breathing tracking with FSM

Parameter Notation Value

CFR Sampling Interval Ts 100ms

Usable subcarrier size K 114

IFFT size K ′ 128

FFT size N ′′ 512

Bandpass filter length H 81

Spectrum range of interest [f1, f2] [0.133Hz, 0.7Hz]

CFR window size Cwindow 300 samples

CFR shift size Cshift 50 samples

5.5m

5m

AP STA Person

5.5m

5m

AP STA Person

(a) (b)

8m

5m

AP STA

Person #2Person #1

(c)

Figure 6.5: Floorplan of experiments (a) single-person, NLOS (b) single-person,

NLOS, with a fan running (c) two-person, NLOS (d) three-person, NLOS.
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6.4.3 Device

We use the same set of commercial WiFi devices shown in Section 5.2 of

Chapter 5.

6.4.4 Results

6.4.4.1 Single-Person NLOS

We evaluate the performance of the proposed scheme for single-person NLOS

breathing tracking. A total of 5 experiments have been conducted, with each exper-

iment lasting for 2 minutes. The experimental setting is shown in Fig. 6.5(a). The

ground-truths are given as [12.5, 15, 17.5, 20, 22.5] BPM with an increment of 2.5

BPM. The results are shown in Fig. 6.6. As we can see, when the ground-truths are

[12.5, 15, 17.5] BPM, the differences between schemes with FSM and without FSM

are negligible. However, when the breathing rates increase to 20 and 22.5 BPM, the

FSM-based scheme outperforms the sheme without FSM. This is mainly due to the

fact that when a person breathes faster, his/her breathing rate is not as stable as

when he/she breathes slower, which introduces variations into the breathing signal

strength and can be dealt with using FSM. The accuracy performances with FSM

are given as [97.65%, 94.53%, 92.86%, 94.53%, 93.88%] respectively.

6.4.4.2 Single-Person NLOS with an Operating Fan

In this experiment, we turn on a electronic fan inside the same room with the

subject under monitoring. Since the fan is an electronic device with metal cover,
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Figure 6.6: Results of breathing tracking for single-person NLOS scenario (a) with

FSM (b) without FSM.

it would reflect some EM waves and thus introduce interference to the CFRs and

degrde the breathing tracking performance. The setting is shown in Fig. 6.5(b).

Fig. 6.7 compares the scheme with and without FSM. A breathing rate estimation

of 0 indicates that the system is unable to obtain a reliable breathing rate. Although

using FSM does not fully recover the ground-truth breathing rate (15 BPM), the

utilization of FSM still enhances the overall performance. The accuracy with FSM

is 94.48%.

In Fig. 6.8, we compare the CDFs of the breathing rate as defined in (5.9).

Again, it shows the advantages of using FSM, implying by that the CDF with FSM

is more steep than the one without FSM.

In Fig. 6.9, we demonstrate the state transition of the FSM-based scheme in

this experiment. Different states shown in Fig. 6.4 are encoded as follows: Initial-

ization → 0, Verification → 1, PeakFound → 2, Motion → 3. Fig. 6.9 shows that

the FSM correctly reacts to the fan moving by switching to the Motion state from
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time to time.
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Figure 6.9: State transition of the FSM scheme with operating fan.

We conduct another experiment under the same setting except a breathing

rate of 20 BPM with results shown in Fig. 6.10. Again, using FSM enhances the

performance indicated by the more concentrated breathing rate estimations. The

accuracy is given as 94.53%.

6.4.4.3 Multi-person Breathing Monitoring Performance

We use the settings shown in Fig. 6.5(c) and Fig. 6.5(d) for performance eval-

uation of multi-person breathing tracking.

Firstly, we study the performances of two-person breathing. The ground-

truths are given as [15, 16.5] BPM. The breathing rate estimations with Cwindow =

300, Cwindow = 450, and Cwindow = 600 with FSM are shown in Fig. 6.11(a),

Fig. 6.11(b), and Fig. 6.11(c), respectively. As can be seen from the figures, a

time window size of 300 samples insuffices to resolve the two different breathing
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Figure 6.10: CDF performance with operating fan under single-person NLOS sce-

nario with 20 BPM breathing rate.

rates. The resolvability improves when the window size enlarges to 450 samples and

600 samples, with respect to a duration of 45 seconds and 60 seconds. The accura-

cies of breathing rate estimations under the three window sizes are [75.52%, 96.54%],

[90.33%, 96.70%], and [99.61%, 99.43%], respectively.
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Figure 6.11: Two-person breathing rate estimation with FSM under (a) Cwindow =

300 (b) Cwindow = 450 (c) Cwindow = 600.

The breathing rate estimation results without FSM with Cwindow = 300,
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Cwindow = 450, and Cwindow = 600 are demonstrated in Fig. 6.12(a), Fig. 6.12(b),

and Fig. 6.12(c), respectively. In comparison with the results utilizing FSM, the

performance degradation is very severe. In particular, when Cwindow = 600, the

breathing rate of the second person cannot be recovered.
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Figure 6.12: Two-person breathing rate estimation without FSM under (a)

Cwindow = 300 (b) Cwindow = 450 (c) Cwindow = 600.
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Figure 6.13: Breathing estimation with subject standing up for five seconds.
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6.4.4.4 Impact of Large Motions

In Fig. 6.13, we demonstrate the performance of the proposed breathing track-

ing scheme when the subject stands up for five seconds and sits down during the

measurement. Clearly, the proposed breathing tracking scheme overcomes the im-

pact of such large motions and produce stable breathing rate estimations over time.

6.5 Summary

In this chapter, we have proposed a robust vital sign tracking scheme that

analyzes the tiny temporal variations in the CFRs. On each antenna link, the

proposed scheme transforms CFRs into CIRs and performs spectral analysis on the

CIRs via FFT. The spectrum on different antenna links are then fused into one

averaged spectrum. Then, persistence-based peak detection is performed on the

spectrum which finally leads to the breathing rate estimation. Furthermore, we

introduce FSM into the presented system such that the vital sign tracking system

would adopt different thresholds in different states, and it significantly improves

the robustness of vital sign trcking. Extensive experimental results validate that

the proposed scheme could perform well for single-person as well as multi–person

breathing tracking.
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Chapter 7

Conclusions and Future Work

In this dissertation, we have presented two WiFi-based IPSs and two WiFi-

based vital sign monitoring systems. The IPSs achieve 1 ∼ 2 centimeter level

localization accuracy by exploiting the frequency and spatial diversity, which also

leads to much improved robustness against environmental dynamics. On the other

hand, the vital sign monitoring systems could perform multi-person breathing moni-

toring with very high accuracy and are also very robust against motion interference.

The proposed systems utilize off-the-shelf WiFi and are infrastructure-free. Due to

the excellent performances of the proposed schemes in real indoor environment, we

strongly believe that they could be the solutions to the most crucial IoT applications.

7.1 Conclusions

In the first part of this dissertation, we introduce the CFR model for in-

door localization and vital sign monitoring as well as the TR technique. Then, we

present the method to calculate TRRS in SISO-OFDM and MIMO-OFDM systems

to quantitatively evaluate the TR focusing effect and thus the similarity among

CFRs. Based upon the scheme of TRRS calculation, we propose a WiFi-based IPS

that could achieve 1 ∼ 2 centimeter localization accuracy under a strong NLOS
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condition by exploiting the frequency diversity via frequency hopping, followed by a

similar IPS which exploits the spatial diversity in MIMO-OFDM systems to achieve

the same localization accuracy. In the second part of this dissertation, we present

a vital sign monitoring system capable of monitoring the breathing rates of multi-

ple people simultaneously with high accuracy with off-the-shelf WiFi devices. We

then devise a robust breathing monitoring scheme which is also less computational

intensive.

In Chapter 3, we propose a WiFi-based indoor localization scheme with 1 ∼ 2

centimeter accuracy utilizing the frequency diversity. With the help of the frequency

hopping mechanism, the proposed scheme swipes a total bandwidth exceeding 1 GHz

and collects CFRs from a large multitude of WiFi channels. During the offline phase,

CFRs at locations-of-interest are collected and concatenated into location-specific

fingerprints, while in the online phase, the TRRS values among the instantaneous

CFR and those obtained in the offline phase are calculated which finally leads to

the location estimation. The performance is evaluated by extensive experiments in

a typical office environment that demonstrates the centimeter-level accuracy within

an area of 20cm × 70 cm even under strong NLOS conditions.

In Chapter 4, a WiFi-based indoor localization system that exploits spatial

diversity is proposed. Different from the IPS presented in Chapter 3, the proposed

scheme collects CFRs from multiple antenna links available on MIMO-OFDM WiFi

devices to obtain a much larger effective bandwidth. In comparison with the fre-

quency hopping method, the proposed IPS is more efficient in terms of fingerprint

acquisition. We conduct extensive experiments indoor which verify the centimeter-
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level accuracy as well as robustness against environmental dynamics of the proposed

IPS.

In Chapter 5, we present TR-BREATH, a WiFi-based vital sign monitoring

scheme capable of high accuracy breathing rate estimation, breathing detection,

and people counting. It leverages the highly accurate spectral analysis method, i.e.,

Root-MUSIC algorithm, to extract breathing rate candidates from the TRRS matrix

calculated from CFRs in a period of time. Then, TR-BREATH performs affinity

propagation on these candidates for clustering. The statistics of the clustering are

used for breathing detection and people counting. Extensive experimental results

demonstrate that the proposed scheme achieves a perfect breathing detection per-

formance, an error of 1 people for people counting, and higher than 95% breathing

rate estimation performance.

Lastly, in Chapter 6, we propose a robust vital sign tracking scheme with a

much reduced computational complexity. The proposed scheme replaces the highly

complicated Root-MUSIC algorithm in the architecture shown in Chapter 5 with

FFT. To mitigate the impact of motions from the subject under monitoring as well

as from other people nearby, we incorporate an FSM into the system such that the

system could adjust the parameters automatically under different circumstances.

We conduct extensive experiments with and without motion interferences which

demonstrate the superiority of using FSM.
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7.2 Future Work

There are several open problems and challenges to be explored and investigated

before successful deployment of the proposed indoor localization system and vital

sign monitoring system. The exploration of these issues could make the proposed

IoT applications more versatile and useful in real life scenarios.

Firstly, the hardware consistency across different WiFi devices needs to be

thoroughly studied. In particular, the hardware consistency must be guaranteed

for the proposed IPS systems. This is because that a minor difference of the RF

components might lead to a significantly reduced TR focusing effect and thus TRRS

value. Since the proposed IPS compares CFRs via TRRS, the hardware inconsis-

tency could lead to degraded localization performance. In this sense, we need to

develop a metric to quantify the hardware consistency as well as devise an algorithm

to compensate for the hardware inconsistency.

Secondly, the impact of RF interference on the proposed systems needs to be

investigated. In this dissertation, we only take the co-existing WiFi devices into

consideration. In fact, the environment could be much more hostile filled with

many non-WiFi RF devices. They could inject a significant amount of interference

into the operational frequency band of the proposed systems and thus affect their

performances. Therefore, we need to investigate this issue and propose methods to

counteract it.

Lastly, the proposed vital sign monitoring systems can be augmented with

passive localization of the subjects under monitoring. This is important since dif-
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ferent people with identical breathing rates cannot be resolved by the proposed

systems due to the fact that the proposed systems separate different subjects by

their breathing rates. This can be solved by incorporating geographical information

of the subjects under monitoring.
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