
ABSTRACT

Title of Dissertation: Multi-User Security: A Signal Processing and

Networking Perspective

Wade Trappe, Doctor of Philosophy, 2002

Dissertation directed by: Professor K. J. Ray Liu

Applied Mathematics and Scientific Computing

Department of Electrical and Computer Engineering

Institute for Systems Research

The advancements in communication and multimedia technologies have paved

the way for a new suite of multi-user applications that will allow users to inter-

act. Although the new communication infrastructure makes it easier to reach the

end user, it also makes it easier for adversaries to mount attacks against secu-

rity measures intended to protect data. Thus, there must be mechanisms in place

that guarantee the confidentiality and rights of both the customer and the service

provider during the delivery of content across future communication networks.

This thesis examines security issues related to communications involving more

than two participants or adversaries. We approach the problem of multi-user secu-

rity by developing security measures at different stages of the content distribution

process, ranging from the establishment of initial keying information before trans-

mission, to key management while delivering through networks, and finally to

content protection and collusion prevention/tracing after delivery.

We address the issue of establishing a group key prior to content delivery by

introducing the butterfly scheme and a conference keying scheme that addresses

user heterogeneity. These schemes employ the two-party Diffie-Hellman scheme

in conjunction with an underlying algorithmic tree called the conference tree. In

order to address client heterogeneity, we design the conference tree using source

coding techniques to account for the different user cost and budget profiles. We

also introduce the PESKY performance measure, which quantifies the likelihood

that a conference key can be established in a heterogeneous environment.

We then consider the problem of managing keys during content delivery by

proposing a multicast key management system that uses a composite message

format with member join and departure operations. Compared with the traditional

format of the rekeying messages used in tree-based multicast key management,

our composite message format reduces the amount of header information, while

maintaining the same payload size.

Finally, we address the issue of protecting the digital rights of multimedia

content after it has left the protected or encrypted domain. Since traditional

multimedia fingerprints are susceptible to collusion attacks made by a coalition

of adversaries, we develop fingerprints for multimedia that are based upon code

modulation and able to identify groups of colluders.

Multi-User Security: A Signal Processing and

Networking Perspective

by

Wade Trappe

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2002

Advisory Committee:

Professor K. J. Ray Liu, Chairman/Advisor
Assistant Professor Min Wu
Professor Lawrence Washington
Professor Dennis Healy
Professor Prakash Narayan
Professor Virgil Gligor

c© Copyright by

Wade Trappe

2002

DEDICATION

To my parents, who have each guided me and given me inspiration to

face life’s challenges. This thesis and my education would not have

been possible without their sacrifices and the encouragement they gave

throughout my youth.

ii

ACKNOWLEDGEMENTS

“Few can foresee whither their road will lead them, till they come to its end.”

I started graduate school with a plan– a very narrow and focused plan that even

consisted of a thesis topic. But at many points on the road, life introduced some

perturbations into my grand plan that yielded trajectories exponentially separated

from the original path I had laid out. Many of these curve balls led to uncharted

territories that taught me painful and valuable lessons about more than just science

and math, but about life. I do not think that I could have made it through these

wild and dark places if it were not for the help and love of many people who

were there for me. As I sit here at my laptop wrapping up the final pages of my

dissertation, the culmination of an arduous journey, it is with great emotion that

I acknowledge their help.

I’d like to begin with my family. Both of my parents have, through the many

years, given me encouragement to seek knowledge. But more than that, they have

each given me their love. My mom has been there to teach me the value of patience,

and in many invisible ways led me on my path of spiritualism. My dad has helped

me with his wealth of experience about graduate school, which has shown me the

timeless universality of my struggles. Tara, my sister, deserves much gratitude

and apologies for putting up with a grumpy brother who has often been too busy

to call home. I have always admired her diligence and her ability to check in on

iii

me. Finally, my grandparents, Ralph and Donna, were there for me when I started

school, and sacrificed much for my sister and I. Their memory has inspired me,

and will always guide me.

I was fortunate enough to have found a mentor who was very well suited to

guiding and advising me throughout my studies. Professor Liu provided wisdom

that far surpassed anything that I could learn from books. It was through his

unique way of challenging me that I chose to leave the path I had planned. From

the moment that I gave up my almost-religious loyalty to wavelets, the journey

became tougher. The rewards, however, have been far greater than I could have

expected. I look back and realize that I have gained more than just a degree, but

a philosophy, which is what this journey ultimately was about.

One unexpected and enjoyable fork in the road came from my late night dis-

cussions with Professor Washington during my first year of graduate school. De-

veloping our cryptography class was a lot of fun (and a lot of hard work) that

finally paid off. My research into security would not have happened if we had not

developed that class and written our book. He was a helpful mentor during my

first year, and has been a valuable colleague throughout my graduate research.

There are colleagues who I have had the pleasure of working with and deserve

some recognition for helping me in my development. I was very fortunate that

Min Wu decided to come to the University of Maryland during my last year of

graduate studies. The work presented in Chapter 5 was done in collaboration

with Min and could not have been done in such a timely manner if it had not

been for the friendship that we experienced. At many points during our stint

of sixteen hour work days, camaraderie kept both of us going. She deserves the

credit for the simulations involving ACC and images, which were done using her

iv

MATLAB code. Further, the idea of using divide and conquer to improve the

computational efficiency of performing orthogonal signal detection was proposed by

Min. The works presented in Chapter 3 and Chapter 4 were done in collaboration

with Jie Song and Radha Poovendran while they were both at the University of

Maryland. In particular, the simulation results for data embedding were done by

Jie Song. I will fondly remember the hours spent at the whiteboard with Radha

during the initial stages of our work on multicast key management. The work

presented in Chapter 2 was done in collaboration with Professor Yuke Wang of The

University of Texas at Dallas, who provided a refreshing viewpoint to conference

key establishment that ultimately led to the butterfly scheme. I also would like to

thank my committee members for their valuable feedback which has improved the

quality of this thesis.

There are a few events in life that convince you of the existence of fate. It was

just a few years ago when the most fortunate event of my life happened- when

my path crossed that of an old friend, and our lives came together. Nisha was

the ray of sunshine that pushed back the gloom and guided me through the last

half of graduate school. To my wife, I would like to say a special thank you for

everything. It is with heartfelt emotion that I will submit this thesis and begin a

new phase of our life together.

I was also fortunate enough to have a very close friend who helped me out and

called me more than once during my hard times. She has been Castor to my Pollux,

and has listened to my troubles when things were hard for me, while I consoled

her through her own hard times. It is a coincidence that we both are finishing

our degrees this Spring 2002 semester, but perhaps also a statement of our close

friendship. To Sheilagh, I would like to send my gratitude and congratulations.

v

When this journey started, I left Austin listening to a song by a little-known,

and now-dissolved group called Fabu. I did not realize the significance of the lyrics

“I will walk to the sea and everything shall remind me of you”, but in reflection

those words have become clear now. I left my coterie in Austin, and the separation

was difficult. Having left the comfort of home for the uncertain promises of the

East, I can look back now and truly appreciate the value of the friendships I had.

Some part of this thesis is for my coterie: Sheilagh, Tina, Shayna, Steve (who’s

national champs now?), Tracy, Kendall, and Medha. As we continue to grow, may

we maintain our friendships wherever our roads take us.

While in Maryland I have made many close friendships. I am fortunate that

I gained a close friend in Ioannis. It was beyond my dreams that he would come

to India for my wedding, or that he would put up with me for so many years

as a roommate. I also was lucky to meet Steve and Danielle Levitt during the

beginning of my studies. Although its been hard to keep in touch with them,

their friendship has been deeply felt. I have also had exceptional friends in my

research group who have had to put up with my eccentricities. Particularly, I

want to acknowledge Haitao, Javad, Masoud, Alejandra, Xiaowen, and Nitin. To

Zoltan (who gets special thanks for epsilon and that marginal operations research

approach) and Yan, I pass on the torch and extend my best wishes– you guys made

the homestretch fun. I have lived with some of the best roommates imaginable. I

want to extend thanks to Josh, Ioannis, Jim, Karen, Jake, Ken and Isaac for the

years we’ve shared. A special part of my life in Maryland has been shared with my

wife’s family. Both Daya and Madhu Gilra have treated me as part of the family,

given me advice during the hard times, taught me how to cook Indian food, and

kept me going with delicious dinners. Finally, I would like to thank everyone else

vi

in Maryland who has shared the journey with me.

On a personal front, I want to acknowledge two final people who helped me in

rather unique ways. Several years ago I met Sharon Zwillinger, who did more to

help me through my toughest trials than I am sure she is aware of. Her kindness

and guidance helped me to understand myself, and find the personal balance that

I needed. I also found comfort from another source– the music of Dar Williams. I

cannot estimate how many hours I have played her songs and found understanding

in their lyrics. Her lyrics kept me dancing when the music had ended.

Now, without further adieu I conclude my monologue and sheath my quill.

vii

TABLE OF CONTENTS

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Thesis Overview and Contributions 3

1.1.1 Prior to Content Delivery 5

1.1.2 During Content Delivery . 8

1.1.3 Post-Content Delivery . 10

2 Conference Key Establishment for Heterogeneous Networks 13

2.1 Introduction . 13

2.2 Group DH Overview . 16

2.3 Conference Trees and the Butterfly Scheme 19

2.4 Computational Considerations . 27

2.4.1 Minimizing Total Cost . 28

2.4.2 Budget Constraints . 30

2.4.3 Combined Budget and Cost Optimization 34

2.5 Efficiency and Feasibility Evaluation 38

2.5.1 Comparison of Total Cost 38

viii

2.5.2 Feasibility Comparison . 40

2.6 System Sensitivity to False Costs 45

2.6.1 Sensitivity to Approximate Costs 45

2.6.2 Sensitivity to Costs from Untrusty Users 46

2.7 Chapter Summary . 51

3 Key Management and Distribution for Secure Multimedia

Multicast 54

3.1 Introduction . 54

3.2 Basic Multicast Information Theory 57

3.3 Multicast Key Management Schemes 61

3.4 A Basic Key Management Scheme 65

3.4.1 Key Refreshing . 66

3.4.2 Member Join . 67

3.4.3 Member Departure . 68

3.5 Distribution of Rekeying Messages for Multimedia 69

3.5.1 Media-Independent Channel 72

3.5.2 Media-Dependent Channel 75

3.6 An Improved Rekeying Message Format 80

3.6.1 Basic Message Form . 82

3.6.2 Security Analysis of Residue-based Method 84

3.6.3 Achieving Scalability . 91

3.7 System Feasibility Study . 96

3.8 Extensions to Multilayered Services 100

3.9 Chapter Summary . 104

ix

4 A Key Management Architecture for Conditional Access Systems

in Dynamic Multicasting Scenarios 107

4.1 Introduction . 107

4.2 Review of Multicast Key Management 111

4.3 Basic Polynomial Interpolation Scheme 114

4.3.1 Resistance to Attack . 117

4.3.2 Anonymity Reduces Communication Overhead 119

4.4 A Scalable Protocol . 121

4.4.1 Basic Protocol Primitives 122

4.4.2 Advanced Protocol Operations 126

4.5 Architecture Considerations . 131

4.5.1 Optimization of Tree Degree for Communication 131

4.5.2 Binomial Occupancy Model 135

4.5.3 Communication Overhead 139

4.5.4 Computational Complexity 142

4.6 Chapter Summary . 145

5 Anti-Collusion Fingerprinting for Multimedia 148

5.1 Introduction . 148

5.2 Fingerprinting and Collusion . 151

5.2.1 Fingerprint Detection . 152

5.2.2 Collusion Scenarios . 156

5.3 Orthogonal Modulation and Anti-Collusion 159

5.3.1 Anti-Collusion Performance 161

5.3.2 Efficient Detection Strategy for Orthogonal Modulated Fin-

gerprints . 163

x

5.3.3 Experiments on Efficient Detection of Orthogonal Modu-

lated Fingerprints . 168

5.4 Code Modulation Embedding and Anti-Collusion Codes 170

5.4.1 Anti-Collusion Codes . 172

5.4.2 Detector Design and Performance 178

5.4.3 ACC Simulations with Gaussian Signals 180

5.4.4 ACC Experiments with Images 185

5.5 Chapter Summary . 193

6 Conclusions 196

6.1 Thesis Summary . 196

6.2 Future Work . 201

Bibliography 205

xi

LIST OF TABLES

2.1 Comparison between the optimal solution and the approximate so-

lution of Algorithm 4 for different group sizes n. 37

3.1 The entropy of the sum Z = X + Y , where X and Y are drawn

uniformly from integers between 1 and B = 2b. 87

3.2 Probabilities of Coprimality . 90

3.3 Average PSNR difference. 99

4.1 Mapping between primitive operations and their corresponding ID

bit string. 123

5.1 Code matrix constructed from a (16, 4, 1) BIBD. 181

5.2 The derived codevectors from a (16, 4, 1) AND-ACC for user 1, user

4, and user 8. Also presented are the vectors from a two colluder

scenario, and a three colluder scenario. The bottom row corresponds

to the desired output of the detector using the AND logic for the

three colluder case. 186

5.3 The bit error rate from the blind detector for (a) τ = 0.7E(TN),

and (b) τ = 0.8E(TN). 192

xii

LIST OF FIGURES

2.1 The radix-2 butterfly scheme for establishing a group key for 8 users.

(a) Without broadcasts, (b) Using broadcasts, and (c) the associated

conference tree. 21

2.2 The radix-2 butterfly scheme for establishing a group key for 7 users.

(a) Without broadcasts, (b) Using broadcasts, and (c) the associated

conference tree. 22

2.3 The trellis for n = 9 users using two levels of 3-party ING scheme. 24

2.4 Huffman example . 29

2.5 Cost comparison of establishing a conference key using the Huffman-

based conference tree, the ING scheme, GDH.1/2, the butterfly

scheme, and the GDH.3 scheme. The first four schemes are con-

tributory protocols, while GDH.3 is a centralized protocol. 40

2.6 (a) Budget distribution discrete uniform with integer values from

[5, 20] (b) Corresponding PESKY 42

2.7 (a) Budget distribution, shifted version of a negative binomial dis-

tribution with parameters s = 10, and p = 0.25. (b) Corresponding

PESKY . 43

xiii

2.8 (a) Budget distribution, shifted version of a negative binomial dis-

tribution with parameters s = 5, and p = 0.3. (b) Corresponding

PESKY . 44

2.9 An example divergence D(p̂‖p) where ŵj ∼ 10LN(0, 1) + 100, and

wj = TB(ŵj). 50

2.10 The relative costs ρ and ρ̃ are presented for when the exact user

costs are drawn as ŵj ∼ 10LN(0, 1)+100, and that there is an 0.05

likelihood that a user is untrusty, and Y = 1000. 51

3.1 The basic key distribution scheme. 65

3.2 The time intervals t − 2, t − 1 and t used in the paper. The join-

ing/departing user contacts the service during time interval t − 2,

the rekeying messages are transmitted during t − 1, and new key

information takes effect at the beginning of time interval t. 66

3.3 Two approaches to distributing the key information in multimedia

multicasting: (a) using a media-independent channel, and (b) using

a media-dependent channel. 70

3.4 A generic multiplexing diagram depicting several audio streams (A1

- AN), video streams (V1 - VM), and auxiliary streams (X1 - XL).

Also depicted are locations where encryption is possible. 71

3.5 Tree-based key distribution. 92

3.6 The peak signal-to-noise ratio (PSNR) difference of the luminance

components between no embedding and the embedding scheme of

Song et al. with variable embedding rate. (a) Foreman, (b) Miss

America. 99

xiv

3.7 The time needed to refresh the entire set of keys during a member

departure using the bottom-up approach with different frame rates

F , and different amounts of bits embedded per frame. The group

size is n = 220, or roughly one-million users. 101

3.8 Key distribution for multi-layer multimedia multicast. 102

4.1 The basic key distribution scheme used in the polynomial interpo-

lation method. 116

4.2 Tree-based key distribution. 122

4.3 The two message structures used in the protocol primitives. 124

4.4 (a) The amount of communication CMJ required during member

join operations for different tree degrees a and different amounts of

users n. (b) The worst case amount of communication CMD required

during member departure operations for different tree degrees a and

different amounts of users n. 134

4.5 The average of CMD and CMJ for different tree degrees a and dif-

ferent amounts of users n. 136

4.6 The expected amount of communication for a degree 4 tree with 6,

8, and 10 levels as a function of the probability q that a leaf node

is occupied. (a) Member Join, (b) Member Departure. 140

4.7 The worst-case member departure communication overhead required

in a conventional tree-based rekeying for different tree degrees ver-

sus the baseline communication required when using the polynomial

interpolation scheme. The baseline communication corresponds to

Bµ = 64 bits. 142

xv

5.1 An example the constellation points for v = 3 orthogonal and sim-

plex modulation. 161

5.2 Detection trees for identifying colluders using Algorithm 1. The im-

ages for different users are fingerprinted via orthogonal modulation.

The fingerprints of colluders are indicated by shadowed boxes Uj.

The notation “TN‖U?” denotes the detection statistics from corre-

lating the test image with the sum of the fingerprints U?. Detection

statistics close to zero indicate the unlikely contributions from the

corresponding fingerprints, and the branches of the detection tree

below them, indicated by dotted lines, will not be explored. 169

5.3 The receiver operating characteristic curve (p(1|non-1 vs. p(1|1))

for WNRs of −25dB, −22.5dB, and −20dB. 183

5.4 (a) The probability of detection p(1|1) and (b) the probability of

false alarm p(1|non-1) for different WNR and different thresholds. . 184

5.5 (a) The fraction of colluders that are successfully captured, or placed

under suspicion, and (b) the fraction of the total group that are

innocent and falsely placed under suspicion for different WNR and

different thresholds. 185

5.6 The original images (top), fingerprinted images (middle), and dif-

ference images (bottom) for Lenna and Baboon. In the difference

images, gray color indicates zero difference between the original and

the fingerprinted version, and brighter and darker indicates larger

difference. 187

5.7 Illustration of collusion by averaging two and three images finger-

printed with ACC codes, respectively. 188

xvi

5.8 Example detection statistics values for 2 users’ and 3 users’ collu-

sion with a (16, 4, 1)-BIBD AND-ACC fingerprint. (top) Blind de-

tection scenario and (bottom) non-blind detection scenario. (left)

User 1 and 4 perform averaging, resulting in the output of the de-

tector as (−1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1). (right) User 1, 4,

and 8 perform averaging, resulting in the output of the detector as

(0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1). 189

5.9 Histograms of detection statistics of embedded fingerprints: (top

row) single fingerprint case, (middle row) 2-user collusion case, (bot-

tom row) 3-user collusion case; (left column) blind detection, (right

column) non-blind detection. 191

5.10 Aggregated histograms of blind detection statistics of embedded fin-

gerprints covering from 1 to 3 colluders and 4 distortion settings. . 193

xvii

Chapter 1

Introduction

Several key technologies have matured in the past decade, allowing for the possibil-

ity of building new infrastructures for the delivery and consumption of data. On the

application side, multimedia content has become ubiquitous. Content editing soft-

ware and hardware, such as digital cameras, are allowing for users to easily create

content. The availability of the Internet and the Web has encouraged artists, both

professional and amateur, to share their creative expressions. Additionally, com-

munication and networking technologies have advanced. The deployment of various

broadband communication technologies, such as digital subscriber line (DSL) and

fiber optical communications, has led to a rapid price drop for bandwidth. The re-

sult has been that the geographical barriers that used to hinder the communication

between people has dissolved, and the Internet has become the ubiquitous, global

network for one to be in touch anywhere, anytime. This combination of applica-

tion and communication technologies is creating opportunities for new businesses

to meet the growing global demand for information and entertainment.

As users are brought virtually closer to each other and made increasingly aware

of each other, they will want to interact. Whether for good or for bad purposes,

they will be able to share experiences that allow them to work or play together.

1

Already, new commercial markets, such as interactive television and mobile video

conferences, are on the horizon and promise to take advantage of the available

bandwidth. It is no longer difficult to envision a future where users will person-

alize their experiences by interacting with the multimedia content and combining

different media streams from different content providers.

However, after a decade of intensive development of both networking and multi-

media technologies, the barrier to the successful deployment of the next generation

of infotainment services no longer lies with bandwidth-related issues, but with as-

suring that content is used for its intended purpose by its intended recipients. The

core issue is thus the secure management of content usage and delivery across the

future ubiquitous and heterogeneous networks.

The recent controversy between the music industry and software/Internet com-

panies has only emphasized the importance that this issue will play in the future.

Programs like Napster and Gnutella have made the distribution of MP3 audio

files relatively simple, which has angered the record labels since such software

circumvents the conventional sources for revenue, and does not provide an alter-

native mode of remuneration. The need to create alternative methods to sell and

distribute content on the future communication networks has spurred several inter-

national groups to investigate flexible solutions to rights management and content

access. Two key examples already exist in the industry. First, is the secure digital

music initiative (SDMI), which was created to develop technologies that would

enable a new market for digital music to emerge by providing convenient access

to content while supporting copyright protection for the artists’ work [1]. Second,

ISO/IEC Working Group 11, more commonly known as MPEG, foresees similar

problems arising for the distribution of video and other multimedia formats. Al-

2

ready, MPEG is investigating intellectual property management and protection

(IPMP) solutions under the framework of MPEG-4 [2] and MPEG-21 [3].

Due to the advancements in communications, the problem of controlling access

to data and protecting the digital rights of content is no longer an issue that is able

to be addressed solely through conventional cryptographic paradigms. No longer

will the market only demand the traditional two-party application where a single

consumer purchases unique data or content from a service provider. Instead, there

will be an increased demand for applications that involve the concurrent distribu-

tion of content to multiple users. Although the new communication infrastructure

makes it easier to reach the end user, the nature of these ubiquitous networks also

make it easier for adversaries to observe transactions, collect data, and mount at-

tacks against security measures intended to secure data and content distribution.

Further, it is easier for adversaries to work together and combine their separate

resources to subvert security measures. Therefore, there is a need for security mea-

sures that control the access to content when it is distributed to multiple users, as

well as guaranteeing the digital rights of the content in the presence of coalitions

of adversaries seeking to use the content for illicit purposes.

1.1 Thesis Overview and Contributions

In this thesis, we examine multi-user security for applications that will occur on

the networks of the future. Multi-user security, in short, is concerned with the

security issues related to communications involving more than two parties. This

definition is, intentionally, vague and meant to incorporate a variety of different

scenarios. In particular, multi-user security covers the problem of providing confi-

dentiality during the distribution of data to more than two users. It is, however,

3

not restricted to apply to multiple service participants, but may also apply to

maintaining security against multiple adversaries. Therefore, we may summarize

multi-user security as:

Definition 1. Multi-user security is the collection of issues related to guaranteeing

the confidentiality, integrity, authenticity, and appropriate usage of data that is

distributed by a group of senders to a group of receivers in the presence of a group

of adversaries.

In this definition, there are three different classes of entities: senders, receivers,

and adversaries. It is possible that some of these entities might overlap. For

example, in conference applications, a user might send data to all other members of

the conference, and himself receive data from every other member of the conference.

It could also be possible that an adversary might pose as a member of a service for

a short time in order to acquire data with which to impersonate other members at

a future time. Further, in each of the three classes, it may be that a group consists

of only one member or multiple members.

Ensuring the secure management of data and content usage by multiple users on

heterogeneous networks requires new security solutions that address the plethora

of challenges posed by the diverse clientele and network profiles. In contrast to the

traditional security paradigm, where security is treated as a layer of a system that

is separated from network-related and application-specific issues that might have

an effect on the performance of the security measures, we consider the influence of

the communication network and the specific application on the issues of security.

This thesis considers that the security system must be designed and tailored for

the specific application or communication network. To address the role that the

network plays on a security system, we examine the formation of keying information

4

needed to secure a group of users with different communication or computational

capabilities. We also present security solutions that are designed specifically for

multimedia applications.

The problem of multi-user security is approached in this thesis by developing

security measures at different stages of the content distribution and consumption

process. In particular, we consider the complete chain of elements, ranging from the

establishment of initial keying information before transmission, to key management

while delivering through networks, and finally to content protection and collusion

prevention/tracing after delivery. In the subsections that follow, we describe the

contributions of the thesis in each stage of the content delivery and consumption

process.

1.1.1 Prior to Content Delivery

Prior to the delivery of group data, it is necessary to initially establish keying

material used to secure the data in a group application. Key distribution is ac-

complished either by using a centralized entity that is responsible for distributing

keys to users, or by contributory protocols where legitimate members exchange

information that they use to agree upon a key. When initial group session keys

are being formed by a centralized entity, traditional cryptographic protocols can

be used to distribute the key material to the users.

However, in many application environments, it is not possible to have a third

party distribute the group key. This might occur in applications where the group

members do not have sufficient confidence in any single entity’s trustworthiness to

perform key distribution. In this case, it is necessary to have the group members

each make contributions to the formation of the group key. Contributory protocols,

5

where each member participates in the formation of the group key, are known as

conference keying schemes.

Typical conference key establishment schemes seek to minimize either the

amount of rounds needed in establishing the group key, or the size of the messages,

and treat all users as identical. Group-oriented services will ultimately be hetero-

geneous in nature, bringing together users with varying amounts of computing

power and communication capabilities. Therefore, in order to secure tomorrow’s

communication systems, it is essential to develop security solutions that address

the heterogeneous nature of an application’s clientele. Since many applications

will involve a heterogeneous clientele consisting of group members with different

computational capabilities, pricing plans, and bandwidth resources, minimizing

the total bandwidth or the amount of rounds might not be an appropriate perfor-

mance metric to optimize. Instead, one should aim to minimize a cost function

that incorporates the different costs and capabilities of each user. Further, when

users have resource constraints imposed upon them, the key generation procedure

must decide whether it is feasible to generate a key and determine a procedure

for generating the group key while minimizing the total cost subject to resource

budget constraints.

In Chapter 2, we introduce the butterfly scheme, a scalable method that con-

structs the conference key using the two-party Diffie-Hellman scheme as the basic

building block. The development of the butterfly scheme was inspired by the but-

terfly communication diagrams of FFT computations, which efficiently distributes

input information amongst the processing nodes. Underlying the butterfly scheme

is a tree, called the conference tree, that describes the successive subgroups and

subgroup keys that are formed en route to establishing the key for the entire group.

6

The use of tree-based conference key establishment reduces the amount of rounds

needed to establish the conference key from being linear, as is the case in [4,5], to

being logarithmic in the group size.

The butterfly scheme treats the group as homogeneous, and does not consider

that users have different profiles. In order to address client heterogeneity, we

propose to tailor the design of the conference tree to account for the different user

cost and budget profiles. We assume that each user has a cost associated with

performing one two-party DH scheme, or a budget that describes the amount of

two-party DH schemes he is willing to participate in. We may seek conference

trees with small average user cost by choosing the conference tree as the tree

associated with coding a source with symbols whose weights are the different user

costs. Source coding techniques, such as Huffman coding, allow for the design

of conference trees that minimize the average user cost. In some scenarios users

might have budget constraints, in which case the necessary conditions for the

ability to generate a tree-based conference key is that the vector of user budgets

satisfy the Kraft Inequality. In order to compare our heterogeneous tree-based

scheme with other conference keying schemes, we introduce the PESKY measure

(the probability of establishing the session key). PESKY quantifies the likelihood

that a conference key can be established for a heterogeneous clientele of users

whose budgets are drawn according to an underlying probability distribution. The

PESKY of our tree-based schemes was found to be larger than the PESKY for

other schemes when the user budget distribution did not have a single entity with

significantly more resources than the other users. Further, we study the effect of

falsely announced costs on the design of the conference tree, and propose the usage

of a clipping operator with a threshold determined by minimizing the divergence

7

in order to reduce the effect of miscoding when designing the tree.

1.1.2 During Content Delivery

The most appropriate communication paradigm for the delivery of content to mul-

tiple users is multicast communications. This technology will be critical for band-

width intensive services, such as video-on-demand and pay-per-view, where users

will simultaneously enjoy the same content. Many of these applications will involve

dynamic group scenarios, where users may join and leave at anytime, which makes

it necessary to update the data needed to maintain the integrity of a multicast

application’s security. A conditional access system for multicasting must be able

to make necessary changes to the encryption keys that protect a service. The most

appropriate framework for handling server-oriented content distribution is by using

a centralized entity that is responsible for maintaining the integrity of the users’

keys.

Many schemes have been proposed to provide key management for server-based

group applications, though the most common class of multicast key management

schemes employ a tree hierarchy of keys [6–8]. Tree-based schemes are scalable

since the amount of communication and storage resources needed does not become

a hindrance to providing the service as the multicast group membership increases.

A deficiency with the current multicast key management schemes that have

been proposed is that their design has primarily focused on the issue of reducing

the size of the payload (the rekeying information), and not on the size of the entire

message (including the rekeying message and the header). In fact, the transmission

of the messages that flag the users which portion of the message is intended for them

is an essential element of an application that can add significant communication

8

overhead when used in conventional tree-based schemes.

In Chapter 3, we examine the problem of managing keys for applications that

multicast multimedia data. We provide an overview of fundamental information

theoretic results related to securely multicasting information to a group of privi-

leged users. This overview provides motivation and background for reducing the

communication cost associated with multicast key distribution. We then introduce

multicast key management, and discuss different methods for conveying the rekey-

ing messages. In particular, multimedia data provides a media-dependent chan-

nel, accomplished through data embedding techniques, for conveying the rekeying

messages. The primary advantage of using the media-dependent channel to convey

rekeying messages compared to the traditional use of a media-independent chan-

nel is that the data embedding channel hides the presence of rekeying messages

from potential adversaries, thereby making it more difficult for eavesdroppers to

measure information regarding membership dynamics. Further, the use of data

embedding allows the application to maintain the data rate of the media without

performing computationally expensive transcoding operations. We next introduce

a new format for the rekeying messages associated with departures from the group

membership. This new message format, which we call the residue-based format,

provides a single homogenized message from which each user can extract the new

key, and does not require the usage of header information to flag the users to their

portion of the message. We provide an analysis of the security of the message

format, and show that the difficulty for internal adversaries, who are members of

the group service, to acquire the keys of other users is atleast as difficult as that

of breaking the cryptographic primitive of one-way functions. We present simula-

tions illustrating the feasibility of performing rekeying when using data embedding

9

in H.263 video. Finally, we show that by adding extra functionality to multiple

key trees, multicast key distribution schemes can be extended to protect multiple

layers of multimedia content in an efficient manner.

In Chapter 4, we further investigate the usage of a homogenized message format

by proposing a multicast key management system that uses a composite message

format with member join and departure operations. This system can incorporate

any composite message format, such as the one in Chapter 3. The analysis pre-

sented uses a message format based upon polynomial interpolation [9], where a

single message consists of information needed to build a polynomial from which

each user can calculate the new key. Compared with the traditional format of

the rekeying messages used in tree-based multicast key management, our compos-

ite message format reduces the amount of header information, while maintaining

the same payload size. Further, we optimize the parameters associated with the

design of the tree by introducing a stochastic population model where each leaf

node is occupied according to i.i.d. Bernoulli random variables. Under this oc-

cupancy model, we show that the average case communication requirements are

close to the worst-case communication requirements, and we optimize the tree for

the worst-case.

1.1.3 Post-Content Delivery

Although access control is an essential element to ensuring that content is used by

its intended recipients, it is not sufficient for protecting the value of the content.

The protection provided by encryption disappears when the content is no longer in

the protected domain. It is therefore necessary to provide mechanisms that protect

content usage after it is delivered. In order to control the redistribution of con-

10

tent, digital fingerprinting is used to trace the consumers who use their content for

unintended purposes [10, 11]. These fingerprints can be embedded in multimedia

content through a variety of watermarking techniques [12, 13]. Conventional wa-

termarking techniques are concerned with robustness against a variety of attacks

such as filtering, but do not always address robustness against a coalition of users

with the same content that contains different marks. These multi-user attacks,

known as collusion attacks, can provide a cost-effective approach to removing an

identifying watermark.

In Chapter 5, we investigate the problem of making fingerprints for multimedia

content, such as images and video, that can withstand collusion and allow for

the identification of colluders. We begin by introducing the collusion problem for

additive embedding. We show that under reasonable assumptions, the optimal

fair strategy for colluders performing an averaging attack is to perform an average

where each user weighs their marked content equally. We then study the effect

that collusion has upon orthogonal, biorthogonal, and simplex modulation. We

introduce an efficient detection algorithm for identifying the fingerprints associated

with K colluders that requires O(K log(n/K)) correlations for a group of n users.

We next develop a fingerprinting scheme based upon code modulation that does

not require as many signals as orthogonal or simplex modulation in order to handle

n users. Our fingerprints are based upon anti-collusion codes (ACC), which have

the property that the composition of any subset of K or fewer codevectors is unique.

Using this property, we may therefore identify groups of K or fewer colluders. We

present a construction of binary-valued ACC under the logical AND operation that

uses the theory of combinatorial designs and is suitable for both the on-off keying

and antipodal form of binary code modulation. In order to accommodate n users,

11

our code construction requires only O(
√

n) orthogonal signals. For practical values

of n, this is an improvement over prior work on fingerprinting generic digital data.

We demonstrate the performance of our ACC for fingerprinting multimedia and

identifying colluders through experiments using Gaussian signals and real images.

In our study, we observe a close interplay between the detector and the desired

ability to capture colluders as well as the unwanted side-effect of placing innocent

users under suspicion.

12

Chapter 2

Conference Key Establishment for

Heterogeneous Networks

Prior to the delivery of data intended for a group of recipients, it is necessary

to initially establish keying material used to secure the group application. In this

chapter we investigate the initial key agreement problem for both homogeneous and

heterogeneous networks, whereby the members of a group each make contributions

to establishing secret information that may be used to form a group encryption

key.

2.1 Introduction

The advancement of communication technology is leading to a future where group-

based applications will become a reality. Many applications will require that the

communication amongst group members be protected from unwanted eavesdrop-

pers. Corporate conferences, with members from different parts of the world, might

contain industrial secrets that are in the best interests of the corporation to keep

unknown to rivals. In order to protect the communication traffic, the information

13

must be encrypted, requiring that the privileged parties share an encryption and

decryption key. Key distribution is accomplished either by using a centralized en-

tity that is responsible for distributing keys to users, or by contributory protocols

where legitimate members exchange information that they use to agree upon a key.

In the centralized approach to group key establishment, either a group leader

or a trusted third party is responsible for the generation and distribution of keying

material. The problem of centralized group key distribution has seen considerable

attention recently in the literature [6,8,14]. In many cases, however, it is not pos-

sible to have a third party arbitrate the establishment of a group key. This might

occur in applications where group members do not explicitly trust a single entity,

or no member has the resources to maintain, generate and distribute information

by himself. In these cases, contributory approaches are needed, where the group

members each make independent contributions to the formation of the group key.

The classic example of a contributory scheme is the Diffie-Hellman (DH) key

establishment scheme [15], in which two parties exchange messages that allow

them to securely agree upon a key that may be used to protect their two-party

communication. Several researchers have studied the problem of establishing a

Diffie-Hellman like conference key [4, 5, 16–19]. Typically, these conference key

establishment schemes seek to minimize either the amount of rounds needed in es-

tablishing the group key, or the size of the message. Many applications, however,

will involve a heterogeneous clientele consisting of group members with different

computational capabilities, pricing plans, and bandwidth resources. For these ap-

plications, minimizing the total bandwidth or amount of rounds might not be an

appropriate metric. Instead, one should aim to minimize a cost function that incor-

porates the different costs or resource constraints of each user. The key generation

14

scheme must therefore decide whether it is feasible to generate a key and determine

a procedure for generating the group key while minimizing the total cost subject

to resource budget constraints.

In this chapter, we develop methods for efficiently establishing a Diffie-Hellman

like conference key that address the heterogeneous requirements of the conference

members. We start in Section 2.2 by reviewing the Diffie-Hellman protocol, and

presenting several conference keying schemes that employ the Diffie-Hellman prob-

lem. In Section 2.3, we present the butterfly scheme, a conference keying scheme

for a homogeneous group of users, which builds the group key using the approach

of [4]. The butterfly scheme can be generalized and we show that an underlying

tree, which we call the conference tree, governs the process by which subgroup keys

are formed en route to establishing the group key. By examining different shapes

of conference trees, a family of tree-based group DH schemes can be formed. In

Section 2.4, we consider the problem of designing a conference tree when the users

have different capabilities. We first examine the case when the users have different

costs. In this case, the optimal conference tree can be constructed using the Huff-

man algorithm. We then examine the problem of choosing a conference tree when

the users have the same cost, but are subject to varying budget constraints. We

present necessary conditions for the existence of a conference tree when the users

have budget constraints, and present an algorithm that minimizes the total cost

given the budget constraints. Next, we consider the more general case where the

users have different costs as well as different budgets. A computationally efficient

near-optimal algorithm is presented that determines a conference tree whose total

cost is very close to the optimal performance achieved by conference trees deter-

mined using either full-search or integer programming techniques. In Section 2.5,

15

we present the results of simulations comparing the cost of forming a group key us-

ing tree-based schemes and several existent schemes. We also present simulations

comparing the likelihood that a group key can be formed given that the users’

budgets are drawn according to different distributions. From these simulations we

conclude that the tree formulation for establishing a group key allows for great

flexibility, and can efficiently establish group keys in resource-limited scenarios.

Finally, in Section 2.6, we study the effects that the quantization and clipping of

user costs have upon the total cost, and then investigate the effect that untrusty

users can have upon the total cost of forming the group key using the Huffman-

based conference tree. By suitably choosing the appropriate threshold level in the

clipping operator, the effects of miscoding are ameliorated. In Section 2.7, we

summarize our results and present conclusions.

2.2 Group DH Overview

In the basic DH scheme, the operations take place in an Abelian group G, typically

chosen to be Zp (the integers mod a prime p), or the points on an elliptic curve

under appropriate laws of addition [20]. For consistency of notation, we shall

develop our results for the group Zp. A group element g is chosen such that g

generates a suitably large subgroup of G (preferably the whole group). Both party

A and party B choose a private secret αj ∈ Z∗p where j ∈ {A,B} and Z∗p denotes

the non-zero elements of Zp. They each calculate yj = gαj and exchange yj with

each other. Party A then calculates the key via K = (gαB)αA = gαBαA and similarly

for party B.

The problem of establishing a Diffie-Hellman like conference key has been

investigated by several others [4, 5, 16]. One of the first Diffie-Hellman like con-

16

ference key establishment schemes was proposed by Ingemarsson et al [4]. In the

Ingemarsson (ING) scheme, the group members are arranged in a logical ring (e.g.

A → B → C → A). In a given round, every participant receives a message from its

left-hand neighbor, raises that to their exponent, and passes it to their right-hand

neighbor. For example, in the first round of a three person group exchange, we

have A → B : gαA , B → C : gαB and C → A : gαC . Then, in the second round

A → B : (gαC)αA , B → C : (gαA)αB , and C → A : (gαB)αC . Finally, the shared key

is gαAαBαC , which they each can calculate by raising the final received message to

their private exponent. For n users this scheme requires n− 1 rounds.

Another notable scheme is the Burmester-Desmedt conference key scheme [16].

This scheme consists of three rounds. During the first round, each user uj generates

a random exponent αj and broadcasts zj = gαj . The second round consists of each

user uj receiving zj and broadcasts the quantity xj = (zj+1z
−1
j−1)

αj . In the final

round, each user uj calculates the shared key K = z
nαj

j−1x
n−1
j xn−2

j+1 · · · xj−2. It can

be shown that the shared key is actually the quantity K = gα1α2+α2α3+···αnα1 .

In [5], the GDH.1, GDH.2 and GDH.3 protocols are described that extend the

two-party DH scheme to the n-party case. The distinguishing characteristic of the

GDH.1/2 protocols is that they consist of two stages: an upflow and a downflow

stage. For example, in the upflow stage of protocol GDH.1 user uj receives a

message of the form {gα1 , gα1α2 , · · · , gα1···αj−1} and computes gα1α2···αj by taking

the last element of the received message and raising it to the αj power. User uj

then sends to user uj+1 the message {gα1 , gα1α2 , · · · , gα1···αj−1 , gα1···αj}. During the

downflow stage, user un takes the output of the upflow stage, treats gα1···αn as

the key, calculates gαn and raises the first n − 2 elements of the output of the

upflow stage to the αn power. Then user un sends user un−1 a message of the form

17

{gαn , gα1αn , · · · , gα1···αn−2αn}. User uj performs likewise, calculating the key gα1···αn

using the last term of the received message, and forwards to uj−1 a message formed

by taking the first j − 1 terms of the received message and raising them to the

αjth power. The GDH.3 scheme is a centralized scheme that differs from GDH.1/2

in that one user gathers contributions from all users, performs the majority of

the computation for the group, and sends messages to each user that can be used

to calculate the group secret. The centralized nature of the GDH.3 scheme is a

drawback in environments where there is no single entity with significantly more

computational capabilities than the others users. Further, an extension to the

GDH schemes that incorporates user authentication was presented in [18].

Several measures have been proposed to gauge a conference key protocol’s com-

plexity [5,17]. The amount of messages sent and received, as well as the amount of

bandwidth consumed are important measures of a protocol’s efficiency. Another

important measure that arises is the amount of rounds that a protocol takes in

order to establish a group secret. A protocol that takes more rounds to establish

a shared key is less favorable in environments where time and synchronization are

precious resources. In [17], the communication complexity involved in establishing

a group key is studied. In this work, lower bounds for the total number of mes-

sages exchanged, as well as the amount of rounds needed to establish the group

key, were determined. They further present a key establishment scheme based

upon a hypercube structure where the amount of rounds needed to establish the

key is logarithmic in the group size.

A similar technique was proposed in [21,22], in which the problem of group key

establishment was examined in terms of signal flow graphs. The basic approach,

called the butterfly scheme, had communication flow that was reminiscent of the

18

butterfly diagrams of FFT calculations. The butterfly scheme used the ING scheme

as the basic building block, and provided a broad family of approaches in which

the amount of rounds needed to establish the group key is logarithmic in the group

size. We revisit the butterfly scheme in the following section.

2.3 Conference Trees and the Butterfly Scheme

The general butterfly scheme is built using the ING scheme. However, since the

two-party DH protocol is a special case of the ING scheme, we shall use the two-

party DH protocol to introduce the basic ideas involved and then extend to using

more general ING schemes. We refer to butterfly schemes built using two-party

DH as radix-2 butterfly schemes. The terms radix and butterfly are borrowed from

the signal processing community, and their usage is motivated by the resemblance

between the communication flow of our butterfly scheme, and the butterfly signal

flow diagrams associated with FFT computations [23]. In our work, the usage of

radix refers to the size of the initial subgroups used in the butterfly scheme.

In order to explain the basic idea behind the radix-2 butterfly scheme, suppose

that the number of users n is a power of 2. The users are paired up with each

other to form two-person subgroups, and a key is established for each of these

two-person subgroups using the conventional DH protocol. These subgroups are

paired up with each other to form larger 4 member subgroups, and the two-party

DH protocol is used to establish a group key for the 4 member subgroups. We may

successively group subgroups to form larger subgroups and use two-party DH to

ultimately achieve a shared group key.

A formal description of the butterfly scheme for n = 2r members is as follows.

Initially, suppose each user uj has a random secret integer αj ∈ Z∗p. The n users

19

are broken into pairs of users u1
j = {u2j−1, u2j}. Here we have used the superscript

in the notation to denote which round of pairings we are dealing with, while the

subscript references the pair. We also refer to the initial secrets that each user

possesses as x0
j = αj. In the first round, the members of a pair exchange their

calculated gx0
j . For example, u1 sends gx0

1 to u2, and u2 sends gx0
2 to u1. Then,

the users u2j−1 and u2j each calculate x1
j = gx0

1x1
1 = gα2j−1α2j (mod p). Since

x1
j ∈ Z∗p, and both members of a pair have established a conventional DH key, we

may now group the pairs u1
j into a second level of pairs, e.g. u2

1 = {u1
1, u

1
2}, and

more generally u2
j = {u1

2j−1, u
1
2j} so that the second level of pairings consists of 4

users in a pair. Each user from u1
2j−1 has an associated member of u1

2j to whom

they send gx1
2j−1 and similarly receive gx1

2j from. Every member in u2
j can calculate

x2
j = gx1

2j−1x1
2j (mod p). A third pairing, consisting of 8 users may be formed

and a similar procedure carried out if needed. In general, uk
j = {uk−1

2j−1, u
k−1
2j } and

xk
j = gxk−1

2j−1xk−1
2j (mod p). Ultimately, the procedure continues until there are only

two intermediate values that can be combined to get the group secret.

A trellis diagram depicting the communication flows between users is depicted

in Figure 2.1 (a). It is not necessary that each user perform a communication dur-

ing each round. In fact, such an operation might use more power since many users

are transmitting identical information. In networks, such as wireless networks,

where multicasting is available, alternative trellis diagrams can be constructed

where one user multicasts an intermediate message to multiple users. An example

of such a trellis is depicted in Figure 2.1 (b). An alternative way to view the but-

terfly scheme is provided in Figure 2.1 (c), which depicts the tree associated with

the butterfly scheme. This tree, which we refer to as the conference tree, describes

the successive subgroups and subgroup keys that are formed en route to establish-

20

u

u

u

u

u

u

u

u

1

2

3

4

5

6

7

8

u

u

u

u

u

u

u

u

1

2

3

4

5

6

8

7

(a) (b)

u
1

u
2

u
3

u
4

u
5

u
6

u
7

u
8

(c)

Figure 2.1: The radix-2 butterfly scheme for establishing a group key for 8 users.

(a) Without broadcasts, (b) Using broadcasts, and (c) the associated conference

tree.

ing the key for the entire group. For example, there is a node on the conference

tree that is the grandparent of {u1, u2, u3, u4} and hence there is a subgroup key

that can allow {u1, u2, u3, u4} to communicate securely amongst themselves if so

desired.

When n is not a power of 2, a group key still can be established easily. In this

case, we form a subgroup with an amount of users equal to the largest power of 2

less than or equal to n. The remaining users are further broken down in a similar

21

u

u

u

u

u

u

u

1

2

3

4

5

6

7

u

u

u

u

u

u

u

1

2

3

4

5

6

7

(a) (b)

u
1

u
2

u
3

u
4

u
5

u
6

u
7

(c)

Figure 2.2: The radix-2 butterfly scheme for establishing a group key for 7 users.

(a) Without broadcasts, (b) Using broadcasts, and (c) the associated conference

tree.

fashion, resulting in a new set of remaining users that can be further broken down.

For example, a group of 7 users will be broken down into subgroups of 4, 2, and

1 members. Subgroup and group keys are formed in a fashion similar to the case

when n is a power of 2. The trellis and conference tree for n = 7 users is depicted

in Figure 2.2. The number of rounds needed to complete the radix-2 butterfly

scheme is dlog2 ne.
We now extend the approach used above to employ the more general ING

scheme as the basic building block. Since the resulting schemes are not built using

22

for Stage k = 1 : r do

Form subgroups uk
j = {uk−1

pk(j−1)+1, u
k−1
pk(j−1)+2, · · · , uk−1

pkj } ;

Establish a secret xk
j for subgroup uk

j using xk−1
j as secrets in a pk-

member ING scheme ;

end

Algorithm 1: Algorithm for calculating the group key using ING scheme

when the group size is factored as n = p1p2 · · · pr.

a two-party protocol, they are termed non-radix-2 butterfly schemes. Suppose that

n = p1p2 · · · pr is the number of users, and the pj are not necessarily prime. The

general ING butterfly scheme starts by breaking the group into subgroups of size

p1 and uses the ING scheme to establish a shared key for each of the n2 = p2 · · · pr

subgroups. The n2 subgroups are further broken down into subgroups consisting

of p2 subgroups, and the ING protocol is used to establish subgroup keys for these

larger subgroups. The process continues until a key is established for the entire

group. The procedure for this scheme is presented in Algorithm 1, where u0
j = uj

and the initial user secrets are x0
j = αj. An example is depicted for the case of n = 9

users in Figure 2.3. The total amount of rounds is 2 log3 9 = 4, and the amount of

messages is 36. The direct use of the ING scheme for 9 users requires 8 rounds and

72 messages. The divide and conquer strategy in the butterfly approach improves

the efficiency of the ING scheme. Additionally, the logarithmic amount of rounds

needed by the butterfly scheme to establish the group key is an improvement over

the linear amount of rounds required by the GDH schemes of [5]. We further note

that the hypercube approach of [17] also requires a logarithmic amount of rounds to

establish the conference key. However, the hypercube approach does not address

the issue of using a general subgroup size as the building block for designing a

23

u

u

u

u

u

u

u

1

2

3

4

5

6

7

u
8

u
9

Figure 2.3: The trellis for n = 9 users using two levels of 3-party ING scheme.

scalable conference key establishment scheme. By using the ING scheme as the

basic module in the butterfly scheme, we include the hypercube approach as a

special case, and have generalized their approach. Further, the butterfly scheme

described above allows for the use of multicast channels to improve communication

efficiency.

It is not necessary to use a factorization of n in designing the non-radix-2

butterfly scheme. In fact, for prime n, this factorization would necessitate using

an n-party ING scheme, and require a large amount of rounds in forming the group

key. Rather, what is required is that the degrees pj of the ING schemes used satisfy

∏
pj ≥ n. In this case, some positions are left unused. For example, when n = 8

and p1 = p2 = 3 one position of a 3-party ING scheme is empty, in which case that

computation simply uses the 2-party DH scheme instead

The total number of rounds needed in the ING butterfly scheme for n =

p1p2 · · · pr users is

TR =
r∑

j=1

(pj − 1) =

r∑

j=1

pj

− r. (2.1)

24

When choosing a factorization to represent n, the more factored representation

leads to a smaller number of rounds TR. We now show that using a binary confer-

ence tree produces the group key in the fewest amount of rounds. To do this, we

show that if one uses a pj ING scheme for round j of the group key establishment,

then the use of several two-party DH schemes in place of the pj ING scheme either

produces the same amount of rounds or fewer in establishing the group key.

If we require that all of the computation on one level of a conference tree is

completed prior to the formation of the keys in the next level up the conference

tree, then using the two-party DH scheme as the building block leads to trees with

the least amount of rounds needed to establish the group key. The proof for this

claim is provided in the following lemma. Since using two-party DH leads to binary

trees that require the least amount of time rounds, we shall restrict our attention

to binary trees for the remainder of the chapter.

Lemma 1. Let n be the amount of users, and suppose that we wish to establish a

conference tree where level j uses a pj ING scheme as the basis, then a binary tree

(where pj = 2) produces an optimal conference tree.

Proof. Suppose that you have an optimal set of numbers {p1, · · · , pr} that are used

to construct the conference tree for n users. Then the number N =
∏r

j=1 pj ≥ n,

and the total rounds TR =
(∑r

j=1 pj

)
− r is minimal.

We will show that if there is a pj 6= 2 then we may replace pj by a sequence

of numbers all of which have value 2. Suppose there is a j such that pj 6= 2,

then the pj contributes ∆j = pj − 1 to the total amount of rounds TR. Define

p′j = {2, 2, · · · , 2} which is a sequence of length dlog2 pje. If we use this set of

numbers in place of pj, we instead contribute ∆′
j = dlog2 pje to the total cost. It

is clear that using p′j in place of pj produces an N ′ ≥ n. However, the incremental

25

cost ∆′
j = dlog2 pje is less than or equal to ∆j (in fact, if pj = 3 then equality

holds, else it is strictly less). Thus, if pj > 3 then replacing pj by p′j produces a set

of numbers with lesser amount of total rounds TR, which contradicts optimality.

On the otherhand, if pj = 3 then replacing pj by p′j will produce a set of numbers

with an equal amount of total rounds TR, and hence we may choose to use p′j

instead of pj in the construction of the optimal tree. By applying this argument

to all pj 6= 2 we conclude that a binary tree must produce an optimal tree.

It should be pointed out, however, that the argument used above does not

produce the optimal tree, but rather only implies that the optimal tree is binary.

For example, consider n = 27. The total amount of rounds using three levels of

3-party ING is TR = 6. If we use the above technique, we replace each 3 by 2 · 2,

and get a conference tree with 26 terminal nodes and total cost of 6. However,

the optimal tree in this case is the binary tree of depth dlog2 ne, with total rounds

TR = 5.

In the butterfly schemes described above, the conference trees were almost

balanced and full. For example, the conference tree for n = 8 users involves 3

levels of internal nodes, and all 8 users are placed at the same depth in the tree.

For more arbitrary amounts of users, the users are all roughly placed at the same

depth. More general depth assignments and conference tree structures may be

given to the users. In the next section, we shall exploit the extra freedom provided

by more general binary conference trees by placing users at different depths in

order to reduce the total group cost needed to form the group key.

26

2.4 Computational Considerations

In many application environments the users will have varying amounts of computa-

tional resources available. Low-power devices, such as wireless appliances, cannot

be expected to expend the same amount of computational effort as high-power de-

vices, such as personal computers, when establishing a group secret. It is therefore

important to study the problem of efficiently establishing a conference key while

considering the varying user costs.

To accomplish the efficient establishment of a conference key in a heterogeneous

environment, we introduce a new entity, called the Conference Keying Assistant

(CKA). The CKA is responsible for collecting the users’ costs or budgets, deter-

mining the appropriate conference keying tree, and conveying the conference tree

to the conference members if it is feasible to establish the group key. The CKA

is not responsible for performing any computation beyond the calculation of the

appropriate conference tree, and therefore only needs to be a semi-trusted entity

who will accurately convey the conference tree to the conference members. We

note that the CKA may be a member of the conference, in which case his duties

as CKA are in addition to his role as a group member.

In this section, we present methods that the CKA can employ to design the

conference tree that is used by the group members to establish the group secret.

In particular, we study two problems: minimizing the total cost in establishing

a group key, and the feasibility of establishing the group key in the presence of

budget constraints. We present algorithms to efficiently determine the conference

keys for each of these problems separately, and then together.

27

2.4.1 Minimizing Total Cost

First, assume that we have n users, and that each user uj has a cost wj ≥ 0

associated with performing one two-party Diffie-Hellman protocol. For example,

this cost might be related to the amount of battery power consumed. Suppose we

place the n users on a conference tree with n terminal nodes in such a manner that

each user uj has a length lj from his terminal node to the root of the conference

tree. Our goal is to minimize the total cost C =
∑

wjlj of this tree.

We first address the question of what is the minimum amount of total compu-

tation necessary for establishing the group key for n users. This problem can be

addressed using coding theory. If we define pj as pj = wj/ (
∑

k wk), then
∑

j pjlj is

just a scaling of
∑

j wjlj by W =
∑

k wk. Let us define X to be a random variable

with a probability mass function given by pj, then minimizing
∑

j pjlj is equivalent

to finding a code for X with lengths lj that minimizes the average code length. We

thus infer the following lower bound on the total cost for establishing a group key,

which follows from the lower bound for expected codelength of an instantaneous

binary code for X [24]:

Lemma 2. Suppose that n users wish to establish a group secret and each user

uj has a cost wj associated with performing one two-party Diffie-Hellman protocol.

Then the total cost C of establishing the group secret satisfies −W
∑

j pj log2 pj ≤ C

where pj = wj/W .

The observation that efficiently establishing a group key is related to coding

allows the CKA to use procedures from coding theory to determine desirable con-

ference trees. In particular, Huffman coding [25–28] is computationally efficient

and yields the optimal conference tree that minimizes the total weighted cost.

That is, if C∗ is the cost of forming the group key using the Huffman tree, then

28

15

28 25

16

8

7 5

20

Figure 2.4: Huffman example

the cost C ′ of using a different conference tree assignment will satisfy C ′ ≥ C∗.

Since Huffman coding produces an optimal code, we know that the expected cost

∑
j wjl

∗
j satisfies the following bound

WH(p) ≤ ∑

j

wjl
∗
j < W (H(p) + 1) , (2.2)

where H(p) is the entropy of the distribution p. Thus, the Huffman construction

of the conference key tree has a total cost that is within W of the lower bound.

The following example demonstrates the advantage of using the Huffman al-

gorithm for forming the conference tree when compared to using the full balanced

tree of the radix-2 butterfly scheme.

Example 1. Consider a group of 8 users with costs w1 = 28, w2 = 25, w3 = 20,

w4 = 16, w5 = 15, w6 = 8, w7 = 7, and w8 = 5. The Huffman algorithm

yields the tree depicted in Figure 2.4. The corresponding length vector is l∗ =

(2, 2, 3, 3, 3, 4, 5, 5), and the total cost is 351. The total cost for a full balanced tree

is 372.

We now quantify the improvement that is available when using the Huffman

code compared to the cost of using an arbitrary conference tree. For an arbitrary

29

conference tree, we suppose that the length assigned to user uj is lj. If we define

a probability distribution q by qj = 2−lj , then the expected length under the

probability pj of the code with lengths lj satisfies [24]

H(p) + D(p‖q) ≤
n∑

j=1

pjlj < H(p) + D(p‖q) + 1. (2.3)

Here D(p‖q) is the Kullback-Leibler divergence between the two probability dis-

tributions p and q. The cost for using this tree is C = W
∑

pjlj. We can combine

the bound of Equation (2.3) with the bound for the cost of the optimal code

C∗ < W (H(p) + 1) to get C − C∗ > W (D(p‖q)− 1). When D(p‖q) > 1, this

bound is an improvement over the trivial bound C − C∗ ≥ 0.

2.4.2 Budget Constraints

In many cases, the parties wishing to establish a conference key might have a

limited budget to spend. The optimal conference tree assignment that results

from Huffman coding might assign more computation to some users than they are

capable of performing, while assigning less computation to other users than they

are capable of performing. In these cases, rather than minimize the total cost, one

should ensure that one can first establish the group key, and then reduce the total

amount of computation as a secondary issue.

Suppose that user uj publishes a budget bj that describes the amount of two-

party Diffie-Hellman key establishment protocols he is willing to participate in

when establishing the group key. Without loss of generality, we assume that the

users’ budgets bj satisfy bj ≤ bk for j < k. We define the budget vector as

b = (b1, b2, · · · , bn). The length vector l = (l1, l2, · · · , ln) describes the lengths from

each user’s node to the root of the conference tree. The necessary conditions on

30

the budget vector b for the existence of a conference key tree with lengths lj ≤ bj

is provided by the Kraft Inequality [24]:

Lemma 3. Suppose that the budget vector b = (b1, b2, · · · , bn). Then a conference

key tree with lengths lj exists that satisfies the budget constraint lj ≤ bj for all j if

∑n
j=1 2−bj ≤ 1.

A budget vector that satisfies the Kraft Inequality is said to be feasible. When

a budget assignment does not satisfy the Kraft Inequality and we choose to drop

a single member to generate a feasible budget vector for the remaining users, then

the best strategy is to drop the member with the lowest b1.

Using the budget vector as the length vector does not always lead to a full

conference tree in which every node has two children. In order to get a full tree,

we must trim the budget vector to produce a length vector l that achieves the

Kraft Equality. The length vector is formed by reducing elements of the budget

vector by amounts that do not violate the Kraft Inequality. The following lemma

provides a useful approach to trimming the length vector assignment while still

satisfying the Kraft Inequality.

Lemma 4. Suppose b = (b1, b2, · · · , bn) with bj ≤ bk for j < k satisfies the strict

Kraft Inequality,
∑

2−bj < 1, then the modified budget vector c defined by c =

(b1, b2, · · · , bn−1, bn − 1) satisfies the Kraft Inequality
∑

2−cj ≤ 1.

Proof. Observe that 2bn is the least common denominator of the set 2−bj . Thus

∑
2−bj can be expressed as

∑
2−bj =

x1 + x2 + · · ·+ xn

2bn
< 1 (2.4)

where xj = 2bj−bn . In particular, x1 + x2 + · · · + xn < 2bn , and as a consequence

31

Data : A length vector l satisfying
∑

2−lj ≤ 1.

while
∑

2−lj < 1 do

j = arg max{lk} ;

lj = lj − 1 ;

end

Algorithm 2: Algorithm for calculating the optimal length vector l.

x1+x2+ · · ·+(xn+1) ≤ 2bn . However, (xn+1)/2bn = 1/2bn−1, and so the sequence

(b1, b2, · · · , bn − 1) satisfies the Kraft Inequality.

A consequence of this lemma is that if we subtract 1 from one of the bj, then

choosing the largest bj least affects
∑

j 2−bj . Using this idea, Algorithm 2 starts

with an admissible budget vector b, initializes the length vector l = b, and produces

a length assignment l = (l1, l2, · · · , ln) satisfying lj ≤ bj such that
∑

j 2−lj = 1 and

∑
j lj is minimized over all length vectors c satisfying

∑
j 2−cj ≤ 1. The optimality

of this algorithm is discussed in Lemma 5.

As an example of the algorithm, suppose n = 8 and that the initial budget is

b = (1, 3, 3, 4, 5, 5, 6, 8). This budget vector is feasible and performing the algorithm

gives the final assignment l = (1, 3, 3, 4, 4, 4, 5, 5).

Lemma 5. Algorithm 2 produces an optimal length assignment vector l to the

problem

min

l

∑

j

lj : 1 ≤ lj ≤ bj,
∑

j

2−lj ≤ 1, lj ∈ Z+

 . (2.5)

Proof. We will aim to show that there is an optimal solution in which one decreases

the largest value of the budget vector by one. Let l∗ be an optimal solution to the

problem. Then by the previous lemma
∑

2−l∗j = 1. Consider a sequence of steps

that take the budget vector b to the optimal length vector l∗ by decreasing one

32

element by 1 during each step. We denote by J∗ the sequence of indices involved

in going from b to l∗, where J∗(k) refers to the index of the budget vector that is

decreased during kth step. Let j0 be the index of the largest element of b, we claim

there is an optimal solution l′ with a corresponding J∗(1) = j0. If J∗(1) = j0 then

we are done. However, if J∗(1) 6= j0 then there are two cases. The first case is that

there is another element of J∗ that has value j0, in which case we may switch that

element with J∗(1) to produce a new sequence of steps that does not alter the value

of
∑

2−l∗j and maintains the optimality of
∑

j lj. The second case is that j0 6∈ J∗. If

there are any other elements of b with the same value as bj0 , then indices of these

may be used in place of j0, and considered in the preceding argument. However,

if there are no bj’s with the same value as bj0 then we seek a contradiction as

to the optimality of l∗. Choose an arbitrary element of J∗. This element, which

we denote by J∗(k), by assumption has the property that it bJ∗(k) < bj0 . Define

J−∗ = {J∗(1), · · · , J∗(k − 1), J∗(k + 1), · · ·}, which corresponds to the sequence of

steps involved in J∗ excluding the kth step. Define J] = j0‖J∗−, which describes

a new sequence of steps that starts with j0 and then the steps of J∗−. Then J]

leads to a length vector l] = l∗ + eJ∗(k) − ej0 , where ej is the vector of all zeros

except in the jth index which has value 1. This length vector has the property

that
∑

2−l]j <
∑

2−l∗j since 2−l∗j0 < 2
−l∗

J∗(k) . Hence
∑

2−l]j < 1. However, by the

preceding lemma, this means that l] can be used to produce a better length vector,

which contradicts the optimality of l∗.

Hence, the optimal solution may as well have the first step reduce the largest

element of the budget vector. Now the problem reduces to finding an optimal

solution to the new budget b′ = b − ej0 . By induction on the number of steps,

we therefore conclude that choosing the largest element during each step yields an

33

optimal solution, and hence the greediness of Algorithm 2 is optimal.

2.4.3 Combined Budget and Cost Optimization

We have studied the problem of minimizing the total cost of establishing a group

key using a tree structure, and whether a group key can be established in a budget-

limited scenario. We now address the more realistic scenario where users have

different costs as well as budget constraints. We are therefore interested in the

problem of minimizing the total cost of the length assignments lj for the weights

wj given the budget constraint lj ≤ bj. This problem is formally stated as:

Minimize
n∑

j=1

wjlj

subject to 1 ≤ lj ≤ bj,
n∑

j=1

2−lj = 1, lj ∈ Z+

where Z+ denotes the non-negative integers. Once a length vector has been deter-

mined, it can be sorted in ascending order to describe a conference tree.

This problem is more difficult than either the minimum cost problem or the

budget-constrained problem. If the budget vector is constant, i.e. bj = b for every

j, then the methods of length-constrained source codes may be applied [29–35].

One efficient algorithm for finding the optimal Huffman code under the maximum

codeword length constraint is presented in [29], which is based on the algorithm

of [31]. A near optimal solution can be found using Lagrange relaxation, and an

efficient implementation is described in [32]. However, in the more general case

where the budgets vary from user to user, it is difficult to find the optimal solution

since the ordering wj ≤ wk does not imply lj ≥ lk.

Two suboptimal approaches that employ a greedy strategy were developed to

tackle the general problem where the budgets vary from user to user. The first

34

Data : A budget vector b.

if
∑

2−bj > 1 then

No solution. ;

end

l = b ;

while
∑

2−lj < 1 do

Let δ = 1−∑
2−lj ;

K = −dlog2 δe ;

J = {j : lj ≥ K} ;

Let j0 = arg maxj∈J wj ;

lj0 = lj0 − 1 ;

end

Algorithm 3: Algorithm for calculating the length vector l, given budget b

and costs wj.

algorithm, described in Algorithm 3, is a variant of Algorithm 2, which starts with

a length assignment l = b and chooses to decrease the element lj of the length

vector that most reduces the total cost
∑

wklk at that step while maintaining the

Kraft Inequality. This greedy algorithm is not optimal, as can be seen by the

example b = (2, 2, 3, 3) with costs w = (10, 7, 6, 6). In this example, the algorithm

produces the length vector l = (1, 2, 3, 3) (which has a total cost of 60), whereas

the optimal length vector is l∗ = (2, 2, 2, 2) (which has a total cost of 58).

Algorithm 3 is a naive greedy algorithm. By slightly altering this algorithm,

another greedy algorithm may be developed with better performance. Instead of

decreasing the element that best decreases the total cost, Algorithm 4 chooses to

decrease the element with the largest value wj2
lj . This corresponds to choosing the

element that would have the largest change in the cost function per change in the

35

Data : A budget vector b.

if
∑

2−bj > 1 then

No solution. ;

end

l = b ;

while
∑

2−lj < 1 do

Let δ = 1−∑
2−lj ;

K = −dlog2 δe ;

J = {j : lj ≥ K} ;

Let j0 = arg maxj∈J wj2
lj ;

lj0 = lj0 − 1 ;

end

Algorithm 4: Improved algorithm for calculating the length vector l, given

budget b and costs wj.

Kraft Inequality. A similar strategy is often used in designing incremental resource

allocation schemes in operations research [36]. Algorithm 4 is also suboptimal, but

exhibits better performance than Algorithm 3 with a negligible increase in the

amount of computation needed. The optimal solution to the combined budget

and cost optimization problem can be obtained by performing either full-search,

or using the methods of integer programming [37–39]. One useful approach is to

apply the branch and bound method to the problem [37,40–42].

We now compare the near-optimal results of Algorithm 4 with the optimal solu-

tion. We performed a simulation where each user’s budget bj was chosen uniformly

from [1, 3n], and weights wj were chosen uniformly from [1, 100]. The optimal so-

lution, l∗, was compared with the approximate solution, l̂, from Algorithm 4 via

36

Group size n ρ̄

5 0.0037

6 0.0046

7 0.0027

8 0.0020

9 0.0025

10 0.0020

11 0.0016

Table 2.1: Comparison between the optimal solution and the approximate solution

of Algorithm 4 for different group sizes n.

the relative difference

ρ =
C(l̂)− C(l∗)

C(l∗)
. (2.6)

This quantity was calculated and averaged over 100 realizations to produce the

mean relative difference ρ̄, for the group sizes n = 5, 6, 7, 8, 9, 10, and 11.

The results are presented in Table 2.1, which indicates that Algorithm 4 produces

the group key with cost that is within 0.5% of the optimal cost. Due to the

computational complexity required to find the optimal solution for 100 realizations,

we only present results through n = 11.

Since determining the optimal solution is very computationally intensive for

large group sizes, it is unreasonable for the CKA to find the optimal conference tree

when users have both budget constraints and varying costs. Instead, Algorithm

4, although not optimal, has very competitive performance and its computational

requirements are small compared to full-search or the branch and bound method,

and is a reasonable candidate for the CKA to use in determining the conference

37

tree.

2.5 Efficiency and Feasibility Evaluation

We now compare our tree-based conference key establishment schemes with other

schemes in the literature. We assume that no broadcast channels are available, and

that if one user desires to communicate amongst many, he must establish many

separate connections. There are two evaluations that we present: first, we consider

the total cost needed to establish a group key when the users have different costs;

second, we examine the feasibility of establishing a conference key when group

members have different budget constraints.

2.5.1 Comparison of Total Cost

We simulated a scenario in which there were three classes of users. The first class

corresponds to users with a large amount of computational power (and hence lower

user cost), the second corresponds to a medium level of computational power,

and the last class represents users with low-powered devices or a high cost. In

order to represent this distinction, the users were assumed to have weights drawn

according to three different distributions. For every 10 users, 2 users have weights

drawn according to the first distribution, 5 according to the second distribution,

and 3 according to the third distribution. The first weight distribution was a

discrete uniform distribution with integer values from [1, 50], while the second was

a discrete uniform distribution over [501, 550], and the third was a discrete uniform

distribution over [951, 1000].

We compared the total cost for the Huffman scheme with the cost of the butter-

38

fly scheme, the ING scheme, the GDH.1/2 scheme, and the GDH.3 scheme. Since

there are differences between the communication and computational procedures of

the different schemes, we assume that the user costs are associated with the cost

to perform the two modular exponentiations needed in a two-party DH scheme.

This means, for example, that if a user has a cost of w to perform one round of

two-party DH, then he has a cost of 3w/2 to perform a 3-party ING scheme since

there are 3 modular exponentiations involved.

We also assume that every user in a DH scheme performs the two modular

exponentiations. For example, if the subgroup {u1, u2} share a secret x and the

subgroup {u3, u4} share a secret y, and use DH to establish a shared key for the

4 members, then both u1 and u2 calculate gx and gyx. Similarly, both u3 and u4

calculate gy and gxy. In actuality, however, only one member from each subgroup

must calculate and transmit the message gx or gy. The costs for the Huffman

and butterfly schemes that we report do not reflect this possible savings, and are

therefore overestimates of the actual costs.

The total cost required to establish the conference key was calculated for differ-

ent group sizes and averaged over 500 realizations. The average costs are depicted

in Figure 2.5. Examining Figure 2.5 we see that the ING and GDH.1/2 schemes

have higher total cost than the Huffman, butterfly, and GDH.3 schemes. In this

example, the Huffman scheme performs better than the butterfly scheme by an

average of 6.7%. GDH.3 has the best performance in terms of total cost. How-

ever, GDH.3 is a centralized scheme and cannot be categorized as a completely

distributed conference keying scheme since one user performs the majority of the

computations for the group. In contrast, the Huffman scheme and the butterfly

scheme are contributory and do not make any single user responsible for the ma-

39

20 40 60 80 100 120 140 160 180 200
10

4

10
5

10
6

10
7

10
8

Comparison of Total Cost, 500 realizations

T
ot

al
 C

os
t (

lo
g

sc
al

e)

Group Size

Huffman
ING
GDH.1/2
Butterfly
GDH.3

Figure 2.5: Cost comparison of establishing a conference key using the Huffman-

based conference tree, the ING scheme, GDH.1/2, the butterfly scheme, and the

GDH.3 scheme. The first four schemes are contributory protocols, while GDH.3 is

a centralized protocol.

jority of the computation (although they do allot more load to some users than

others). In scenarios where it is appropriate to have one user or entity do nearly all

of the work for the remaining users the use of centralized multicast key distribution

schemes [6,8,14] will lead to more efficient distribution of keying information than

conference keying schemes.

2.5.2 Feasibility Comparison

Another major concern is the feasibility of establishing a secure conference in the

presence of budget constraints. When the users have different budgets, it might not

be possible for different schemes to establish a conference key. We shall quantify

40

the likelihood that a conference key can be established in a scenario where the

users’ budgets are drawn according to a distribution by introducing the PESKY

(Probability of Establishing the Session KeY) measure.

Suppose that B denotes the set of all possible budget vectors for n users, and

that µ is a probability distribution over B describing the likelihood of the users

having a certain budget vector. Let a conference key scheme be denoted by F , and

F (B) the set of all budget vectors B which are feasible for F . Then formally, the

PESKY measure is defined as:

PESKY (F, n) =
∑

b∈F (B)

µ(b). (2.7)

For example, if we let F refer to a conference tree scheme built using Algorithm

2, Algorithm 3, or Algorithm 4, then a budget vector is feasible if it satisfies the

Kraft Inequality, and therefore F (B) = {b :
∑

j 2−bj ≤ 1}. In general, it is difficult

to find closed form expressions for PESKY, and Monte Carlo methods must be

used to estimate PESKY.

We used PESKY to study the likelihood that different schemes could produce

a group key when the user’s budgets were drawn according to different distribu-

tions. We assumed that the budgets bj correspond to the amount of two-party DH

schemes that a user is willing to participate in, and that the two modular expo-

nentiations are the most significant expense for the user. Therefore, each value of

the budget allows for 2 modular exponentiations to be performed. As before, we

assume that every user in a subgroup performs both of the modular exponentia-

tions in a DH scheme. We compare the PESKY for Algorithms 2-4 with PESKY

for both the GDH.1/2 and GDH.3 schemes for three different budget distributions.

The PESKY for Algorithms 2-4 are conservative estimates of the actual probabil-

ity of establishing the session key since it is not necessary that all members of a

41

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Budget Distribution for Unif[5,20]

Budget Values

P
ro

ba
bi

lit
y

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

Group size

P
E

S
K

Y

PESKY for budgets from Discrete Uniform [5,20]

Kraft−Inequality
GDH.1/2
GDH.3

(a) (b)

Figure 2.6: (a) Budget distribution discrete uniform with integer values from [5, 20]

(b) Corresponding PESKY

subgroup perform the first modular exponentiation of a DH scheme.

The first budget distribution is a discrete uniform distribution with integer

values from [5, 20]. The distribution is presented in Figure 2.6(a), and the corre-

sponding PESKY curves are presented in Figure 2.6(b). Since the GDH schemes

require that one user performs an amount of modular exponentiations equal to the

amount of users n, it is impossible for groups of more than 40 users to be formed

via the GDH protocols with this distribution, as can be seen in Figure 2.6(b).

The PESKY plots for this distribution demonstrate that it is more likely that a

budget vector can satisfy the Kraft Inequality than the requirements of either the

GDH.1/2 or GDH.3 schemes. In fact, it is not until the group sizes become larger

than n = 200 that a significant decrease is observed in the likelihood of forming a

group key using a conference tree.

For the second distribution, the elements of the budget vector are generated

as 1+NegBin(10, 0.25), where NegBin(s, p) is the negative binomial distribution

42

0 10 20 30 40 50 60 70 80
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Budget Distribution for 1 + NegBin(15,0.65)

Budget Values

P
ro

ba
bi

lit
y

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

Group size

P
E

S
K

Y

PESKY for budgets from NegBin(10,0.25)

Kraft−Inequality
GDH.1/2
GDH.3

(a) (b)

Figure 2.7: (a) Budget distribution, shifted version of a negative binomial distri-

bution with parameters s = 10, and p = 0.25. (b) Corresponding PESKY

with probability mass function q(b) given by:

q(b) =

(
s + b− 1

b

)
ps(1− p)b for b ∈ {0, 1, · · ·}. (2.8)

The addition of 1 to NegBin(10, 0.25) was to ensure that no users had a budget

of 0. In Figure 2.7, we see that the tree-based schemes exhibit a 100% likelihood

of successfully establishing the conference key for conferences with between 10 and

200 users. The PESKY values for GDH.3 begins to drop off at n = 100 users while

the values for GDH.1/2 drop off at n = 80 users. Since a large amount of budget

values are above 20, the PESKY curves do not drop off as quickly as they did for

the uniform case.

In the third distribution, the budgets were drawn according to 1+NegBin(5, 0.3),

as depicted in Figure 2.8 (a), and the corresponding PESKY measures are depicted

in Figure 2.8 (b). This distribution describes a similar phenomenon to the uniform

distribution above, but includes a heavier tail at higher budget values that could

represent a diminishing class of more powerful users. The fact that roughly 6%

43

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Budget Distribution for 1 + NegBin(5,0.3)

Budget Values

P
ro

ba
bi

lit
y

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

Group size

P
E

S
K

Y

PESKY for budgets from NegBin(5,0.3)

Kraft−Inequality
GDH.1/2
GDH.3

(a) (b)

Figure 2.8: (a) Budget distribution, shifted version of a negative binomial distri-

bution with parameters s = 5, and p = 0.3. (b) Corresponding PESKY

of this distribution corresponds to budget values below 5 has a significant effect

upon the PESKY plots. In particular, we see that the PESKY all of the conference

keying schemes drop off earlier than in Figure 2.6 (b). For example, when there

are n = 70 users there is only an 80% chance of forming a conference key using

one of these schemes with this distribution compared to a 100% chance with the

distribution of Figure 2.6 (a). We also see that the GDH.1/2 schemes are very

unlikely to successfully establish a group key, even for group sizes of n = 20, and

that all of the GDH schemes are unable to establish a group key for groups of more

then 60 users.

Therefore, in resource-limited scenarios, the choice of which conference keying

scheme is very critical. The GDH.3 scheme, although cost-efficient, obtains this

efficiency at the expense of requiring a single user have significantly more power

and resources than the other users. In applications where the users have a more

balanced distribution of resources, the GDH schemes have PESKY graphs that

rapidly drop off and are therefore unlikely to successfully establish a group key. In

44

these cases, the conservative estimates of PESKY for tree-based conference keying

schemes indicate that they are more likely to establish a group key, and Algorithm

4 is a judicious choice for constructing the conference tree since it requires little

computational effort and has near-optimal performance.

2.6 System Sensitivity to False Costs

In this section, we examine the effect that announcing costs different from the true

user costs has upon the total cost of using the Huffman conference tree. There are

two cases that we consider. First, we consider the issue that users announce costs

that are approximations of the true costs. Next, we examine the case where some

of the users are untrusted, and announce large costs for the purpose of reducing

their individual cost. We present an approach that controls the detrimental effect

that greedy users have upon the total cost.

2.6.1 Sensitivity to Approximate Costs

We begin by considering that the true user costs are ŵj ∈ [1, B̂], where B̂ is a

suitable upper bound placed on the exact costs. We suppose the costs that the

users announce are derived by applying an operator T to ŵj, i.e. wj = T (ŵj). We

define Ŵ =
∑

j ŵj, and p̂j = ŵj/Ŵ . If we build a code using pj with lengths lj,

then the average length under p̂ is
∑

j p̂jlj. We show that if we design the code

to minimize
∑

pjlj, then we can design the operator T such that
∑ |p̂jlj − pjlj| is

small. Since lj ≤ n, we get
∑n

j=1 |p̂jlj − pjlj| ≤ n
(∑n

j=1 |p̂j − pj|
)
. We now derive

a bound for
∑n

j=1 |p̂j − pj|:
n∑

j=1

|p̂j − pj| =
n∑

j=1

∣∣∣∣∣
wj

W
− ŵj

Ŵ

∣∣∣∣∣ (2.9)

45

≤ 1

WŴ

n∑

j=1

|wj(Ŵ −W)|+
n∑

j=1

|W (wj − ŵj)|

 (2.10)

≤ 1

WŴ

2W

n∑

j=1

|wj − ŵj|

 (2.11)

=
2

Ŵ

n∑

j=1

|wj − ŵj|

 . (2.12)

We consider two cases for the operator T . The first case we consider is when T is

a clipping operator, namely

TB̂(ŵ) =

ŵ : ŵ ≤ B̂

B̂ : ŵ > B̂
.

It is clear that as B̂ → ∞, we have more wj = TB̂(ŵj) = ŵj, and thus the bound

(2.12) tends to 0 as we increase B̂. We shall examine the clipping operator later in

this section. The second operation we consider is quantization. Here we consider

the interval [1, B̂] divided into N equally sized quantization bins. The operator T

then maps ŵ to the nearest quantization value, and |wj − ŵj| ≤ B̂/(2N). In this

case, we get
n∑

j=1

|p̂j − pj| ≤ 1

Ŵ

(
B̂n

N

)
(2.13)

which tends to 0 as the number of quantization bins N increases. Therefore, in

both the case of clipping and quantization, the parameters can be adjusted to bring

the probability distribution p close to p̂, and thus the designed average codelength

∑
pjlj close to the average codelength of using lj under p̂.

2.6.2 Sensitivity to Costs from Untrusty Users

We next consider the effect one user has upon the computational cost of the re-

maining users. In many scenarios, there may be a user that hurts the other users

46

by either selfishly trying to make his cost small, or maliciously trying to make the

total cost of the remaining users large. Recall that if the weights are ordered as

w1 ≥ w2 ≥ · · · ≥ wn then the lengths of the Huffman code can be ordered as

l∗1 ≤ l∗2 ≤ · · · ≤ l∗n [24]. Therefore, if a user would like to keep his cost as small

as possible, he should announce as large of a weight as possible. Additionally,

announcing a large weight causes the pj of the other users to decrease, thereby

increasing their codelengths (see [43] for the relationship between a symbol’s code-

length and its self-information). Thus, if a malicious user wishes to adversely affect

the lengths of the other users, he should announce as large of a weight as possible.

We first derive the worst-case effect that one user can have upon the computa-

tional cost of the other group members when Huffman coding is used to construct

the conference tree. We suppose that the malicious or selfish user is u1, and that

he publishes a large weight w1. To determine how much extra cost does choosing a

large w1 impose upon the other n−1 users, we define W̌ =
∑n

k=2 wk and define the

probability qj = wj/W̌ for j ∈ {2, 3, · · · , n}, and q1 = 0. Then qj represents the

probabilities that would be used in constructing a conference tree if user u1 were

not participating. Let l∗j denote the optimal codelengths constructed using pj, and

ľ∗j be the optimal codelengths constructed using qj. Since u1 is not involved in the

construction of ľ∗j , we have ľ∗1 = 0.

We define the following quantities:

C∗ =
n∑

j=1

wjl
∗
j , Č∗ =

n∑

j=2

wj ľ
∗
j , C∗

ex =
n∑

j=2

wjl
∗
j .

We are interested in comparing C∗
ex, which is the total cost of the remaining n− 1

users given the probabilities pj which incorporate u1’s cost, with Č∗, which is the

total cost of the n−1 users u2, u3, · · · , un without considering u1’s announced cost.

Since Č∗ arises as the optimal code for the n−1 users with costs w2, w3, · · · , wn,

47

we know Č∗ minimizes costs of the form
∑n

j=2 wjlj. In particular, C∗
ex must satisfy:

C∗
ex =

n∑

j=2

wjl
∗
j ≥

n∑

j=2

wj ľ
∗
j = Č∗. (2.14)

We may derive an upper bound for C∗
ex by observing that the code given by ľ∗j can

be used to construct a code for pj by taking l1 = 1 and lj = ľ∗j + 1. The optimal

code for the weights w1, w2, · · · , wn must be better than this code, and hence

C∗ ≤ w1 +
n∑

j=2

wj(ľ
∗
j + 1) = Č∗ + W. (2.15)

Since C∗
ex = C∗ − w1l

∗
1, we have C∗

ex ≤ Č∗ + W − w1l
∗
1 ≤ Č∗ + W̌ . Gathering the

results together, we get the overall bound Č∗ ≤ C∗
ex ≤ Č∗ + W̌ . The upper bound

is achieved when w1 > W̌ , and hence, in the worst case, u1 forces the other n− 1

users to spend an extra W̌ of resources.

Next, we consider the more general case where a fraction of the users are

untrusty and announce large costs. Suppose that the true costs are ŵj, and that the

announced costs are w̃j. If the underlying statistics governing ŵj are known, it is

possible to determine which w̃j are outliers and remove those users from the group

key formation procedure. However, in many cases, the value of the conference

exists regardless of whether a few users were untrusty, and it is desirable to have

those users in the conference. In this case, an approach must be used to reduce

the detrimental effect of these bad users upon the cost of forming the entire group

key.

We suppose that the CKA applies a clipping operator to the announced user

costs w̃j to produce costs wj = TB(w̃j) that are used by the CKA in determining

the conference tree. Ideally, we would like to build the conference tree using the

exact costs ŵj, but these are not available. Instead, if the conference tree is built

48

using wj or w̃j, the corresponding lengths lj and l̃j are used with the exact costs

ŵj, which can lead to an increase in the total cost.

To study the amount of additional cost incurred by using a code designed for

wj when the true costs are ŵj, we shall examine the average codelength. Hence

we design codes for pj = wj/W and p̃j = w̃j/W̃ , where W̃ =
∑

w̃j. We are

interested in studying
∑

p̂jlj and
∑

p̂j l̃j. The Kullback-Leibler divergence D(p̂‖p)

describes the additional average codelength that different coding schemes incur

when designed for the wrong distribution p when the correct distribution is p̂

[24, 34, 43, 44]. Given a model distribution for the true user costs, the CKA can

use D(p̂‖p) to determine the value of the clipping parameter B that minimizes the

miscoding penalty.

We calculated the divergence for n = 100 users when the original costs wj

were drawn according to 10LN(0, 1) + 100, where LN(µ, σ) is the lognormal dis-

tribution arising from a normal distribution with mean µ and variance σ. The

lognormal distribution was chosen because it has a long tail. The probability that

a user is untrusty was 0.05, and untrusty users were assumed to announce a cost

w̃j = ŵj + Y , where Y = 1000 and wj = TB(w̃j). The choice of Y = 1000 was

arbitrary and chosen to represent a large bias that an untrusty user might place

on his announced costs. An example divergence D(p̂‖p) for costs ŵj drawn ac-

cording to this distribution is presented in Figure 2.9. There is a minimum that

appears at approximately B∗ = 150. A system should be designed for the average

case. In order to do this, the optimal clipping parameter should be averaged over

many realizations of the costs. For costs drawn according to 10LN(0, 1) + 100, we

averaged the optimal clipping value over 10000 realizations and found the mean

optimal clipping value to be B
∗

= 150.44 and the variance of the optimal clipping

49

100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Clipping Parameter B

D
iv

er
ge

nc
e

Divergence between Exact and Clipped probabilities

Figure 2.9: An example divergence D(p̂‖p) where ŵj ∼ 10LN(0, 1) + 100, and

wj = TB(ŵj).

value as σB∗ = 25.60.

The relative difference between the cost of using the Huffman-based conference

tree using wj and ŵj are now compared. If l̂j are the optimal codelengths using

ŵj, l̃j are the optimal codelengths constructed using w̃j, and lj are the optimal

codelengths constructed using wj, then we are interested in comparing

ρ =

∑
j ŵjlj − ŵj l̂j

∑
j ŵj l̂j

and ρ̃ =

∑
j ŵjlj − ŵj l̃j

∑
j ŵj l̂j

.

We calculated these values for the case when the exact costs were drawn according

to 10LN(0, 1) + 100 with Y = 1000, while the probability of a user being untrusty

was 0.05. The results were averaged over 100 realizations and are presented in

Figure 2.10. The quantity ρ is presented for different clipping parameter values,

and we observe that there is a range of minimal values from B = 140 to B = 220,

which is roughly the region that the divergence curves predict. The clipped relative

50

100 200 300 400 500 600 700
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Clipping Parameter B

R
el

at
iv

e
D

iff
er

en
ce

Cost Comparison between Clipped and Unclipped

Clipped
Unclipped

Figure 2.10: The relative costs ρ and ρ̃ are presented for when the exact user costs

are drawn as ŵj ∼ 10LN(0, 1) + 100, and that there is an 0.05 likelihood that a

user is untrusty, and Y = 1000.

costs show a significant improvement over the unclipped relative costs. Without

performing the clipping, the untrusty users force the entire group to spend an

average of over 5% more than if the exact user costs were used. By performing the

clipping operation, however, this detrimental effect can be significantly lessened to

less than 0.5%.

2.7 Chapter Summary

In this chapter we have presented methods for establishing a conference key that

are based upon the design of an underlying tree called the conference tree. In

heterogeneous environments, where users have varying costs and budgets, the con-

ference tree can be designed to address the user differences. We examined the

51

design of the conference tree for three different cases. First, we studied the prob-

lem of minimizing the total cost of establishing the group key when the users had

different costs. The problem of designing the conference tree was related to source

coding, and techniques for designing source codes, such as Huffman coding, were

employed to design the conference tree. The second case we investigated was when

the users had the same cost, but different budget requirements. We observed that

a necessary condition for a conference tree to exist for a given vector of budget

requirements is that the budget vector satisfies the Kraft Inequality. We then

presented a greedy algorithm that trimmed a feasible budget vector to achieve a

length assignment that optimally reduces the total length of the conference tree.

Finally, the third case we examined is when the users have both varying costs

and budget requirements. We presented a computationally efficient near-optimal

algorithm using a greedy incremental resource assignment strategy that achieves

a total cost within 0.5% of the optimal solution for small group sizes.

We presented simulations comparing the total cost of the butterfly and Huffman-

based schemes against the scheme of Ingemarsson et al., and the GDH family

proposed by Steiner et al. Out of the class of non-centralized conference keying

schemes, the Huffman scheme exhibited the least total cost. In situations where no

single user has an extremely large budget, centralized conference keying schemes

are unlikely to successfully establish a conference key. To investigate this phe-

nomenon, we introduced the PESKY measure, which describes the probability

that a conference keying scheme can establish a session key in the presence of

budget constraints. We provided simulations where the user budgets were drawn

according to different distributions, and in all cases the PESKY values for different

group sizes were higher for our tree-based schemes than for either the GDH.1/2 or

52

the GDH.3 schemes.

Next, we examined the effect that using false user costs would have on the

total cost. It was shown that by increasing the quantization resolution, or by

increasing the threshold level, that the difference between the total cost of using

the exact and approximate costs for a given length assignment tends to 0. We then

examined the effect a subset of users who falsely announce large costs has upon

the total cost. In order to reduce the detrimental effect of designing a conference

tree for falsely announced user costs, we proposed the use of a clipping operator

to prevent untrusty users from being too greedy and minimize the divergence to

determine the optimal threshold value. Simulations using the Huffman algorithm

to construct the conference tree show that the optimal threshold values agree with

those predicted by the divergence.

In the next two chapters we will explore issues related to the maintenance

of key information for group applications where users are allowed to join and

depart the service. Whereas this chapter has focused on protocols for contributory

key agreement, the next two chapters will employ a centralized entity for the

management of key information.

53

Chapter 3

Key Management and Distribution for Secure

Multimedia Multicast

3.1 Introduction

Several key technologies have matured in the past decade, allowing for the pos-

sibility of building new infrastructures for the delivery and consumption of mul-

timedia content. The combination of well-developed multimedia standards, such

as MPEG-4 and H.324, and advances in both wireless and networking technolo-

gies is creating opportunities for new commercial markets such as HDTV, wireless

video, and pay-per-view services [45–48]. Integral to many of these ventures is the

ability to broadcast or multicast identical data simultaneously to groups of users.

Multicast communications is efficient since it reduces the demands on network and

bandwidth resources. It will play a key role in delivering services shared by many

users, such as pay-per-view broadcasts of sporting events, as well as allowing for in-

teractive multimedia applications such as interactive television, video conferencing,

and communal gaming. However, before such group-oriented commercial ventures

can be successfully deployed, the issue of controlling access to multimedia content

54

must be addressed. Service providers must be able to ensure the availability of

multimedia data to privileged (paying) members while preventing unauthorized

access to this data by non-privileged users.

The most appropriate framework for securing server-oriented content distribu-

tion is by using a centralized entity that is responsible for maintaining the integrity

of the users’ keys. The problem of maintaining access control is difficult when the

content is being distributed to a group of users since the membership will most

likely be dynamic with users joining and leaving the service. Unlike unicast com-

munication, the departure of a group member does not imply the termination

of the communication link. In addition, upon departing the service, users must

be de-registered and prevented from obtaining future multicasts. Similarly, when

new members join the service, it is desirable to prevent them from accessing past

content.

The problem of key management for multicasts has seen recent attention in the

literature, and several efficient schemes have been proposed with desirable commu-

nication properties [6–8,49]. These schemes, however, do not consider application-

specific properties that might affect the design of an access control system. In

particular, multimedia data has rich properties, such as the capability to have

information invisibly hidden in it [12, 13, 50, 51] and operate in a scalable or lay-

ered format [45], which we can exploit to achieve an improved design of an access

control system for multimedia multicasts.

In this chapter we study the problem of key management for multimedia mul-

ticast services. We begin by discussing the fundamental problem of distributing

secret information to a group of privileged users, and present information theoretic

derivations associated with multicast key management. Next, in Section 3.3, we

55

introduce multicast key management and present a basic key management scheme

that will be used later in the chapter in Section 3.4. In Section 3.5, we intro-

duce two different modes for distributing the rekeying messages associated with

securing multimedia group communication. The first, and more conventional, ap-

proach employs the use of a media-independent, or external channel, to convey

the rekeying messages. A second mode, a media-dependent channel, is achieved

for multimedia by using data embedding techniques. We explore the advantages

and disadvantages of these different techniques. In Section 3.6, we introduce a

new message format for multicast key management that uses one-way functions to

securely distribute new key material to subgroups of users. An advantage of this

approach over the traditional message format is that no additional messages must

be sent to flag the users which portion of the message is intended for them, thereby

reducing communication overhead. We then show how to map the message to a

tree structure in order to achieve desirable scalability in communication and com-

putational overhead. Next, in Section 3.7, we study the interplay between the key

management scheme and the mode of conveyance by studying the feasibility of em-

bedding rekeying messages using a data embedding method that has been recently

proposed for fractional-pel video coding standards such as H.263 and MPEG-2.

In Section 3.8, we extend the key management scheme to multilayer multimedia

applications where group members may subscribe or cancel membership to some

layers while maintaining membership to other layers. Finally, we present some

conclusions in Section 3.9.

56

3.2 Basic Multicast Information Theory

This section describes a summary of information theory results relevant to multi-

casting. This summary is based upon results that were presented in [9] and [52],

but have been rederived and put into a context relevant to the work proposed.

First, let U = {u1, u2, · · · , un} denote the user set consisting of n users uj.

Associated with each user uj is a private key Kj that is drawn uniformly from

a key space K. Of the n users, only a subset of them will be privileged. We

denote the set of private keys associated with privileged members by KP , and the

set of private keys associated with non-privileged users by KF . For example, if

there are n = 4 users, and users u1, u3 are privileged, then KP = {K1, K3}, and

KF = {K2, K4}. There is a secret S that is drawn from a space S that the group

center wishes to transmit to members of the multicast group U . The broadcast

message α is a function of the secret S, as well as the private user information of

the privileged users, α = f(S,KP).

It is useful to derive bounds on the size of the broadcast message given the

following security constraints:

• The user’s secrets KP and the secret S uniquely determine the broadcast

message

H(α|S,KP) = 0. (3.1)

• Knowing only a user’s private key Kj does not decrease the uncertainty of

the secret S. That is

H(S|Kj) = H(S). (3.2)

In particular, this implies that H(S|KP) = H(S).

57

• No uncertainty in the secret remains if both a user’s private key Kj and the

broadcast message are available.

H(S|Kj, α) = 0. (3.3)

• The broadcast message does not decrease the uncertainty in a user’s private

key:

H(Kj|α) = H(Kj). (3.4)

• The broadcast message alone does not decrease the uncertainty in the secret:

H(S|α) = H(S). (3.5)

The first results that we present are from Just et al. [9].

Lemma 6. The entropy of the broadcast message α is equal to mutual information

between the message and the joint random variable (KP , S):

H(α) = I(α; KP , S). (3.6)

Proof. We start by applying the chain rule to the mutual information:

I(α; KP , S) = I(α; Kj1) + I(α; Kj2|Kj1) + · · ·

+ I(α; Kjm|Kj1 , Kj2 , · · · , Kjm−1) + I(α; S|KP).

Expanding the mutual information terms yields the telescoping sum:

I(α; KP , S) = H(α)−H(α|Kj1) + H(α|Kj1)−H(α|Kj1 , Kj2) + · · ·

+ H(α|KP)−H(α|KP , S),

which yields

I(α; KP , S) = H(α)−H(α|KP , S). (3.7)

58

However, H(α|KP , S) = 0, so that

I(α; KP , S) = H(α). (3.8)

Lemma 7. Let D ⊂ P be a subset of privileged members such that |D| ≤ m − 1,

and let KD be the set of private keys associated with users in D. Let Ki be a

private key of a user ui ∈ P −D. Then for a secret S and a broadcast message α,

we have

H(Ki)−H(Ki|α, KD) ≥ H(S). (3.9)

Proof. The term H(Ki, S|α, KD) may be expanded in two different ways:

H(Ki, S|α, KD) = H(Ki|α, KD) + H(S|α,KD, Ki) (3.10)

= H(S|α,KD) + H(Ki|α,KD, S). (3.11)

Since H(S|α,Kj) = 0 for any user uj in the privileged set P , we have that

H(S|α, KD, Ki) = H(S|α, KD) = 0, and thus

H(Ki|α,KD) = H(Ki|α, KD, S). (3.12)

Observe that since I(Ki; S|α) = I(S; Ki|α) we have

H(Ki|α)−H(Ki|α, S) = H(S|α)−H(S|α,Ki)

H(Ki)−H(Ki|α, S) = H(S). (3.13)

Since H(Ki|α, S) ≥ H(Ki|α, S, KD), we may apply (3.12) to get H(Ki|α, S) ≥
H(Ki|α, KD). Substituting this result into (3.13) gives H(Ki) − H(Ki|α, KD) ≥
H(S).

59

A consequence of this lemma is the fact that each private key Ki will have

entropy greater than the entropy of secret, i.e. H(Ki) ≥ H(S). We may now put

these results together to get a lower bound on the size of the broadcast message

given the conditions stated.

Theorem 1. Suppose that the keys Kj are distributed independently of each other,

i.e. H(Kj, Ki) = H(Kj) + H(Ki), and the conditions (3.1)-(3.5) hold, then the

following bound on the size of the broadcast message holds:

H(α) ≥ mH(S) (3.14)

Proof. By Lemma 6 we have

H(α) = I(α; KP , S) (3.15)

= I(α; KP) + I(α; S|KP) (3.16)

= I(KP ; α) + I(S; α|KP) (3.17)

= H(KP)−H(KP |α) + H(S)−H(S|α, KP). (3.18)

Using the fact that H(S|α, KP) = 0 and that

H(KP) = H(Kj1 , Kj2 , · · · , Kjm) (3.19)

= H(Kj1) + · · ·+ H(Kjm), (3.20)

which follows from the independence of the private keys, we have

H(α) = H(Kj1) + · · ·+ H(Kjm)−H(KP |α) + H(S). (3.21)

Similarly, expanding H(KP |α) using the chain rule gives

H(KP |α) = H(Kj1|α) + H(Kj2|α,Kj1) + · · ·

+H(Kjm|α,Kj1 , · · · , Kjm−1). (3.22)

60

Upon substitution we get

H(α) = H(Kj1)−H(Kj1|α) +
m∑

i=2

(
H(Kji

)−H(Kji
|α,Kj1 , · · · , Kji−1

)
)

+ H(S).

(3.23)

By observing that H(Kj1|α) = H(Kj1), and applying Lemma 7 we get the desired

result H(α) ≥ mH(S).

In summary, we have presented two main results from [9] that govern the

theoretical underpinnings of multicast key management. The first result that was

shown states that the entropy of a user’s private information must be greater than

the entropy of the secret that is to be distributed to the group. This translates

into the security terminology by implying that the bit length of the user’s private

key should be as large as the bit length of the group secret. It was also shown,

under the assumption of independent keys, that the size of the broadcast message

must be at least as large the size of the group times the size of the secret that

is to be conveyed. This latter result gives a lower bound on the communication

requirements for rekeying. In particular, it implies that the best that can be

done is a message whose size is linear in the amount of group members unless the

key independence assumption is relaxed. Currently, the most popular family of

multicast key management schemes are those that employ a tree key hierarchy, in

which the key information that each user has is not independent of each other.

3.3 Multicast Key Management Schemes

The distribution of identical data to multiple parties using the conventional point-

to-point communication paradigm makes inefficient usage of resources. The re-

dundancy in the copies of the data can be exploited in multicast communication

61

by forming a group consisting of users who receive similar data, and sending a

single message to all group users [53]. Access control to multicast communica-

tions is typically provided by encrypting the data using a key that is shared by all

legitimate group members. The shared key, known as the session key (SK), will

change with time, depending on the dynamics of group membership as well as the

desired level of data protection. Since the key must change, the challenge is in key

management– the issues related to the administration and distribution of keying

material to multicast group members.

In order to update the session key, a party responsible for distributing the

keys, called the group center (GC), must securely communicate with the users to

distribute new key material. The GC shares keys, known as key encrypting keys

(KEKs), that are used solely for the purpose of updating the session key and other

KEKs with group members.

As an example of key management, we present a basic example of a multicast

key distribution scheme. Suppose that the multicast group consists of n users

and that the group center shares a key encrypting key with each user. Upon a

member departure, the previous session key is compromised and a new session

key must be given to the remaining group members. The GC encrypts the new

session key with each user’s key encrypting key and sends the result to that user.

Thus, there are n − 1 encryptions that must be performed, and n − 1 messages

that must be sent on the network. The storage requirement for each user is 2 keys

while the GC must store n + 1 keys. This approach to key distribution has linear

communication, computation and GC storage complexity. As n becomes large

these complexity parameters make this scheme undesirable, and more scalable key

management schemes should be used.

62

In general, during the design of a multicast application, there are several issues

that should be kept in consideration when choosing a key distribution scheme. We

now provide an overview of some of these issues.

• Dynamic nature of group membership: It is important to efficiently

handle members joining and leaving as this necessitates changes in the session

key and possibly any intermediate keying information.

• Ability to prevent member collusion: No subset of the members should

be able to collude and acquire future session keys or other member’s key

encrypting keys.

• Scalability of the key distribution scheme: In many applications the

size of the group may be very large and possibly on the order of several million

users. The required communication, storage, and computational resources

should not become a hindrance to providing the service as the group size

increases.

In Section 3.2, we summarized the work of [9, 52] for the distribution of se-

cret information via broadcast messages. These results provide a insight into the

communication resources needed to achieve the above goals. In particular, it was

shown in Theorem 1 that for a key size of B bits, the message needed to update

a group of n users must be at least nB bits to provide perfect security in the key

distribution. One key result of [9] is that in order to achieve a smaller broadcast

size, it is necessary to do away with the constraint that the private information

held by each user is mutually independent. Therefore, to reduce the usage of

communication resources, the users must share secret information.

One strategy for having users share secret information is to arrange the keys

63

according to a tree structure. The tree based approach to group rekeying was

originally presented by Wallner et al. [7], and independently by Wong et al. [6].

In such schemes an a-ary tree of depth loga n is used to break the multicast group

into hierarchical subgroups. Each member is assigned to a unique leaf of the tree.

KEKs are associated with all of the tree nodes, including the root and leaf nodes.

A member has knowledge of all KEKs from his leaf to the root node. Thus, some

KEKs are shared by multiple users. Adding members to the group amounts to

adding more depth to the tree [54], or adding new branches to the tree [6]. Upon

member departure the session key and all the internal node KEKs assigned to that

member become compromised and must be renewed. Due to the tree structure,

the communication overhead is O(log n), while the storage for the center is O(n)

and for the receiver is O(log n).

Various modifications to the tree scheme have been proposed. In [8], a mod-

ification to the scheme of Wallner et al. is presented. By using pseudo-random

generators, their scheme reduces the usage of communication resources by a fac-

tor of two. Similarly, Balenson et al. [54] were able to reduce the communication

requirements by a factor of two using one-way function trees. The security of the

Canetti et al. scheme can be rigorously proven, while the security of the approach

using one-way function trees is based upon non-standard cryptographic assump-

tions and has therefor not been rigorously shown. In [49] Canetti et al. examine

the tradeoffs between storage and communication requirements, and a modification

to the tree-based schemes of [6, 7] is presented that achieves sublinear server-side

storage. Further, in [55], it was shown that the optimal key distribution for a group

leads to Huffman trees and the average number of keys assigned to a member is

related to the entropy of the statistics of the member deletion event.

64

u
1

u
n-1 nuu

2

K K K. . .K

K

K

n

s

ε

1 2 n-1

Figure 3.1: The basic key distribution scheme.

3.4 A Basic Key Management Scheme

In this section, we present a simplified key management scheme that will be used

in the discussions in Section 3.6.1 where we introduce an improved format for the

rekeying message. The key management scheme presented here is an elementary

key management scheme that consists of two layers of KEKs, and a SK that is

used to protect the bulk content.

Consider a group of n multimedia users who will share a multimedia multicast.

In the simple key distribution scheme for n users, depicted in Figure 3.1, user uj

has two key encrypting keys Kj and Kε, and the session key Ks. The KEK Kε is

the root KEK and is used to encrypt messages that update Ks. The remaining

keys K1, K2, · · · , Kn are KEKs that are used to protect updates of Kε.

Due to the dynamic nature of the group, and the possible expiration of keying

material, it is necessary to update both the SK and KEKs using rekeying messages.

The three operations involved are key refreshing, key updating when a new user

65

Users

Service
Contact

Key
Updating
Occurs

New Key
Becomes
Valid

t−2 tt−1

Time

Figure 3.2: The time intervals t − 2, t − 1 and t used in the paper. The join-

ing/departing user contacts the service during time interval t − 2, the rekeying

messages are transmitted during t−1, and new key information takes effect at the

beginning of time interval t.

joins the service, and key updating when a user departs the service. In the the

discussions that follow, we use an integer-valued time index to denote the time

intervals during which fundamental operations occur, and assume that there is

a system-level mechanism that flags or synchronizes the users to the same time

frame. We shall always use the time index t to denote the interval for which the

new key information will become valid. Time interval t− 1 will correspond to the

time interval during which the new key information is being transmitted. Further,

time interval t− 2 corresponds to the interval of time during which a new member

contacts the service provider wishing to join, or a current member announces to

the service provider his desire to depart the service. We have depicted these cases

in Figure 3.2. Observe that it is not necessary that the time intervals have the

same duration.

3.4.1 Key Refreshing

Refreshing the session key is important in secure communication. As a session key

is used, more information is released to an adversary, which increases the chance

66

that a SK will be compromised. Therefore, periodic renewal of the session key is

required in order to maintain a desired level of content protection. By renewing

keying material in a secure manner, the effects of a session key compromise may

be localized to a short period of data.

The cryptoperiod associated with a session key is governed by many application-

specific considerations. First, the value of the data should be examined and the

allowable amount of unprotected (compromised) data should be addressed. For

example, the broadcast of a sporting event might allow the data to be unpro-

tected for a short period, whereas a video conference between corporate executives

would likely have stricter security requirements and necessitate more frequent key

refreshing.

Since the amount of data encrypted using KEKs is usually much smaller than

the amount of data encrypted by a session key, it is not necessary to refresh KEKs.

Therefore, KEKs from the previous time interval t− 1 carry over to the next time

interval. In order to update the session key Ks(t− 1) to a new session key Ks(t),

the group center generates Ks(t) and encrypts it using the root KEK Kε(t). This

produces a rekeying message αs(t) = EKε(t) (Ks(t)), where we use EK(m) to denote

the encryption of m using the key K. The message αs(t) is sent to the users.

3.4.2 Member Join

In multimedia services, such as pay-per-view and video conferences, the group

membership will be dynamic. Members may want to join and depart the service.

It is important to be able to add new members to any group in a manner that

does not allow new members to have access to previous data. In a pay-per-view

system, this amounts to ensuring that members can only watch what they pay for,

67

while in a corporate video conference there might be sensitive material that is not

appropriate for new members to know.

Suppose that, during time interval t−2, a new user contacts the service desiring

to become a group member. If there were n− 1 users at time t− 2 then there will

be n users at time t. During time interval t− 1, the rekeying information must be

distributed to the n− 1 current members. Observe that we must renew both the

SK and the root KEK in order to prevent the new user from accessing previous

rekeying messages and to prevent access to prior content.

The first stage of the key updating procedure requires updating the root KEK

from Kε(t−1) to Kε(t). Since all of the members at time t−1 share Kε(t−1), the

group center may communicate the new KEK Kε(t) securely to these members by

forming and transmitting the message αε(t) = EKε(t−1) (Kε(t)). Next, the service

provider generates a new session key Ks(t) and updates the session key using a

rekeying message of the form αs(t) = EKε(t) (Ks(t)).

Meanwhile, during time interval t−1, the new user completes registration with

the service and is given the new keys Ks(t), Kε(t), and Kn+1. This completes the

actions required during time interval t − 1, and at the start of time interval t all

of the n + 1 members have the new keying material.

3.4.3 Member Departure

Let us consider the case when user un leaves the group at time frame t− 1. Since

user un knows Ks(t − 1) and Kε(t − 1) these keys must be renewed. First Kε is

renewed. To accomplish this the GC forms a new key Kε(t) and encrypts it with

the keys Kj for j 6= n. A single message

αε(t) = EK1 (Kε(t)) ‖EK2 (Kε(t)) ‖ · · · ‖EKn−1 (Kε(t)) (3.24)

68

is formed and sent to all the users using either the media-independent or media-

dependent channel. Here we use the symbol ‖ to denote concatenation of bit

streams. Next, the session key is updated. The GC forms a new SK Ks(t) and

encrypts using the new KEK Kε(t) to form αs(t) = EKε(t) (Ks(t)). This message

is then sent to the users.

As a final note, we observe that the size of this message agrees with Theorem

1. Here, the message α consists of the concatenation of n − 1 smaller messages.

The message α is distributed to the n− 1 remaining users. The total length of the

message is n− 1 times the block size of the encryption algorithm employed. Since

the key length is smaller than the block size, we agree with Theorem 1.

3.5 Distribution of Rekeying Messages for

Multimedia

After the formation of the rekeying messages, they must be delivered to the users.

This issue is rarely considered in the secure multicast literature. However, it is an

integral part of a system’s design. For the transmission of multimedia data, we

have identified two distinct classes of mechanisms, depicted in Figure 3.3, that are

available for the delivery of the rekeying messages:

• Media-Independent Channel: In this mode, the rekeying messages are

conveyed by a means totally disjoint from the multimedia content.

• Media-Dependent Channel: A media-dependent channel exists when

the media is capable of having a small amount of data imperceptibly hidden

inside the host media.

69

Multimedia Data Information
Key Multimedia Data Information

Key . . .

. . .Multimedia + Key Information Multimedia + Key Information

Time Frame t-1 Time Frame t

Key Transmission via a Media-dependent Channel

Key Transmission via a Media-independent Channel

Figure 3.3: Two approaches to distributing the key information in multimedia mul-

ticasting: (a) using a media-independent channel, and (b) using a media-dependent

channel.

In a conventional, non-secure multimedia application, the multimedia data con-

sists of multiple streams. Depending on the application, these streams may either

be multiplexed together and placed onto the network, or treated as separate lay-

ers that are passed onto a separate delivery protocol. For example, in MPEG-2

Systems a multiplexer operation will multiplex the audio and video data into ei-

ther a program stream or a transport stream [45]. As another example, MPEG-4

provides packetized elementary streams to the Delivery Multimedia Integration

Framework (DMIF) which deals with different delivery scenarios and allows for

desirable delivery techniques such as unequal error protection (UEP) [56,57].

The location of the encryption operation in a multimedia application’s de-

sign, as well as the mode that the encryption operates under, has a significant

effect on the performance of the multimedia multicast service. In Figure 3.4,

we present a generic diagram that captures the multiplexing involved in H.324,

MPEG-2 Systems program stream or transport stream, or the operations of the

70

.

.

.

.

.

.

.

.

.

A1

AN

V1

VM

X1

XL

U
X

M

= Possible Encryption Location

Figure 3.4: A generic multiplexing diagram depicting several audio streams (A1 -

AN), video streams (V1 - VM), and auxiliary streams (X1 - XL). Also depicted

are locations where encryption is possible.

DMIF in MPEG-4. Several audio streams (A1 - AN), video streams (V1 - VM),

and auxiliary streams (X1 - XL) are fed as input into the multiplexer. Upon out-

put is a data stream that consists of packets that have been interlaced. With

respect to this diagram, there are two locations where encryption can be placed.

Encryption can either be located before the multiplexer or after it. If encryption

is placed after the MUX, then there are two manners in which it can encrypt the

data stream. First, it can encrypt each packet individually, thereby maintaining

the separation of the packets that was introduced by the multiplexer. The second

option is for the encryption to operate in a streaming mode, such as cipher block

chaining [58], whereby the separation between different media packets will be lost.

The disadvantage of the latter mode of operation is that it is no longer possible

to treat the layers separately, which is essential to performing important delivery

techniques like UEP. Therefore, if encryption is placed after the MUX, it should

71

maintain the separation between the packets.

However, it is not necessary to place the encryption after the MUX to maintain

the separation between the layers. In fact, placing the encryption before the MUX

will encrypt each media or object stream independently, and the multiplexer will

interleave the various encrypted streams into separated packets. The multiplexer

and transmitter will then maintain the separation between the different media

streams, which is essential for reliable delivery of multimedia. Therefore, there is

no advantage in placing encryption after the MUX since the segregation between

the different streams should be maintained, and hence encryption should be done

prior to multiplexing. In fact, in the MPEG-4 IPMP framework IPMP control

points are located prior to the DMIF at the encoder [59].

For the remainder of this section, we shall discuss the different mechanisms for

distributing the rekeying messages. For each method we will discuss its advantages

and disadvantages.

3.5.1 Media-Independent Channel

The first method to convey the rekeying information is to use a channel that is

independent of the multimedia content. This can be accomplished in several dif-

ferent ways. First, one could have a security system that is completely separate

from the multimedia system, and the key information is transmitted using any

other channel that is available to the application. A second manner by which this

can be accomplished is through a Systems level operation. In fact, MPEG-2 Sys-

tems (ISO/IEC 13818-1) provides the Entitlement Control Messages (ECM) as a

means to convey keys associated with scrambling MPEG-2 multimedia streams.

The ECM is transmitted as a stream separate from the multimedia. As another

72

example, the MPEG-4 standard also provides a Systems level data stream to con-

vey security information. In MPEG-4, the Intellectual Property Management and

Protection (IPMP) framework provides IPMP Descriptors (IPMP-Ds) and IPMP

Elementary Streams (IPMP-ESs) that can help an IPMP system decrypt or au-

thenticate media elementary streams [59]. Both the MPEG-2 ECMs, MPEG-4

IPMP-Ds and MPEG-4 IPMP-ESs can be used to convey rekeying information

associated with a multicast service.

Further, many multimedia standards provide data fields that may be used by

the system designers to convey non-normative application-specific parameters. For

example, in MPEG-1 Video the bistream format for the video sequence layer, the

group of pictures layer, and the picture layer provides a mechanism to convey

optional user data [60]. These fields may be also used to convey security data,

such as rekeying messages.

One of the advantages of using the media-independent channel is the ability

to assign a delivery protocol to the rekeying messages that is different from the

delivery protocols used by the other components of the data stream. Since encryp-

tion and decryption keys must be exactly known in order to perform decryption,

rekeying messages are extremely sensitive to errors. It is essential that all receivers

completely receive a correct rekeying message before the new key takes effect.

Without a mechanism to ensure that a rekeying message is received by all legit-

imate members, some users will be unable to decrypt future content and future

rekeying messages.

When the rekeying messages are transmitted using a media-independent chan-

nel, their delivery can be performed using a reliable multicasting protocol, such as

RMTP and SRM [53,61–63]. However, in addition to using reliable multicasting, it

73

is necessary to add a feedback mechanism at the application layer. In a multicast

security system, it is necessary that the server knows that all users have correctly

received the rekeying message before proceeding to the next rekeying message or

encrypting the service with the new session key. Therefore, before switching to the

new key, the server must wait for an acknowledgement message from each of the

clients announcing that they have successfully received the rekeying message.

The use of a media-independent channel can introduce a network security weak-

ness even if there is no cryptographic weakness in the key management scheme.

We illustrate this with the following example. When transmitting the rekeying

messages in the media-independent mode, the keying messages will be in an en-

crypted format, such as depicted in (3.24), and kept separated from the other types

of data packets. It is possible for an adversary to eavesdrop on the network and

observe the presence of these rekeying messages. Even if the rekeying messages are

further encrypted by the session key Ks, an eavesdropper on the network may sim-

ply observe the rekeying message substream to measure valuable statistical data

regarding the multicast membership. For example, if an adversary knows that the

key size used is 64 bits and that the rekeying message is of the form (3.24), then

when he observes a rekeying message of 64000 bits, he may infer that there are 1000

users in the service. The leakage of statistical information regarding the service

membership is a security flaw that can be addressed by using a media-dependent

channel. In [64] other system weaknesses were identified that can occur in multi-

cast key distribution schemes even when the underlying cryptographic algorithm

is provably correct.

74

3.5.2 Media-Dependent Channel

A media-dependent channel exists when small amounts of information can be em-

bedded invisibly in the data. In these cases, the rekeying information may be

embedded in the content and distributed to those who receive the data [14, 65].

Data embedding, or digital steganography, techniques allow for an information sig-

nal to be hidden in another signal, known as the cover signal, without dramatically

distorting the cover signal. Effective data embedding techniques are those that can

invisibly embed data in the cover signal, allow for easy extraction of the embedded

information, and achieve a high embedding rate.

Multimedia data types, such as speech, image, and video are well suited for

embedding information since introducing a small amount of distortion in their

waveforms does not significantly alter perceptual quality [12,13,50]. Generic data

structures are not well suited for hiding information. The most popular purpose

for data embedding is digital watermarking, in which ownership or copyright infor-

mation is inserted in the cover signal. In this case, the embedding technique must

also be robust to attempts to remove or destroy the watermark. Data embedding

can also be used to convey side information, such as embedding messages in the

content.

Many papers exist on embedding information and watermarks in video. In [50],

Hartung and Girod describe a method for inserting digital watermarks into the

compressed bitstream of MPEG-2 coded video. They found that they could embed

a watermark of 1.25 to 125 bytes/second in NTSC signals. Another method for

embedding information in video was presented in [66], and applied to distributing

textual information in a video conferencing system. As another example of a

scheme with a high embedding rate, a data embedding scheme that is compatible

75

with standards such as H.263 and MPEG-2 was proposed in [67, 68]. This data

embedding technique uses the fractional-pel motion vector as the cover signal for

the embedded data, and is able to embed a high bitrate information signal into a

video bitstream with an acceptable visual quality degradation. This method for

data embedding will be used later in this chapter to demonstrate the feasibility of

our multimedia multicast key distribution philosophy.

Associated with many embedding schemes is an embedding key which governs

how the information is embedded into the cover signal. The size of the embedding

key dictates the difficulty for an adversary to attack the embedding rule. For

example, in [67, 68], 2 bits of information can be embedded per macroblock, and

these 2 bits are embedded by mapping the motion vector to one of 4 regions. There

are 4! = 24 different embedding rules possible. We may therefore associate a 5-bit

embedding key Kemb with one of these 24 different methods. If a user has the key

associated with how the data was embedded, then he may extract the information

signal in the multimedia data. An adversary, however, would have to search these

24 possibilities to determine the correct embedding rule to extract the embedded

information.

It is desirable to have the size of Kemb large in order to make it difficult for an

adversary to attack the embedding rule. We now describe the method by which we

extend the embedding key size of [67,68] for use in our later simulations. Suppose

that we break the information we wish to embed into 2-bit chunks cj. We shall

choose security parameter q that is a non-negative integer. At random, we shall

choose q different embedding rules (r0, r1, · · · , rq−1), allowing for repetition in the

rules selected. Each embedding rule rk describes one of the 24 possible ways to map

2 bits to 4 regions. We assign an embedding rule rk for each chunk cj according

76

to k ≡ j (mod q). Thus, the 0, q, 2q, · · · 2-bit chunks use embedding rule r0, the

1, q + 1, 2q + 1, · · · 2-bit chunks use embedding rule r1, and so on. The embedding

key is thus the concatenation of these rules, which is a key space of 24q possibilities,

and requires dq log2 24e bits to represent. For example, choosing q = 12 yields an

embedding key size of 56 bits.

The rekeying messages used in either the media-independent or media-dependent

cases are almost identical. When using the media-independent approach, only the

information needed to update the SK and KEKs needs to be transmitted. How-

ever, when using a media-dependent approach, the embedding key must also be

updated, requiring that an additional rekeying operation is performed.

The primary advantage of using data embedding to convey rekeying messages

compared to a media-independent channel is that data embedding provides an

additional layer of security that hides the presence of rekeying messages from po-

tential adversaries. In the conventional approach of using a media-independent

channel to convey the rekeying messages, an adversary can observe the external

channel and determine information about the membership dynamics of the multi-

cast service, such as the rate at which members join and leave the service as well as

being able to infer information about the group membership. From a security point

of view, this provides valuable information to a potential adversary. In compari-

son, data embedding provides covert information transferral, whereby the bit rate

of the multimedia source is maintained and it is impossible for an eavesdropper to

measure information regarding the occurrence of a rekeying operation.

Another effect of the additional layer of security provided by data embedding

is the introduction of the embedding key, which must also be maintained by the

service provider and stored by the user. A positive benefit of this is that an ad-

77

versary will not only have to attack the SK and KEKs, but he will also have to

attack the key governing the embedding rule in order to acquire rekeying messages.

Since the rekeying message is embedded into the multimedia, it is encrypted by

the SK, and thereby protected by the SK, the KEK, and the embedding key. For

this reason, it is therefore important that the key length of the embedding key

is sufficiently long to make it difficult for the adversary to search the embedding

key space. We note that a similar increase in protection can be achieved in the

media-independent channel by increasing the key length of the session key or by

introducing an additional SK. However, encryption algorithms are typically de-

signed for a small set of specified key lengths [69] and it might not be possible to

increase the length of the session key.

Finally, when using a media-dependent channel, it is possible to maintain the

original data rate of the media without performing the additional computations

associated with transcoding [70]. When using a media-independent channel, the

rekeying messages introduce additional communication overhead that is in addition

to the bandwidth needed to convey the media. In order to keep the data rate

of media and rekeying messages identical to the data rate of just the original

media, it is necessary to perform computationally intensive transcoding of the

media to a lower data rate. However, when using a media-dependent approach

to conveying the rekeying messages, the original data rate is maintained, and the

data embedding operation provides a graceful degradation of media quality as more

data is embedded.

When using media-dependent channels, the issue of reliability becomes more

pronounced than in the media-indpendent case since it is not possible to send the

rekeying messages through a delivery mechanism separate from the multimedia

78

data. Since multimedia data is delay sensitive and often transmitted on error-

prone channels using best effort delivery protocols, it is likely that some media

packets will be lost, and the rendering buffer will be filled using the data that suc-

cessfully arrives. However, when using a media-dependent channel, the lost media

packets might contain part of a rekeying message. Since the rekeying messages

are embedded in multimedia, which is being delivered through best effort delivery

protocols, it is not possible to apply delivery protocols employing retransmissions

to improve the reliability of key delivery. There is therefore a tradeoff between

covert information transferral and reliability in delivering the rekeying message.

We noted earlier that it is important that the rekeying message is completely

received by all users before using the new key. We may, however, address the

reliable delivery of the rekeying messages at the application layer. For example,

the multimedia system may employ a centralized error recovery technique similar

to the NP protocol of [71], however operating at the application layer. The server

application takes the k data packets corresponding to a rekeying message and would

form h additional parity packets. These k + h packets would be used transmitted

as the rekeying message that would be transferred through the media-dependent

channel. At the completion of sending the k + h packets, the server would send

a message polling the clients whether they were able to successfully decode the

rekeying message. The clients would send back acknowledgement messages to the

server. If not all of the clients were able to receive the complete rekeying message,

the server would employ retransmission, and the process would repeat until all users

have successfully received the rekeying message. When all users have received the

rekeying message, the server would issue a message instructing all users that it is

appropriate to use the new key.

79

3.6 An Improved Rekeying Message Format

We have described how a rekeying message can be formed during member depar-

ture so that each of the remaining members can receive the new root KEK (key

encrypting key) by decrypting an appropriate segment of the message using their

private KEK. In practice this requires sending additional information that flags to

all of the users which segment belongs to which user. Not only does this mean that

additional communication overhead is required, but also that sensitive information

regarding user identities is released. In particular, adversaries who are members of

the service can collect information about other keying messages intended for other

users. In order to circumvent this potential weakness, we propose a new format

for the rekeying message that is a single, homogenized message from which each

user may extract the new root KEK. Such an approach has the advantage that

user-specific keying information is not available to other users.

The problem of distributing information simultaneously to multiple users via

a single broadcast message while maintaining user anonymity has been previously

studied in the literature. Just et al. [9] and Blundo et al. [52] each present a

method using polynomial interpolation whereby the broadcast message does not

have a partitioned structure like the message in (3.24). A drawback of both of these

schemes is that they are suitable for only one transmission, and are not reusable.

Specifically, when used to distribute identical information to multiple recipients,

each user’s secret information is valid for only one transmission, and then is avail-

able for other group members to acquire. This is a problem since members may

acquire other user’s secret information and use this knowledge to enjoy the service

after they cancel their membership. In order to use these schemes when the keying

material must be updated multiple times, it is necessary to distribute to each user

80

enough copies of private material to cover the amount of updates needed. Thus,

although these schemes use a composite message structure and don’t require ad-

ditional communication overhead for flagging the users, they are not appropriate

for applications that require recurrent key distribution.

We therefore desire a scheme that allows for private keying material to be reused

while providing a homogenized message form. In Section 3.6.1, we shall describe

a new message format that makes use of one-way functions and a broadcast seed

to protect each user’s private information from compromise [14]. Additionally, al-

though our use of one-way functions can be applied to the polynomial interpolation

methods of [9,52], our message format only requires the use of the basic operations

of large integer multiplication and modular arithmetic, and does not require the

additional functions needed to calculate interpolating polynomials. Then, in Sec-

tion 3.6.3, we describe how our message format would be used in a tree-based key

management scheme to achieve logarithmic usage of communication resources.

First, we introduce parametric (or keyed) one-way functions [58,72], which are

the building blocks of our message form.

Definition 2. A parametric one-way function (POWF) h is a function from X ×
Y → Z such that given z = h(x, y) and y it is computationally difficult to determine

x.

Parametric one-way functions are families of one-way functions [58,69] that are

parameterized by the parameter y. The discrete logarithm provides an example

of a POWF since if p is a large prime, and x and y non-identity elements of Z∗
p ,

the multiplicative subgroup of integers modulo p, it is computationally difficult

to determine x given z = yx (mod p) and y [58, 69]. Since symmetric ciphers

are typically computationally efficient compared to one-way functions that employ

81

modular exponentiation, practical one-way functions should be implemented by

means of a symmetric encryption cipher. For example, if we let g be a suitable

hash function, and Ex a symmetric cipher, then h(x, y) = g(Ex(y)) is a POWF. In

this case, only ciphers that are secure against known plaintext attacks [58], such as

DES or Rijndael, are appropriate. Further, we note that it is not necessary that the

hash function g have any cryptographic properties since the required strength is

provided by E. Throughout this chapter we shall assume the existence of POWFs

that map sequences of 2B bits into sequences of B bits.

3.6.1 Basic Message Form

For the basic message form, we shall use the key distribution scheme depicted in

Figure 3.1. Suppose that at time t− 2 the group consists of n users u1, u2, · · · , un.

Each user ui has a personal B-bit KEK Ki that is known only by the group center

and user ui. Additionally, all of the users share a B-bit root KEK and a session

key that will vary with time.

The group center makes available a POWF h that maps a sequence (x, y) of

2B bits to B bits. A new function f is defined by prepending a single 1 bit in front

of the output of h(x, y), that is f(x, y) = 1‖h(x, y). The purpose of prepending a

bit is to ensure that the modulo operation used by each user will yield Kε(t).

Suppose, without loss of generality, that user n decides to leave at time t− 2,

then both Kε(t − 1) and Ks(t − 1) must be updated. The root KEK is updated

first, and then used to encrypt the new session key. In order to update Kε(t− 1),

the GC first broadcasts a B-bit random seed µ(t). Next, the GC forms Kε(t) and

calculates the rekeying message as

αε(t) = Kε(t) +
n−1∏

i=1

f(Ki, µ(t)). (3.25)

82

A legitimate member ui may decode αε(t) to get the key Kε(t) by calculating αε(t)

(mod f(Ki, µ(t))).

We observe that the only property of µ(t) that is needed is that it is known by

all of the recipients. We can therefore achieve a different variation of the scheme

by choosing µ(t) = Kε(t − 1) or µ(t) = Ks(t − 1), which does not require the

transmission of the random seed by the system.

We now discuss how this message format reduces the communication overhead

compared to a partitioned message format, such as is depicted in (3.24). Current

multicast key management schemes, such as [6–8], focus on the size of the payload

(the rekeying information), and not on the size of the entire message (including

the rekeying message and the header). In fact, the transmission of the messages

that flag the users which portion of the message is intended for them can add

significant communication overhead when used in conventional tree-based schemes.

To illustrate this, we consider the basic key management scheme depicted in Figure

3.1, with n + 1 users. When using the partitioned message form of (3.24), it is

necessary to send a header message that describes the user IDs associated with

each of the blocks in the payload rekeying message. Since it requires at least

log2(n) bits to describe the user IDs for n users, we need an additional overhead

of n log2(n). Therefore, the percentage of the message size that corresponds to the

communication overhead is

ρ =
n log2 n

nBk + n log2 n
, (3.26)

where BK is the bit length of the KEK Kε. For large n the communication becomes

a significant portion of the message size.

However, the message format of (3.25) is a single, homogenized message that

does not require any communication overhead. If we use µ(t) = Kε(t−1), then it is

83

not necessary to broadcast µ(t) and the total message size of (3.25) is n(BK + 1),

whereas the total message size from the traditional format was n(BK + log2 n).

Therefore, as long as log2 n > 1, the message format of (3.25) is more efficient in

terms of communication. This occurs when we are providing service to a group with

more than 2 users. Therefore, we have made a tradeoff between communication

and computation. The message format of (3.25) uses less overall communication

at an expense of requiring more computation to form the message.

3.6.2 Security Analysis of Residue-based Method

The residue-based method for multicast key distribution was described in Section

3.6. The basic form of rekeying message in the residue-based method is

α = X +
r∏

j=1

Yj, (3.27)

where X and Yj are drawn uniformly from the set {1, 2, · · · , B}. The variable X

corresponds to the secret, or the key, that is being convey, while the Yj are the

user-specific shares that mask the secret.

This section describes an information theoretic investigation of the security

that this method provides for protecting X, and some motivation for using one-

way functions with a time-varying seed.

Information Theoretic Analysis

Consider the scenario where there is only one Y term, and define the random

variable Z = X + Y . In general, the entropy of Z is difficult to relate to the

entropy of two arbitrary random variables X and Y . The following relationship

holds

H(Z) ≤ H(X,Y) ≤ H(X) + H(Y), (3.28)

84

and in general the bound need not be met. In particular, the consider the random

variables

X = −Y =

1 : with probability p(1) = 1/2

0 : with probability p(0) = 1/2
(3.29)

In this example, H(X) = H(Y) = 1, while Z = 0 so that H(Z) = 0. The following

lemma places a lower bound on the entropy of Z.

Lemma 8. Suppose that Z = X + Y , then H(Z|X) = H(Y |X).

Proof.

H(Z|X) =
∑
x

p(x)H(Z|X = x)

= −∑
x

p(x)
∑
z

p(Z = z|X = x) log p(Z = z|X = x)

= −∑
x

p(x)
∑
y

p(Y = z − x|X = x) log p(Y = z − x|X = x)

=
∑
x

p(x)H(Y |X = x)

= H(Y |X).

Thus, H(Z) ≥ H(Z|X) = H(Y |X) = H(Y), since X and Y are assumed

independent. Similarly, H(Z) ≥ H(X).

The pdf of Z = X +Y is simply the convolution of the pdf of X and the pdf of

Y . Now, when X and Y are uniformly drawn from {1, · · · , B}, then the pdf of Z

is a triangular function, and the entropy of Z may be calculated directly. Suppose

that h(k) = B2pZ(k), then the entropy of Z is

H(Z) = − 1

B2

[(
2B∑

k=2

h(k) log h(k)

)
−

(
2 log B

∑
h(k)

)]
(3.30)

= − 1

B2

[∑
h(k) log h(k)

]
+

2 log B

B2

∑
h(k) (3.31)

= − 1

B2

[∑
h(k) log h(k)

]
+ 2 log B. (3.32)

85

Due to the symmetry of the triangle function h(k),

2B∑

k=2

h(k) log h(k) = 2

B−1∑

j=1

j log j

 + B log B. (3.33)

Thus

H(Z) = − 2

B2

B−1∑

j=1

j log j

− 1

B
log B + 2 log B (3.34)

=
(
2− 1

B

)
log B − 2

B2

B−1∑

j=1

j log j

 . (3.35)

The entropy of the sum was calculated for X and Y drawn uniformly from a

range {1, 2, · · · , B}, where B = 2b and is recorded in Table 3.1. Examining this

table reveals that the difference between the entropy in Z and the entropy of either

X or Y tends toward an asymptotic limit. The exact value and significance of this

limit is currently not known.

The security of the residue-based method is measured by the uncertainty that

remains in the key given only the observation of the rekeying message. For the

case of a single term in the product, this is measured by the entropy H(X|Z). The

following lemma relates H(X|Z) to the entropies H(X), H(Y), and H(Z).

Lemma 9. Suppose X and Y are independent, and Z = X + Y , then

H(Z|X) = H(X) + H(Y)−H(Z). (3.36)

Proof. By application of the chain rule, H(X|Z) = H(X,Z)−H(Z). Observe that

there is a unique correspondence between the joint variable (X, Z) and (X, Y).

Therefore, H(X, Z) = H(X,Y) = H(X) + H(Y). Substitution gives the desired

result.

Applying this lemma with the values presented in Table 3.1 gives that H(X|Z) ≈
H(X)− 0.721347. This result implies that roughly one bit of security is lost when

86

b H(Z)

1 1.5000000000000

2 2.6556390622296

3 3.7023191426459

4 4.7159395672686

5 5.7198327831914

6 6.7209281467435

7 7.7212325045380

8 8.7213162233391

9 9.7213390603855

10 10.7213452464840

11 11.7213469122180

12 12.7213473584537

b H(Z)

13 13.7213474774632

14 14.7213475090783

15 15.7213475174478

16 16.7213475196565

17 17.7213475202379

18 18.7213475203902

19 19.7213475204300

20 20.7213475204415

21 21.7213475204434

22 22.7213475204440

23 23.7213475204448

24 24.7213475204435

Table 3.1: The entropy of the sum Z = X+Y , where X and Y are drawn uniformly

from integers between 1 and B = 2b.

there is only a single Y term. Thus, an adversary must only search a keyspace

that is half as large as the original keyspace.

If the original keyspace is sufficiently large, then this reduction might not be

significant. For example, searching a keyspace of 100 bits is effectively as difficult

as searching a keyspace of 99 bits.

The security of this scheme when more Yj terms are used remains to be in-

vestigated. It is conjectured that the amount of bits lost will increase since the

distribution of Y = Y1Y2 · · ·Yr will no longer be uniform. Additionally, the exact

value of the 0.721347 term remains to be explored. Finally, since direct calculation

87

of the entropies for large B ≈ 220 takes considerable computing effort, it would be

desirable to construct bounds on the entropy of Y = Y1Y2 · · ·Yr, as well as on the

entropy of Z = X + Y .

Attacks by Insiders

We now examine the possibility for a member of the group to attack the security of

the system by gathering or inferring information not intended for them. Suppose

that the basic form of the rekeying message is

α(t) = X(t) + Y = X(t) +
r∏

j=1

Yj, (3.37)

where X(t) denotes the time-varying key that the GC is distributing to the users.

The Yj are user specific secrets that allow a user to determine X(t) given α by

performing a modulo operation. In a dynamic environment, it is important to

prevent members from acquiring other member’s secrets. In the basic form of the

rekeying message, once the user us has determined X, he may determine
∏

j 6=s Yj

by
∏

j 6=s

Yj =
α(t)−X(t)

Ys

. (3.38)

This allows user us to depart the system, receive a future rekeying α(t), and use

∏
j 6=s Yj in the modulo operation to determine future X(t).

It is therefore necessary to make the Y term also time-varying in order to make

it more difficult to acquire X(t). An initial approach to solve this problem was to

define Y (t) = λ(t)
∏r

j=1 Yj. In this case, an inside adversary is able to calculate

A(t) = λ(t)
r∏

j=1

Yj (3.39)

Since the λ(t) are chosen at random, one might expect that this would introduce

enough randomness to make calculating
∏r

j=1 Yj difficult. This, however, is not the

88

case.

Consider the probability that two random integers are relatively prime. A non-

rigorous derivation of this probability would proceed as follows. The probability

that one number is divisible by a prime pi is 1/pi. If both numbers were chosen

independently of each other, the probability that both are divisible by pi is 1/p2
i

and hence the probability that they are not both divisible by pi is (1− 1/p2
i). The

probability that two numbers are coprime can then be estimated by

W2 =
∏
pi

(
1− 1

p2
i

)
. (3.40)

In order to calculate W2 it is easier to start with 1/W2.

1

W2

=
∏
pi

(1

1− 1
p2

i

)
. (3.41)

By expanding 1
1−x

into a series expansion and observing that the product results

in a term for every integer, we get

1

W2

=
∞∑

n=1

1

n2
= ζ(2) =

π2

6
(3.42)

where ζ is Riemann’s zeta function [73]. Therefore, the probability of two numbers

being relatively prime is W2 = 6
π2 . This can be extended to the probability that

s numbers are relatively prime. Let Ws be the probability that s non-negative

integers are relatively prime, then by the same idea as before

Ws =
∏
pi

(
1− 1

ps
i

)
(3.43)

which leads to

1

Ws

=
∞∑

n=1

1

ns
= ζ(s). (3.44)

We tabulate the first few such probabilities in Table 3.2.

89

W2 0.608

W3 0.832

W4 0.924

W5 0.964

W6 0.983

Table 3.2: Probabilities of Coprimality

This result states that an inside adversary, after gathering m observations A(tm)

has an increasingly likely chance of calculating
∏r

j=1 Yj. In fact, with just 8 obser-

vations, there is over a 99.5% chance that he will be able to calculate
∏r

j=1 Yj.

In a dynamic scenario, calculating
∏

j 6=s Yj does not guarantee being able to

acquire future X(t). However, the Yj of any other member who remains in the

service will do. Unlike other cryptographic methods, such as RSA, where the

factors have greater than 500 bits, each Yj is typically less than a couple hundred

bits and factoring the product
∏r

j=1 Yj will not be too difficult [58,69]. In this case,

the adversary’s task is to reconstruct a Yj given a list of factors of
∏r

j=1 Yj. Since

there is no guarantee how many factors each Yj will have, it is not reasonable to

rely on the difficulty of recombining factors to protect the key X(t).

Other approaches to making the Y term time-varying have been examined. In

order for the time-varying form Y (t) to be secure, it must be difficult to calculate

an individual Yj term given knowledge of the rekeying message α(t) and the key

X(t). A natural approach for making it difficult to calculate a value y given a value

g(y) is to make g a one-way function. The idea of using one-way functions provides

the difficulty needed to prevent an inside member from calculating another user’s

private key Yj. However, using one-way functions alone did not provide security

90

for protecting X(t). As mentioned earlier, it is necessary to make the Y term

time-varying, and based on the arguments presented above, one needs to make

the product term
∏r

j=1 Yj time-varying. This was accomplished by introducing the

time-varying broadcast seed.

By broadcasting µ(t) and using a non-reversible function f , the adversary is

instead able to calculate

Ai =
∏

j 6=i

f(Kj, µ(t)). (3.45)

Factoring Ai provides information about f(Kj, µ(t)). Since it is difficult to ac-

quire Kj given µ(t) and f(Kj, µ(t)), the private user information is protected. At

the next time instant, when µ(t + 1) is broadcast, the adversary’s knowledge of

f(Kj, µ(t)) does not help him in calculating f(Kj, µ(t + 1)), and he can extract

Kε only if he has the needed keys assigned to him.

3.6.3 Achieving Scalability

When the multicasting group is very large, it is necessary to make efficient usage

of communication resources. Improved resource scalability can be achieved by

employing a tree-based key management scheme to update the SK and KEKs [6,7].

A binary tree is shown in Figure 3.5, though in the general case the tree can

be an a-degree tree. Attached to the tree above the root node is the session key

Ks. Each node in the tree is assigned a KEK called an internal key (IK) which is

indexed by the path leading to itself. The symbol ε is used to denote empty string,

which is the path of the root node to itself. Each user is assigned to a leaf and is

given the IKs of the nodes from the leaf to the root node in addition to the session

key. For example, user u111 is assigned keys K111, K11, K1, Kε, and Ks. All of the

keys, with the possible exception of the leaf keys, may vary with time to reflect

91

sK

Kε

K
000

0 1

0 1 0 1

0 1 0 1 0 1 0 1

K
0 1

K
00 K01

K
10 11

K
001

K
010

K
100

K
101

K
110

K
111

K
011

K

K

000
u u

001 010
u u u u u u

011 100 101 110 111

Invalidated Keys

Joining/Departing
Member

Figure 3.5: Tree-based key distribution.

the changing dynamics of the group membership.

During periodic refreshes, only the session key needs to be updated, and the

same protocol as presented in Section 3.4.1 can be used. We will now address how

to operate during additions and deletions of members.

The GC is in charge of keeping track of the group members, and assigning

them to positions on the tree. Although it is easiest to have the membership tree

be a balanced tree, it is not necessary. For example, in [54], a non-balanced tree

employing one-way functions is used in a key management scheme allowing member

joins and departures is used. In this work, we shall just describe the procedure

for adding members to a non-full balanced tree, and removing members from a

full balanced tree. If a balanced tree is full, meaning all of the leaf nodes have

members associated with them, then it is necessary to spawn a new layer of nodes

92

when adding members. Additionally, by following the example of Balenson et

al. [54] one can see how to make an approach handle member joins and departures

for non-balanced trees.

Member Join

The member join operation does not involve the message format of (3.25) since

each node of the key tree updates itself. Nonetheless, we present this case for

completeness. Consider the binary tree depicted in Figure 3.5, that has 7 members

u000 through u110. If user u111 would like to join the group, the keys on the path

from his leaf node to the tree’s root as well as the SK, must be changed in order

to prevent access to previous communications. Thus new Kε(t), K1(t), K11(t) and

Ks(t) must be generated by the GC. The key encrypting keys can be updated from

top to bottom by using Kε(t−1) to encrypt Kε(t), K1(t−1) to encrypt K1(t), and

K11(t− 1) to encrypt K11(t). Thus, all users can acquire the new root KEK, while

only members u100, u101, and u110 can acquire K1(t). After updating the KEKs,

the session key is updated by encrypting with the new root KEK Kε(t).

Member Departure

When a member leaves the group, multiple keys become invalidated because that

user shares these keys with other users. For example, in Figure 3.5, user u111

shares K11 with user u110. Thus, if user u111 departs the multicast group, the key

encrypting keys K11, K1, and Kε become invalidated. These keys must be updated.

Observe that K111 does not need to be updated since it is a private key and is not

shared with any other users.

There are two basic approaches to updating the keys during a member depar-

93

ture: update the keys from the root node to leaf nodes, or from leaf nodes to root

node. In the first approach, the top-down approach, when user u111 departs, the

keys are updated in the order Kε, K1, and K11. The second approach, the bottom-

up approach, updates the keys in the order K11, K1, and Kε. After updating the

key encrypting keys, the root KEK Kε(t) can be used to encrypt the new session

key Ks(t) and a single message may be broadcast to all members.

Let us focus on how to update these keys using the top-down approach in

conjunction with the new message form when user u111 departs. First, a random

seed µ(t) is broadcast to all members, or some shared information, such as Kε(t−1)

is used as µ(t). Next, the root KEK Kε(t−1) will be updated. In order to do this,

the message

αε(t) = Kε(t) + f(K0(t− 1), µ(t))f(K10(t− 1), µ(t))f(K110, µ(t)) (3.46)

is formed and broadcast. Next, K1(t− 1) is updated by forming the message

α1(t) = K1(t) + f(K10(t− 1), µ(t))f(K110(t− 1), µ(t)) (3.47)

and broadcasting. The last KEK to update is K11(t − 1). This can be done by

sending the message

α11(t) = K11(t) + f(K110(t− 1), µ(t)). (3.48)

Upon updating the KEKs, the session key may then be updated. To do this, the

root KEK is used to encrypt Ks(t) and the resulting message is broadcast.

In order to update the keys from a bottom-up approach, the random seed is

broadcast, and then K11(t− 1) is updated via

α11(t) = K11(t) +
0∏

j=0

f(K11j(t− 1), µ(t)) (3.49)

94

The next key that is updated is K1(t− 1). Since the two users beneath K1 share

a common key that is not invalidated by the departure of member u111, we may

reduce communication and computation by using this key to update K1. The

resulting message

α1(t) = K1(t) +
1∏

j=0

f(K1j(t), µ(t)) (3.50)

is broadcast. Since K10(t−1) is still valid, we implicitly updated K10(t) = K10(t−
1). To update Kε(t − 1) we may use the new key K1(t) as well as the old key

K0(t) = K0(t− 1) and form the message

αε(t) = Kε(t) +
1∏

j=0

f(Kj(t), µ(t)). (3.51)

Finally, the session key is updated by encrypting the new session key Ks(t) using

the new root KEK Kε(t), and broadcasting the message

αs(t) = EKε(t) (Ks(t)) . (3.52)

The amount of multiplications as well as the communication requirements

needed to update all of the KEKs using the top-down approach and the bottom-up

approach will differ. Assume that we have n users and keys assigned to each of

these users using an a-ary tree. If the tree is a full, balanced tree with L = loga n

levels, then the amount of multiplications needed to update the KEKs during a

member departure using a top-down approach is:

Ctd =
L∑

i=1

i(a− 1)

= (a− 1)
loga n(logan + 1)

2
. (3.53)

Similarly, the amount of multiplications needed to update the KEKs using a

bottom-up approach is

Cbu = aL− 1

95

= a loga n− 1. (3.54)

The amount of communication needed for each of these schemes is directly related

to the amount of multiplications performed. If each internal key is B bits long,

and a rekeying message requires M multiplications, then the message size will be

M(B + 1) bits. Therefore, the bottom-up approach to renewing the keys requires

less computation and communication. However, if the SK needs to be updated

sooner, one may wish to use a top-down approach since it allows one to update

the root KEK first, the session key next, and finally the remaining IKs.

3.7 System Feasibility Study

In this section, we study the issues related to the feasibility of using a key man-

agement system for multicast multimedia. When designing a cost effective system,

one must consider the balance between computation, communication, and storage

resources.

One of the primary advantages for using a tree-based key distribution scheme is

that it achieves good scalability in the amount of communication needed to update

the network. The need for using a tree-based key distribution scheme becomes more

pronounced as the group size increases. If the group size is small, for example

less than 10 users, there might not be any benefit from using a tree-based key

distribution scheme, and one might want to consider the simple key distribution

scheme presented in Section 3.6. However, the O(log n) communication needed by

most tree-based schemes makes the use of a tree-based scheme essential when the

group size is several thousand or more users.

Another issue that should be considered is the amount of storage needed by

96

the GC and each individual user. If each user has extremely limited storage, then

the simple distribution scheme of Section 3.6 might be appropriate. However,

although a tree-based scheme may require more storage for each user, and a factor

more storage for the GC, typically this is not as important of a consideration as

communication resources.

As an example, in the scheme presented in Section 3.6.3, the amount of multi-

plications (computation) needed to update the KEKs for the bottom-up approach

was calculated to be Cbu = a loga n−1. The communication needed is proportional

to the amount of computation needed. The amount of storage needed by the GC

to keep track of the KEKs is

S =
aL+1 − 1

a− 1
(3.55)

keys, while the amount of storage needed by each user is loga n + 2 keys.

Next, one must consider the channel that one is transmitting the keys across.

Whether transmitting via an external channel or an internal channel, there is a

channel rate that governs how quickly the keying information may be distributed.

For example, suppose we are transmitting the rekeying information for the scheme

of Section 3.6.3 via an internal channel. If we denote R as the embeddable channel

rate (in bits/second), BKEK to be the key length of a KEK, Bs to be the key length

of the session key, Bµ the bit length of the random seed µ(t), and Bemb to be the

key length governing the data embedding rule, then the amount of time needed to

update the entire system of keys is

T =
CbuBKEK + Bs + Bemb + Bµ

R
. (3.56)

Since T is related to the bit size of each of the keys, it is therefore related to

the security levels protecting the service. This amount of time corresponds to

the amount of time the departing member may still enjoy the service before no

97

longer being able to decode the video stream. If we desire to increase the level

of protection of the multimedia, then Bs must be increased, which leads to an

increase in the amount of time needed to refresh the entire set of keys. Similarly,

if we desire to increase the difficulty an adversary would have in decoding rekeying

messages, then we need to increase BKEK , which would also increase T .

In designing a system, these tradeoffs must be weighed and considered from a

realistic point of view. Although it might be desirable to have extreme protection

of the content, in a dynamic group, it is not realistic that it take an hour to update

the set of keys.

To demonstrate these considerations, we present some simulation results using

the data embedding scheme proposed in [68]. The degradation of the visual quality

when different amounts of bits embedded per frame were measured for the Foreman

and Miss America QCIF video sequences. The H.263 TMN-11 video codec was

used with annexes D, I, J, F turned on [74]. The bitrate in the simulation is

64kbps with a frame rate 10f/s, and every 12th frame is INTRA coded. The

peak signal-to-noise ratio (PSNR) of luminance component with different data

embedding rates are compared with the PSNR of luminance without embedding.

In the simulations, the four cases compared correspond to when the number of

bits embedded in a P-frame is upper bounded by 20, 40, 60 and no constraint

(maximal). The PSNR differences are shown in Figure 3.6(a) for Foreman and

Figure 3.6(b) for Miss America. Their average PSNR differences are also listed

in Table 3.3. In all cases, the PSNR degradation of Luminance is within 1dB for

both Foreman and Miss America, which normally cannot be detected by human

visual system for video applications. Additionally, it was shown in [68] that data

embedding at half-pel motion estimation at most degenerates the video coding

98

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

frame number

Lu
m

 P
S

N
R

(d
B

)
di

ffe
re

nc
e

 c
om

pa
re

d
w

ith
 n

o
em

be
dd

in
g

20 bits
40 bits
60 bits
Maximal

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

frame number

Lu
m

 P
S

N
R

(d
B

)
di

ffe
re

nc
e

 c
om

pa
re

d
w

ith
 n

o
em

be
dd

in
g

20 bits
40 bits
60 bits
Maximal

(a) (b)

Figure 3.6: The peak signal-to-noise ratio (PSNR) difference of the luminance

components between no embedding and the embedding scheme of Song et al. with

variable embedding rate. (a) Foreman, (b) Miss America.

performance back to integer-pel motion estimation without data embedding.

Using this data embedding scheme in conjunction with the bottom-up approach

to member departure discussed earlier, we calculated the amount of time needed

to refresh the entire network of keys for a tree of degree a = 2, and n = 220 or

roughly one million users. We took BKEK = 56 bits, Bs = 56 bits, Bµ = 56

and Bemb = 20 bits as the bit lengths for the various keys. These values for

BKEK , Bs and Bµ were chosen since they correspond to the key size of the popular

20 bits 40 bits 60 bits Maximal

Foreman 0.2002(dB) 0.3054(dB) 0.4264(dB) 0.4477(dB)

Miss America 0.0720(dB) 0.1098(dB) 0.1434(dB) 0.1602(dB)

Table 3.3: Average PSNR difference.

99

block cipher DES. The resulting times needed to refresh the keys are presented

in Figure 3.7. The curves illustrate the inverse relationship with the amount of

bits embedded per frame. Using these curves, one can determine the necessary

embedding rate needed to refresh the keys in time T . For example, if we have a

video service of QCIF images with a frame rate of 20 frames/second, and desire to

refresh the keys during member departure in T = 5 seconds, then 25 bits must be

embedded per frame. In particular, for an embeddability rate of 25 bits/frame, we

note that average PSNR difference of the two test sequences is less than 1dB and

therefore would introduce no noticeable distortion to the video quality. Further,

in video applications that use higher-resolution video formats, such as CIF and

SIF format, less distortion occurs for the same embeddability rate. Thus, for the

same amount of distortion in video with a larger image size, it becomes possible

to rekey larger group sizes, refresh keys faster, or increase the protection by using

larger key lengths.

3.8 Extensions to Multilayered Services

In many application environments, the multimedia data is distributed in a multi-

layered form. For example, in an HDTV broadcast, users with a normal TV

receiver can still receive the current format, while other users with a HDTV receiver

can receive both the normal format and the extra information needed to achieve

HDTV resolution. As another example, the MPEG-4 standard allows for multiple

media streams corresponding to different object planes to be composited. In either

of these cases, it will be desirable for service providers to separately control access

to the different layers of media. The key management schemes must therefore be

considered separately, yet incorporate new key management functionalities that are

100

10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

Amount of bits embedded per frame

T
im

e
to

 r
ef

re
sh

 a
ll

ke
ys

 (
se

co
nd

s)

Time to update keys during member departure

F=10 fr/s
F=20 fr/s
F=30 fr/s

Figure 3.7: The time needed to refresh the entire set of keys during a member

departure using the bottom-up approach with different frame rates F , and different

amounts of bits embedded per frame. The group size is n = 220, or roughly one-

million users.

not present in conventional multicast key management schemes. Specifically, it is

necessary to introduce new rekeying events that allow users to subscribe or cancel

membership to some layers while maintaining their membership to other layers.

Hence multi-layered, or multi-object multimedia services will require additional

functionality added to a multicast key management scheme.

As an example of the additional functionality needed, we use our tree-based

scheme of Section 3.6.3 and consider the problem of managing keys for two levels

of service corresponding to a low quality and high quality service. Extensions to

more layers or objects is straight forward.

Suppose the multimedia data stream consists of two layers, which are denoted

as Dl and Dh. Dl provides the low resolution service only, while high-quality service

101

sK Ks,
L H

K K,
L H

εε

0 1

0 1 0

0 1 0 1 0 1 0 1

K
0

K
1

K
00 K K

11

K
000

K
001

K
010

K
100

K
101

K
110

K
111

K
011

K
0

K

K
1, ,

, , ,00
K K

11K
10 , K1001 01

L H L H

H L H L HL HL

Figure 3.8: Key distribution for multi-layer multimedia multicast.

can be obtained by receiving both the base-layer Dl and the refinement-layer Dh.

The GC will have two session keys K l
s(t) and Kh

s (t). K l
s(t) is used to encrypt Dl

and Kh
s (t) is used to encrypt Dh. Similarly, each internal node in the key tree has

two internal keys K l
σ(t) and Kh

σ (t), where σ is the index of the nodes in the tree.

Group members who want to receive the lower quality service will be assigned the

low-layer session key, as well low-layer keys from the root to the leaf which stands

for this member. Group members who want to receive high quality service will be

assigned both the low-layer and high-layer keys. The rekeying scheme is similar

to the one layer case described earlier, but requires additional functionalities since

users may switch between the different levels of service.

• Refreshing the low-quality session key: The new session key associated

with the low-quality level may be refreshed by encrypting with the root low-

quality KEK K l
ε(t) and transmitting the message αl

s(t) = EKl
ε(t)

(
K l

s(t)
)
.

102

• Refreshing the high-quality session key: The procedure for refreshing

of the high-quality session key is identical to the procedure for refreshing the

low-quality session key, but using Kh
s (t) and Kh

ε (t) instead.

• New member joins low-quality service: A new member may desire to

join the low level service. In this case, the low-quality session key and IKs

must be renewed, which can be done by applying the procedure of Section

3.6.3.

• New member joins high-quality service: A new member may desire to

join the high level service. In this case, both the low-quality and high-quality

keys must be renewed. To do this, the procedure of Section 3.6.3 is applied

twice, once for the low-quality keys, and once for the high-quality keys.

• High-quality user leaves the group: In this case, both session key K l
s(t−

1) and Kh
s (t − 1) and corresponding IKs for both Dl and Dh have to be

changed. This can be done using the algorithms in Section 3.6.3 twice.

• Low-quality user leaves the group: In this case, only session key K l
s(t−1)

and corresponding IKs for base-layer Dl needs to be changed, which can be

done using the algorithms in Section 3.6.3 once on the appropriate low-layer

keys.

• Low-quality user changes to high-quality: In this case, the high-layer

SK Kh
s (t−1) as well as the high-layer IKs must be changed has to be changed

to prevent the user from accessing the past high quality service. The new

SK Kh
s (t) and IKs keys from root to the leaf are directly given by the GC to

this user during registration to the new level of service.

103

• High-quality user change to low-quality: The session key Kh
s (t − 1)

and corresponding IKs for high-layer have to be changed to prevent this user

from accessing the future high quality information. This can be done using

the algorithms in Section 3.6.3 once on the high-layer internal keys.

3.9 Chapter Summary

The secure distribution of multimedia multicasts necessitates the distribution and

management of keying material. In this chapter, we have examined the problem

of managing keys needed to secure multimedia multicasts. We presented a new

format for the rekeying messages associated with multicast key management, as

well as described two modes of conveyance for transmitting the rekeying messages.

We began by discussing the fundamental problem of securely distributing in-

formation simultaneously to a group of users. This fundamental problem is at

the heart of multicast key management schemes, where the information to be dis-

tributed is a new session key. We examined a simple key management scheme

to motivate the importance of reducing the communication overhead associated

with identifying which portion of a rekeying message is associated with each user.

The communication overhead is reduced by using a homogenized message format

from which every user can perform a suitable operation to extract the new keying

information. We presented a homogenized message format, built using one-way

functions and large integer arithmetic, that allows for each user to perform a mod-

ular operation to extract the new key information. We then examined the security

of the residue-based rekeying message from an information theoretic perspective,

and also showed that the residue-based rekeying message format is resistant to at-

tacks by members of the service attempting to acquire private keying information

104

of other members.

Typically, the information associated with rekeying is distributed via a media-

independent channel. However, multimedia data allows for a media-dependent

channel, such as is provided by data embedding techniques. By embedding the

keying information in the multimedia content, the key updating messages associ-

ated with secure multicast key management schemes may be hidden in the data

and used in conjunction with encryption to protect the data from unauthorized ac-

cess. The primary advantage of using data embedding to convey rekeying messages

compared to the traditional use of a media-independent channel is that data em-

bedding hides the presence of rekeying messages from potential adversaries, thereby

making it more difficult for eavesdroppers to measure information regarding mem-

bership dynamics. Further, the use of data embedding allows the application to

maintain the data rate of the media without performing computationally expensive

transcoding operations.

We used our proposed message form in conjunction with a data embedding

technique for block-based motion compensated video compression to illustrate that

the amount of time needed to update the entire network of keys is related to the

amount of users in the service, key lengths used, and the embeddable channel rate.

For a video service providing QCIF images with a frame rate of 20 frames/second,

we observed that it was possible to refresh the keys for a group size of roughly one

million users in 5 seconds when we used an embeddability rate of 25 bits/frame.

The distortion introduced to the video sequence was less than 0.8dB of PSNR

and was not perceptible. Finally, by adding extra functionality to multiple key

trees, multicast key distribution schemes can be extended to protect multiple layers

of multimedia content in an efficient manner. The additional operations needed

105

to manage the keys for multilayered services is more complex than traditional

multicast services since users may switch between different levels of service. We

presented an example of a key management scheme for two levels of service, and

described the necessary operations needed to allow users to drop from a high-

quality service to a low-quality service, and also upgrade their service from a

low-quality to a high-quality service.

In the next chapter we build a protocol suitable for rekeying users in a dy-

namic multicast service. The protocol will employ both a homogenized message

format and a tree-based key hierarchy in order to achieve desirable scalability of

communication resources.

106

Chapter 4

A Key Management Architecture for Conditional

Access Systems in Dynamic Multicasting

Scenarios

4.1 Introduction

With the advancement of networking technologies, such as broadband IP and satel-

lite networks, many opportunities have been created for the delivery of bandwidth

intensive media such as audio and video. Many of these future multimedia applica-

tions will involve group-based scenarios, where users may join and leave at anytime.

Multicast communication is the most suitable method for delivering data to groups

of users due to its efficient usage of network resources. Over the Internet, for ex-

ample, the recipients of a group communication are associated with a Class D IP

address, and may receive messages sent to that address [75]. A server that desires

to send communication to the group addresses messages with the group address

and transmits a single copy of the message. It is the responsibility of the network

and the multicast-enabled routers to deliver the message to the users. By sending

only a single copy of the message on the network, the usage of server-side resources

107

such as bandwidth and processing is reduced.

The adaptation of multicast into commercial applications depends on the ability

to control access to the communications. For example, consider a service provider

that distributes streaming content, such as multimedia streams, to a group of

paying users via a multicast technology. In such an application, the service provider

must be able to ensure the availability of multicast data to privileged members

while preventing unauthorized use of this data by non-privileged users. A service

provider may control access to content by encrypting the content using a key that is

shared by all group members. The problem of access control is made more difficult

when the content is being distributed to a group of users since the membership

will most likely be dynamic, with users joining and leaving the service for a variety

of possible reasons. Upon changes in the membership, it is necessary to change

the keys associated with the service.

A conditional access system for multicasting must be able to cope with the

demands of the application. These demands must not only address the security

and access requirements of the service provider, but also address the convenience

and satisfaction of the client. Below we have listed several functionalities that are

desirable in a conditional access system for dynamic multicast scenarios:

1. The solution should be able to refresh the keys used to protect content.

Due to the bulk quantities of data being multicast, it is feasible that session

keys may become compromised. Therefore, it is important that there is a

means available to refresh the session key and intermediate keying material

in order to maintain a desirable level of content protection.

2. The solution should provide the ability for members to join and depart the

service at will, as well as allow the content distributor to easily revoke a

108

member’s ability to access content.

Unlike unicast communication, the departure of a group member does not im-

ply the termination of the communication link. In addition, upon departing

the service, users must be de-registered and prevented from obtaining future

multicasts. Similarly, when new members join the service, it is desirable to

prevent them from accessing past content. Additionally, situations might

arise where the content provider desires to prevent a user from accessing

future content.

3. The solution should be resistant to member collusion.

No subset of the members should be able to collude and acquire keying

information of non-colluding members.

4. The solution should provide a means for an end-user to recover from missed

rekeying messages.

In many application environments, the connection between a client and the

server may be severed. For example, in cellular applications, a client might

move temporarily through a region of severe fading. Adverse communication

conditions and common accidents, such as a system crash, might mean that

the client misses several rekeying messages needed to update his key database.

Users might also desire to switch from terminal to terminal, with the possibil-

ity of not being able to receive communication while moving across terminals.

It is important to have a means that allows the client to resume access to

the service.

5. The solution should allow the user to temporarily transfer access rights to

another party.

109

In many business scenarios, a client will subscribe to a service where content,

such as multimedia or stock quotes, is streamed. Users may wish to transfer

their access rights to the data stream to their friends without canceling or

transferring their subscription.

6. The solution should address the issue of resource scalability for scenarios

consisting of large privileged groups.

In many applications, the size of the group may be very large and possibly

on the order of several million users. The required communication, storage,

and computational resources should not become a hindrance to providing the

service as the group size increases.

In this chapter we present an architecture for the management of keys in a

conditional access multicast system. The system that we describe makes use of a

tree-structured key hierarchy and basic primitive operations to provide a solution

that satisfies the above requirements. Additionally, whereas most of the multicast

key management schemes in the literature do not consider the issue of flagging to

the user which rekeying messages are intended for them, we provide this important

functionality in our message structure. We next focus on the usage of communi-

cation resources and calculate the amount of communication needed to perform a

member join and a member departure operation for different tree degrees and dif-

ferent amount of users. We determine the optimal tree degree for scenarios where

member join is most important, member departure is most important, and where

both operations are equally important. We present a stochastic occupancy model

that allows one to study the mean behavior of a key tree under different degrees

of occupancy. Additionally, we compare the amount of communication overhead

110

needed in our scheme with the amount of communication overhead that a con-

ventional tree-based rekeying scheme, such as [6], would need to flag users which

component of a rekeying message is intended for them.

In Section 4.2 we present an overview of multicast key management for dynamic

groups. In Section 4.3 we introduce a method for distributing keys using polyno-

mial interpolation and parametric one-way functions. This basic scheme is used

as a building block for a protocol primitive described later in the chapter. There-

fore, we present a study of its security and communication features. In Section 4.4

we present some protocol primitives and use these to construct more complex key

management operations capable of maintaining the key hierarchy in scenarios with

dynamic membership. The size of the messages needed for updating the keys is

computed in Section 4.5 and are used to determine the optimal degree of the key

distribution tree. Additionally, we present a comparison between computational

requirements of the polynomial interpolation scheme proposed in this chapter and

the residue-based scheme described in Chapter 3 and [14,76].

4.2 Review of Multicast Key Management

In this section, we provide a review of key management techniques. Some of the

material presented here is repeated from Chapter 3 and is presented for ease of

reference.

The distribution of identical data to multiple parties using the conventional

point-to-point communication paradigm makes inefficient usage of resources [77].

The redundancy in the copies of the data can be exploited in multicast commu-

nication by forming a group consisting of users who receive identical data, and

sending a single message to all group users.

111

When data is being sent over the network, it is important that only valid

members of the multicast group should have access to the data. In order to provide

access control to the multicast communication, the data is typically encrypted

using a key that is shared by all legitimate group members. The shared key,

known as the session encryption key (SK), will change with time, depending on

the dynamics of group membership as well as the desired level of data protection.

In order to update the session key, a party responsible for distributing the

keys, called the group center (GC), must securely communicate with the users

to distribute new key material. The GC shares auxiliary keys, known as key

encrypting keys (KEKs), that are used solely for the purpose of updating the

session key and other KEKs with group members.

One approach to group key management is provided by the group key man-

agement protocol (GKMP) [78]. In this scheme, the GC uses a SK, called a group

traffic encrypting key (GTEK) in the GKMP literature, and a group key encrypt-

ing key (GKEK). The GC updates the SK by using the GKEK. This allows all

group members to be updated using a single encrypted message. A major disad-

vantage of GKMP, however, is that it is not able to handle member departures, or

the compromise of a single member. The compromise of the GKEK means that

all future communication is compromised since an adversary can calculate future

session keys.

Fiat and Naor [79] present a broadcast key distribution scheme that allows for

a single source to transmit a SK to a dynamic subset of privileged users such that

no coalition of at most k non-privileged users can acquire the SK. The communi-

cation overhead of their scheme is not dependent on the amount of non-privileged

members, but instead on the security parameter k and a parameter describing the

112

probability that a coalition of at most k non-privileged users can acquire the SK.

A common class of multicast key management schemes are the tree-based

schemes [6–8], of which the scheme we present in Section 4.4 is an example. These

schemes tend to have desirable usage of computation, communication, and storage

resources for the user or the group controller. In order to motivate the importance

of resource scalability with respect to group the multicast group size n, we discuss

a simple key distribution scheme that achieves minimal storage for each user, but

has highly inefficient communication complexity.

In the minimal storage scheme where multicast group consists of n users, the

group center shares a key encrypting key with each user and all users share the same

session key. Upon a member departure, the previous session key is compromised

and a new session key must be given to the remaining group members. To distribute

the new SK, the GC encrypts the new session key with each user’s key encrypting

key and sends the result to that user. Thus, there are n − 1 encryptions that

must be performed, and n − 1 messages that must be sent on the network. The

storage requirement for each user is 2 keys while the GC must store n + 1 keys.

This approach to key distribution has linear communication, computation and GC

storage complexity. As n becomes large these complexity parameters make this

scheme undesirable.

The problem of designing efficient key updating schemes is has seen recent

attention in the literature. One approach for achieving scalability is to apply hier-

archical subgroups and map the KEKs to a logical tree. The tree-based approach

to group rekeying was originally presented in [7], and independently in [6]. Due to

the tree structure, the communication overhead is O(log n), while the storage for

the center is O(n) and for the receiver is O(log n). The O notation is used to indi-

113

cate that the constant factors are implementation dependent. In [55], it was shown

that the optimal tree-based key distribution for a group leads to Huffman trees

and the average number of keys assigned to a member is related to the entropy of

the statistics of the member deletion event.

Various modifications to the tree scheme have been proposed. In [8], a mod-

ification to the scheme of [7] is presented. By using pseudo-random generators,

their scheme reduces the usage of communication resources by a factor of two.

Similarly, the communication requirements were reduced in [54] by using one-way

function trees. In [49] the tradeoffs between storage and communication require-

ments are studied, and a modification to the schemes of [7] and [6] is presented

that achieve sublinear storage. Their results were further explored by Pooven-

dran in [80], where the storage-communication tradeoff is formulated as a convex

optimization problem.

In the previous chapter, it was proposed to use multicast key management

schemes in conjunction with data embedding to provide and maintain access con-

trol to multimedia streams [14, 65, 76]. In this work, a tree-structured multicast

key management scheme was proposed that uses residue operations and one-way

functions to update keys during member join and member departure operations.

4.3 Basic Polynomial Interpolation Scheme

In this section we describe the basic scheme for distributing keys that will be used

in the scalable key management protocol of Section 4.4. The basic key distribution

scheme that we describe is a modification of the polynomial interpolation scheme

of [52]. We have introduced the use of one-way functions and a broadcast seed to

protect private user KEKs from compromise and allow private user KEKs to be

114

reused.

We shall use parametric one-way functions in our work to provide computa-

tional security. A one-way function h is a function from X×Y → Z such that given

z = h(x, y) and y it is computationally difficult to determine x [69]. Parametric

one-way functions (POWF) are families of one-way functions that are parame-

terized by the parameter y. Symmetric block ciphers can be used to construct

POWFs. Let x ∈ X and y ∈ Y , and consider a symmetric cipher Ex(y) : Y → Y
where the subscript denotes the key used in the encryption of the plaintext y. Thus

X is the key space of the cipher E, while Y is the space of plaintexts and cipher-

texts. Define a hash function f : Y → Z. Then the function h(x, y) = f(Ex(y)) is

a POWF parameterized by y since any reasonable cryptosystem can withstand a

known-plaintext attack, that is knowledge of Ex(y) and y does not make it easy to

determine the key x. Note that it is not necessary that the hash function f have

any cryptographic properties as the required cryptographic strength is provided by

E. Throughout this chapter we shall assume the existence of parametric one-way

functions that map sequences of 2B bits into sequences of B bits.

Consider the basic key distribution scheme depicted in Figure 4.1. Each user

ui has a personal B-bit KEK Ki that is known only by the group center and user

ui. Additionally, all of the users share a B-bit root KEK Kε(t) and a session key

Ks(t) that will vary with time t.

Suppose that user un decides to depart, then we must renew the keys Kε(t−1)

and Ks(t− 1) since they were shared by un and the other users. The first step is

to send the new Kε(t) to the remaining users. In the polynomial scheme, each user

ui has the distinct pair (zi, Ki) ∈ Zp × Zp, where Zp denotes the integers modulo

the prime p. The zj are public knowledge, and are not considered as part of the

115

u
1

u
n-1 nuu

2

K K K. . .K

K

K

n

s

ε

1 2 n-1

Figure 4.1: The basic key distribution scheme used in the polynomial interpolation

method.

secret information that the user must store. Instead, the zj is any quantity that is

used to identify the user, for example a processor id. The GC has made available

f , a POWF taking 2B bits to B bits. The GC first broadcasts the seed µ(t) to

everyone. Next, the GC associates the following quantity with each user uj

wj = Kε(t) + f(Kj, µ(t)) (mod p). (4.1)

The GC generates a degree n − 2 polynomial p(z) that interpolates the points

(zj, wj), i.e. p(zj) = wj. The GC represents p(z) as

p(z) =
n−2∑

i=0

ciz
i (mod p) (4.2)

and transmits the message αε(t) = (c0, c1, · · · , cn−2) to update Kε(t). This com-

pletes the action needed by the GC to update the root KEK, and the session key

is then updated using Kε(t) by transmitting αs(t) = EKε(t)(Ks(t)).

A member uj can calculate p(zj) = wj and f(Kj, µ(t)), and hence can recover

116

Kε(t).

4.3.1 Resistance to Attack

There are two sources of adversaries for a key management scheme. The first type

of adversary is an external adversary. This type of adversary is not a member of

the service, but receives the encrypted content as well as the rekeying messages. In

order for the external adversary to cheat the service, he must mount a successful

attack against the rekeying messages in order to acquire the session key, which

is needed to decrypt the content. The second type of adversary is an internal

adversary, who is a member that uses the rekeying messages and his knowledge

of his keys to attempt to acquire another user’s keys. If an internal adversary

can successfully acquire another user’s keys, he may cancel his membership to

the service, and use the compromised keys belonging to another user to enjoy the

service without having to pay.

In the polynomial scheme, an external adversary receives αε as well as αs(t).

In order for the adversary to acquire the SK, he must mount a successful attack

against the cipher used in forming the message αs(t). Careful selection of a strong

cipher algorithm that has received serious study, such as Rijndael [81], will make

a successful attack of the SK rekeying message unlikely. Even should a successful

attack of the SK rekeying message take place, a future update of the SK would

require a subsequent successful attack of the SK rekeying message, which is equally

unlikely. Hence, a successful attack against the SK rekeying message would only

be a short-lived victory for a pirate.

A second method for acquiring the session key is to attack the message αε.

Given the message αε(t), and knowledge of a zj, it is possible that an adversary

117

may calculate wj. However, the adversary must either determine Kε(t) or a user’s

f(Kj, µ(t)) given wj = Kε(t)+f(Kj, µ(t)) (mod p). The modulo operation makes

wj independent of either Kε(t) or f(Kj, µ(t)). Should an external adversary suc-

cessfully attack Kε(t), then he may acquire the session key. However, upon the

next update of the session key, he must make another successful attack upon the

root KEK.

The only method for an external adversary to be able to repeatedly acquire

the SK is to mount a successful attack on a user’s personal key Kj. This requires

successful determination of f(Kj, µ(t)) given wj, which requires searching a space

of order p possibilities, and then successfully attacking the one-way function to

acquire Kj. The strength of the one-way function should be as strong as the

strength of the encryption used to protect the SK rekeying message.

We now discuss the susceptibility of the original polynomial scheme of [52] to

internal attacks. In the discussion that follows, we refer the reader to Section 3.1

of [52]. For simplicity, we shall assume that the same key K is being distributed

to all of the users. Observe that since the zj-coordinates are public knowledge, an

internal adversary may calculate wj by evaluating the interpolating polynomial at

zj. With knowledge of wj, the adversary may use his knowledge of K to determine

user uj’s private information. Thus, the polynomial scheme of [52] does not protect

the private information of each user, and hence cannot be used more than once. If

both the zj coordinate and the personal key Kj are kept secret, then an adversary’s

task is to search Zp for any of the n user’s zj coordinate. This is more difficult for

an adversary to attack, but also requires both the server and the clients to store

twice as much secret information.

As we shall describe in Section 4.5.3, we chose to pursue a different approach

118

to ensuring the sanctity of each user’s private information in order to reduce the

communication overhead in our protocol. An inside adversary ui who desires to

calculate another user’s key information Kj can calculate p(zj) = wj, and there-

fore can calculate f(Kj, µ(t)) = wj −Kε(t) (mod p). However, it is difficult for

him/her to calculate Kj given µ(t) and f(Kj, µ(t)) since f is a parametric one-way

function. Additionally, should two or more users collude, their shared information

does not provide any advantage in acquiring another user’s Kj.

4.3.2 Anonymity Reduces Communication Overhead

The above scheme is used in constructing a protocol primitive in the following

section. In the protocol primitive, there is a parent key Kε and a handful of sibling

keys Kj that are used to update the parent key. Unlike the example described

above, application of the protocol primitive might not use all of the sibling keys

to update the parent key. This scenario might occur when the GC knows that a

sibling key has become compromised or invalidated.

Suppose that there are a possible sibling keys and that m of those sibling keys

are used to update the parent key. In a conventional key distribution scheme, such

as [6], the update to the parent key is performed by a rekeying message of the form

α = {EKj1
(Kε)‖EKj2

(Kε)‖ · · · ‖EKjm
(Kε)} (4.3)

where jk denotes the sequence representing the m sibling keys used in updating

parent key, and ‖ denotes message concatenation. In addition to the rekeying

message, it is necessary to transmit the amount m of children keys, and the user

ID message {j1, j2, · · · , jm}, which specifies which portion of the rekeying message

a user needs in order to determine the new session key.

119

The transmission of the user ID message in the conventional scheme reveals

which sibling keys are still valid. However, it requires that dlog2 ae bits to repre-

sent m and mdlog2 ae bits to represent {j1, j2, · · · , jm}. The total communication

overhead of the conventional scheme is thus (m + 1)dlog2 ae bits.

The polynomial interpolation scheme creates a composite message that does

not require any user ID message, but instead requires the broadcast of the seed

µ(t). The polynomial scheme defines the rekeying message as the output of a

function PolyInt which returns the coefficients of the interpolating polynomial,

thus

α = PolyInt(K, {zj1 , zj2 , · · · , zjm}, {Kj1 , Kj2 , · · · , Kjm}, µ(t)). (4.4)

The input to PolyInt is the key K that is to be distributed, the set of valid non-

secret ID parameters {zj1 , zj2 , · · · , zjm}, the broadcast seed µ(t), and the set of

valid sibling keys {Kj1 , Kj2 , · · · , Kjm}. Given a valid sibling key and the seed µ(t),

the new parent key can be determined. On the other hand, an invalid sibling key

is unable to determine the new parent key.

If the prime p used in the polynomial scheme has the same bit length as the

output of one of the encryptions EK , then the message size of the polynomial

scheme will be the same as the rekeying message of the conventional scheme. If Bµ

is the bit length of the broadcast seed, then a measure of comparison between the

conventional scheme and the polynomial scheme is the difference (m+1)dlog2 ae−
Bµ. For a single sibling update of the parent node, this difference might favor the

conventional approach. The advantage of the polynomial scheme becomes more

pronounced when used in a multi-level tree as in Section 4.4. We shall discuss this

further in Section 4.5.

120

4.4 A Scalable Protocol

In the previous section we described the basic scheme for distributing keys during

member departures. The basic polynomial interpolation scheme had linear com-

munication requirements during member departures. We now describe a scalable

protocol that provides renewal of security levels, handles membership changes,

provides a mechanism for reinserting valid members, and allows for the transferal

of access rights.

In order to achieve improved scalability, we use a tree-based key hierarchy as

depicted in Figure 4.2. In general, the tree can be an a-degree tree. Attached

to the tree above the root node is the session key Ks. Each node of the tree is

assigned a KEK which is indexed by the path leading to itself. Additionally, each

node has a non-secret ID variable zσ which is used as a non-secret parameter for

the PolyInt function. The symbol ε is used to denote the root node. Each user is

assigned to a leaf of the tree and is given the KEKs of the nodes from the leaf to

the root node. Additionally, all users share the session key Ks. For example, user

u111 is given the keys K111, K11, K1, Kε, and Ks.

In the protocol that follows, the GC transmits messages to the users via a

broadcast channel. It is assumed that each user has an upstream channel with

minimal bandwidth that is available to convey messages to the GC, such as in-

forming the GC of the intent to depart the service.

The messages that the GC broadcasts to the users must have a standardized

structure that is known to all receivers. There are two basic message formats as

depicted in Figure 4.3. The first contains three components while the second has

five components. The function B() is used to denote the bit length of its operand,

thus B(σ) is the amount of bits needed to represent σ. The variable Operation

121

sK

Kε

K
000

0 1

0 1 0 1

0 1 0 1 0 1 0 1

K
0 1

K
00 K01

K
10 11

K
001

K
010

K
100

K
101

K
110

K
111

K
011

K

K

000
u u

001 010
u u u u u u

011 100 101 110 111

Invalidated Keys

Joining/Departing
Member

Figure 4.2: Tree-based key distribution.

ID flags the user which protocol primitive is about to be performed. Only five

primitive operations are used, and we may therefore represent Operation ID using

a 3 bit string. Table 4.1 maps the primitive operations with their corresponding

ID bit string.

In the work that follows, we assume that the tree has degree a, and that there

are L levels to the tree. The amount of multicast group members n is limited by

the amount of leaf nodes on the tree. Thus n ≤ aL.

4.4.1 Basic Protocol Primitives

We have identified five basic operations needed in building a system that allows

for the update and renewal of the key hierarchy. We now describe each case.

1. Primitive-1(Update SK): This basic operation uses the current root KEK

122

bit ID primitive

000 Primitive-1

001 Primitive-2

010 Primitive-3

011 Primitive-4

100 Primitive-5

Table 4.1: Mapping between primitive operations and their corresponding ID bit

string.

Kε to update the session key via the rekeying message

α = EKε(t)[Ks(t)] (4.5)

The message format is depicted in Figure 4.3(a). We assume that the maxi-

mum size that α can be is 256 bits, and we therefore need 8 bits to represent

B(α). This choice of bit length for α would allow for the use of encryption

algorithms with a key size of up to 256 bits.

2. Primitive-2(Transmit Seed): The broadcast seed is used in the polynomial

scheme to provide protection of secret information. Additionally, it plays

a role in reducing the communication overhead associated with flagging the

users which part of the message is intended for them. The broadcast of the

seed µ(t) does not require encryption to protect it. The message format for

the transmission of the broadcast seed is depicted in Figure 4.3(a). Here

α = µ(t), and B(α) is the amount of bits needed to represent µ(t). Again,

we assume that the maximum size of α is 256 bits, and that 8 bits are used

to represent B(α).

123

B()αOperation
ID

α

(a)

B()α αOperation
ID

B()σ σ

(b)

Figure 4.3: The two message structures used in the protocol primitives.

3. Primitive-3(Self Update): It is often necessary for a node, indexed by the

a-ary symbol σ, to have its associated key updated using the key at the

previous time instant. Thus we will go from Kσ(t − 1) to Kσ(t) by the

following message

α = EKσ(t−1)[Kσ(t)]. (4.6)

In this case, we need to flag the receivers which node is being updated. This

requires the transmission of the a-ary representation of the node, as well as

the amount of bits needed to represent the node. This is depicted in Figure

4.3(b) by the B(σ) and σ components of the message. The rest of the message

contains the bit length of the message α and the actual rekeying message α.

Since the maximum depth of the tree that needs to be represented is L − 1

and the tree is an a degree tree, the maximum amount of bits needed to

represent σ is dlog2 ae(L−1)+1, where the addition of 1 bit was included to

account for the need to represent the empty string ε as a possible choice for

ε. In order to represent B(σ), we use dlog2(dlog2 ae(L − 1) + 1)e bits. The

maximum bit length for α is 256 bits, and 8 bits are used to represent B(α).

124

4. Primitive-4(Update Parent): It is also necessary for the children nodes to

update the key of their parent nodes. If σ is the symbol representing the

parent node to be updated, then the message

α = PolyInt(Kσ(t), {zChild(σ)(t)}, {KChild(σ)(t)}, µ(t)) (4.7)

is used. Here we have defined the function Child(σ) to denote the set of

valid children nodes of σ. For example, if we have a binary tree and σ = 00,

and both children nodes are valid, then Child(σ) = {000, 001}. Thus, the

message α uses the keys of valid children nodes to update Kσ(t). Observe that

this message requires that µ(t) has already been broadcast using Primitive-2,

or that the choice of µ(t) is implicitly known. The message form is depicted

in Figure 4.3(b), where again we transfer the bit length of σ and the actual

symbol σ to the recipients, followed by the bit length of α and the rekeying

message α. We use the same bit allocation for σ and B(σ) as in Primitive-

3. However, the maximum length for α is aBKEK , and we therefore need

dlog2 aBKEKe bits to represent B(α).

5. Primitive-5(Reaffirming Parent): In some operations, it is useful to have

a sibling node reaffirm the value of a parent node’s key. We define a function

Par(σ) to denote the symbol corresponding to the parent of the node indexed

by σ. To reaffirm the value of a parent node’s key, we transmit the message

α = EKσ(t)[KPar(σ)(t)]. (4.8)

The message form is depicted in Figure 4.3(b), and follows the same structure

as used in Primitive-3.

125

4.4.2 Advanced Protocol Operations

We now describe more advanced protocol operations that can be constructed using

the primitive operations described earlier. In particular, we focus on the operations

of an addition to the membership, a deletion of a user from the membership, the

reinsertion of a member into the system, and the transferal of access rights from

one user to a new user.

Before we proceed, we present a few comments about how the primitive op-

erations can be used to perform periodic renewal of keying material. Primitive-1

provides a method for performing periodic refreshing of the session key. Refreshing

the session key is important in secure communication. As a session key is used,

more information is released to an adversary, which increases the chance that a

SK will be compromised. Periodic renewal of the session key is required in order

to maintain a desired level of content protection, and can localize the effects of a

session key compromise to a short period of data. Since the amount of data en-

crypted using KEKs is usually much smaller than the amount of data encrypted by

a session key, it is not necessary to refresh KEKs as often. However, the periodic

renewal of a KEK can be performed using Primitive-3.

Member Join

In many applications, such as pay-per-view broadcasts and video conferences, the

group membership will be dynamic. It is important to be able to add new members

to any group in a manner that does not allow new members to have access to

previous data. In a pay-per-view system, this amounts to ensuring that members

can only watch what they pay for, while in a corporate video conference there

might be sensitive material that is not appropriate for new members to know.

126

Suppose that a new user contacts the service desiring to become a group mem-

ber. The new client sends the GC a message detailing the client’s credentials, such

as identity information, billing information, and public key parameters that the

GC may use to communicate with the new client. Mutual authentication between

the new client and the GC should be performed. A public key infrastructure, such

as X.509 certificates [82], may be used for this purpose. Upon verification of the

new user’s information, the GC assigns the client to an empty leaf of the key tree.

For simplicity of presentation, we assume that the tree has empty slots. If the

tree is already full, then the user may either be turned away, or an additional layer

must be added to the tree using a separate operation, which is not described in this

thesis. The GC then issues the new client his keys via a communication separate

from the communications sent to the current group members, as well as informing

the new user the time at which those keys will become valid.

Meanwhile, the GC updates the current members of the multicast group. Sup-

pose that the GC plans on inserting the new member into the leaf node indexed

by the symbol ω. Then the SK as well as the KEKs on the path from the parent

node of ω to the root node ε must be renewed. The following algorithm describes

how this procedure can be accomplished using the protocol primitives. We use

the notation Parj(ω) to denote the parent function applied j times to ω. Thus

Par2(ω) is the grandparent of ω.

for j = 1 : L do

σ = Parj(ω) ;

Update Kσ(t− 1) → Kσ(t) using Primitive-3 ;
end

Update SK using Primitive-1 ;

127

Member Departure

Members will also wish to depart the service, and must be prevented from accessing

future communication. Assume that user uω contacts the GC wishing to depart

the service. Upon authenticating the user’s identity, the procedure that the GC

enacts to remove member uω and update the keys of the remaining members is

Generate random µ(t) ;

Broadcast µ(t) using Primitive-2 ;

for j = 1 : L do

σ = Parj(ω) ;

Determine valid children of σ: Child(σ) ;

Update Kσ(t− 1) → Kσ(t) using Primitive-4 ;
end

Update SK using Primitive-1 ;

Member Reinsertion

It might often occur that a valid member, denoted by index ω, misses the rekeying

messages needed to update the key hierarchy. The client must notify the GC

that he missed rekeying messages using an upstream (client to server) channel.

Upon verification of the user’s identity, the GC performs the member reinsertion

operation, which sends the new user the specific keys he needs to be able to resume

the service.

If the service provider has a downstream (server to client) channel available to

communicate with the user, then service provider may use this channel to send

the needed keys by encrypting them with the user’s personal key Kω. In many

128

scenarios, however, after the initial contact with the service provider, the client

has a low-bandwidth channel for upstream communication, and only the broadcast

channel available for downstream communication. In these cases, although only a

single user needs the rekeying messages, the rekeying messages must be multicast.

Since this user has a valid private key Kω, the GC can start with this key to provide

KPar(ω)(t) to the user. We can then proceed up the tree, using the sibling key to

convey the current status of the parent key. The procedure for this operation is as

follows:

for j = 1 : L do

σ = Parj(ω) ;

Convey parent key Kσ(t) to siblings using Primitive-5 ;
end

Convey current SK using Primitive-1 ;

An added bonus of using the sibling key to convey the current status of the

parent key is that other users may observe these rekeying messages to reaffirm the

validity of some of their keys.

Transferal of Rights

Suppose that user uω wishes to give his rights to another user who is not currently

a member. We will denote this new user by uωB
to indicate that he will take over

the keys on the path from ω to the root node. For the purpose of calculating

parent and sibling relationships, ω and ωB are identical, thus Par(ω) = Par(ωB).

In order to transfer access rights, both users must contact the GC, who performs

an authentication procedure to verify that the transferal is legitimate. Then, using

a secure channel, the GC gives to user uωB
its own personal key KωB

. One method

129

for creating a secure channel is to use public key cryptography. KωB
replaces Kω

on the key tree. All of the keys that belonged to uω must be changed to prevent

uω from accessing content that he has given up the right to access. The procedure

for transferring access rights is as follows:

Generate random µ(t) ;

Broadcast µ(t) using Primitive-2 ;

for j = 1 : L do

σ = Parj(ωB) ;

Determine valid children of σ: Child(σ) ;

Update Kσ(t− 1) → Kσ(t) using Primitive-4 ;
end

Update SK using Primitive-1 ;

We observe that the algorithm for transferring rights is nearly identical with

the algorithm for removing a member from a group. The difference lies in the fact

that user uωB
is considered a valid user, and hence is a valid child of its parent.

The procedure for user uω to reclaim his access privileges is similar. This time,

only user uω is required to contact the GC requesting that he regain his access

privileges. The GC performs an authentication procedure to guarantee that the

identity of uω is truthful, and then replaces KωB
with Kω. The KEKs and SK are

changed according to the above algorithm, with ω replacing ωB.

130

4.5 Architecture Considerations

4.5.1 Optimization of Tree Degree for Communication

The amount of communication that a rekeying protocol requires affects the speed

at which the rekeying scheme can handle membership changes. It is therefore

important to minimize the size of the communication used by the key manage-

ment scheme. In particular, since the two most important operations performed

by a multicast key management protocol are membership joins and membership

departures, we shall focus on optimizing the tree degree for these two operations.

In what follows, we present a worst-case analysis of the communication re-

quirements for member join and member departure operations. It is observed that

member join and member departure operations lead to conflicting optimality cri-

teria. Since a real system will have to cope with both member joins and member

departures, we jointly consider the departure and join operations, and present op-

timization results when both member join and departure operations are equally

weighted.

We refer the reader to the protocol descriptions as well as the message structure

in Figure 4.3. We shall denote the degree of the tree by a, and the number of levels

in the tree by L. BSK shall denote the bit length of session key, BKEK shall denote

the bit length of the key encrypting keys, and Bµ the bit length of the broadcast

seed µ(t).

Worst-Case Analysis

It is easy to see that, for a given tree, the scenario that produces the most commu-

nication for the member join operation occurs when one node on each level from

131

the root to level L − 1 must be updated. In this case, all of the KEKs on the

path from one user to the root must be refreshed. We now calculate the amount

of communication needed to update the tree for this worst-case scenario.

The member join operation consists of two types of operations: updating the

KEKs, and updating the SK. In order to update the KEKs, we use Primitive-

3 L times. Each step of the loop must send the quintuple (operation ID, bit

length of update node B(σ), node ID σ, bit length of the update message B(α),

update message α). The symbol σ starts near the bottom of the tree, and through

application of the Parent function moves toward the root of the tree.

In order to represent the symbol σ during the jth iteration of the loop, we

need to convert from base a to base 2 and hence B(σ) = dlog2 ae(L− j) + 1 bits.

In addition, we must send B(σ), which requires dlog2 (dlog2 ae(L− 1) + 1)e bits.

Here the addition of 1 was to allow for the need to represent the empty string ε as

a possible choice for σ. Similarly, in each stage of the loop the rekeying message

α has bit length B(α) = BKEK and since we have fixed the maximum key length

to be 256 bits, we require 8 bits to represent B(α). The update to the session key

requires sending the ID flag, B(α) and α. Therefore, the amount of bits needed to

update the session key is 3 + 8 + BSK . The total amount of bits needed to update

the key tree during a member join is

CMJ =

L∑

j=1

[
3 + dlog2(dlog2 ae(L− 1) + 1)e+ dlog2 ae(j − 1) + 9 + BKEK

]

+3 + 8 + BSK .

The amount of communication needed in the member departure case can be

similarly calculated. The main difference between member join and member de-

parture is that there are three operations: the broadcasting of µ(t), updating the

KEKs, and updating the SK. The most communication occurs when a − 1 nodes

132

on level L must be used to update the key on level L− 1, and a nodes are used to

refresh each of the remaining KEKs on the path from the departing member to the

root node. After appropriately expanding and gathering terms, the communication

for the member departure can be found to be

CMD = 22 + BSK + Bµ + (La− 1)BKEK + (L)
(

4 + dlog2 aBKEKe+ dlog2 (dlog2 ae(L− 1) + 1)e+
(L− 1)

2
dlog2 ae

)
.

We calculated the worst-case amount of communication required to update an

a-degree key tree as a function of the number of users n with the amount of tree

levels set to L = dloga ne. In our calculations, we chose BSK = BKEK = Bµ = 64

bits. We chose to use 64 bits as the key size since such a key length can provide

strong levels of security when used with some ciphers, such as RC5 [69]. The

amount of communication required for different choices of the degree of the tree a

during a member join is depicted in Figure 4.4(a). This figure shows the general

trend that less communication is required during member join operations if we

use a higher degree tree. On the other hand, Figure 4.4(b) shows the amount of

communication needed during the worst case of a member departure operation. In

this case, the larger tree degrees are definitely not advantageous. It is also evident

that a binary tree is not optimal when considering member departure. In fact,

the values of a = 3 and a = 4 appear to be the best choice, with optimal choice

fluctuating depending on n.

Joint Departure-Join Optimization

In some application scenarios the key tree might start out relatively empty, and

the amount of member join operations would be greater than the amount of mem-

ber departure operations. In this case, the membership grows towards the tree

133

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

500

1000

1500

2000

2500

3000

Number of users

N
um

be
r

of
 b

its

Communication for Member Join

a=2
a=3
a=4
a=6
a=8
a=10

(a)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Number of users

N
um

be
r

of
 b

its

Communication for Member Departure

a=2
a=3
a=4
a=6
a=8
a=10

(b)

Figure 4.4: (a) The amount of communication CMJ required during member join

operations for different tree degrees a and different amounts of users n. (b) The

worst case amount of communication CMD required during member departure

operations for different tree degrees a and different amounts of users n.

134

capacity, and the communication required for the member join operation is more

critical than the communication for member departure. On the other hand, some

scenarios might start out with a nearly full key tree, and the member departure

operation would outweigh the member join operation.

We therefore would like a communication measure that runs the gamut between

the two extremes of just the member join communication, and just the member

departure communication. This can be accomplished by considering the convex

combination of CMJ and CMD.

Let λ denote the probability of a member departure operation, and assume

that 1− λ is the probability of a member join operation, then the combined com-

munication measure CC given by

CC = λCMD + (1− λ)CMJ (4.9)

weights the member departure and member join operations according to their

likelihood. For example, when λ = 0 the emphasis is entirely placed on the member

join operation, while λ = 1 corresponds to when the emphasis entirely placed on the

member departure operation. The case of λ = 0.5 corresponds to equal emphasis

on the two operations, which is depicted in Figure 4.5. From this figure, we see

that the choice of a = 4 stands out as the best choice for n > 10000 when equally

weighting the member join and member departure operation.

4.5.2 Binomial Occupancy Model

Since it is very difficult to calculate the amount of communication needed during

membership changes when a specific amount of users n are placed on the tree, we

have devised a stochastic model that allows one to study the behavior of the system

when there are varying amounts of occupancy. We assume that the leaf nodes of

135

10
2

10
3

10
4

10
5

10
6

10
7

10
8

500

1000

1500

2000

2500

3000

3500

Number of users

A
ve

ra
ge

d
N

um
be

r
of

 b
its

Communication for Average of MJ and MD

a=2
a=3
a=4
a=6
a=8
a=10

Figure 4.5: The average of CMD and CMJ for different tree degrees a and different

amounts of users n.

the a-degree key tree with L levels are occupied according to i.i.d. Bernoulli

distributions with a probability of occupancy qL. This implies that the occupancy

n is modeled according to a binomial distribution with mean occupancy qLaL and

variance qL(1 − qL)aL. Hence, when qL is higher, the tree is on average at higher

occupancy.

We first calculate the average amount of communication required for member

join when the probability of a node being occupied is qL. Let τa denote the a-

ary representation of the joining member. We may denote the siblings of τa by

τ1, τ2, · · · , τa−1. Define the random variable ZL−1 as

ZL−1 =

1 if any τk is occupied

0 if no τk are occupied
.

Since the τk are occupied with a probability of qL, we have P (ZL−1 = 1) = 1 −
(1− qL)a−1, and the expected value of ZL−1 is given by E(ZL−1) = 1− (1− qL)a−1.

We may perform a similar procedure for the other levels. We denote the j-

136

siblings as those nodes τ such that Parj(τ) = Parj(τa). For level L − j, we may

define the random variable ZL−j as

ZL−j =

1 if any j-sibling node of τa is occupied

0 if no j-sibling nodes of τa are occupied
.

In this case, P (ZL−j = 1) = 1 − (1 − qL)aj−1, and the expected value of ZL−j is

given by E(ZL−j) = 1− (1− qL)aj−1.

The average communication requirements for member join can be derived as

CMJ =

(
L∑

j=1

(1− (1− qL)aj−1)
[
12 + dlog2(dlog2 ae(L− 1) + 1)e

+dlog2 ae(L− j) + BKEK

])
+ 11 + BSK .

We now apply the model to calculating the average amount of communication

needed during member departure. Again suppose that the departing member is

indexed by the a-ary symbol τa. Label the siblings of τa by τ1, τ2, · · · , τa−1, and

define the random variable Xk by

Xk =

1 if τk is occupied

0 if τk is not occupied
.

Let us define YL =
∑a−1

k=1 Xk, which is the random variable corresponding to the

amount of occupied sibling nodes of τa at level L. The probability that i sibling

leafs at level L are occupied is given by

P (YL = i) =

(
a− 1

i

)
qi
L(1− qL)a−1−i. (4.10)

YL is thus a binomial random variable with expected value E(YL) = (a − 1)qL.

Hence, the average number of nodes to be updated at level L is (a− 1)qL.

At level L − 1, we know that the parent node of the departing member will

automatically be used in updating the next higher level. Since the probability of

137

a node at level L being occupied is qL, the probability that a node on level L− 1,

other than Par(τa), being occupied is

qL−1 = 1− (1− qL)a . (4.11)

This time, we may denote the siblings of Par(τa) by τ1, τ2, · · · , τa−1. Again, we

define the random variable Xk by

Xk =

1 if τk is occupied

0 if τk is not occupied
.

We now define the random variable YL−1 to be the amount of sibling nodes of

Par(τa) that are occupied, and we find that E(YL−1) = (a − 1)qL−1. Since we

must also include Par(τa) in the updating we must add one. Thus, the expected

number of nodes on level L− 1 that must be updated is 1 + (a− 1)qL−1. We may

similarly perform this calculation for level j, where qj = 1 − (1 − qj+1)
a, and the

expected number of nodes on level j to be updated is 1 + (a− 1)qj.

In order to calculate the average amount of communication for the member

departure operations, we must consider both the expected amount of communica-

tion associated with the overhead and the payload of the message. The average

communication for the overhead consists of the amount of communication needed

to send the operation id, the node id, and the bit length of the update message.

This calculation can be done using the expected value of ZL−j. The average com-

munication for the payload is calculated using the expected number of nodes on

level j to be updated. The average amount of communication for n users on an

a-degree tree with L levels is therefore given by

CMD = 22 + Bµ + BSK + qL(a− 1)BKEK +

L−1∑

j=1

(1 + (a− 1)qj) BKEK

138

+

(
L∑

j=1

(
1− (1− qL)aj−1

) (
4 + dlog2(dlog2 ae(L− 1) + 1)e

+dlog2 ae(L− j) + dlog2 aBKEKe
))

.

We calculated the mean message size for member join and member departure

operations as parameterized by q when the tree degree is a = 4 and there are 6,

8 and 10 levels. The key sizes were chosen to be BSK = BKEK = Bµ = 64 bits.

In Figure 4.6, we have indicated the mean communication as a function of q. One

can see that the expected communication rapidly increases as the probability q

becomes slightly greater than 0. In the member join operation, the communica-

tion levels off to a flat plateau as the probability of occupancy increases. For the

member departure operation, the mean communication also increases rapidly for

q < 0.1, but then grows less dramatically for higher q. From these two curves, we

can infer that a key tree which is roughly half occupied does not have considerably

different communication requirements than the worst-case communication require-

ments, which occur when q = 1. This supports our use of the worst-case scenarios

for optimizing the tree degree.

4.5.3 Communication Overhead

Earlier we mentioned that one motivation for using the broadcast seed is that it

reduces the amount of communication overhead associated with notifying to the

users which rekeying messages are intended for them during member departures.

We now explore this concept in the framework of a tree-based scheme.

Consider an a degree tree with n users. In a general tree-based scheme, when

a user departs, all of the keys on the path from the departing member’s leaf to the

root key must be updated. To update a key associated with a particular node σ,

139

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

Probablity of occupancy q

B
its

Mean communication for member join

a=4, L=6
a=4, L=8
a=4, L=10

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

Probablity of occupancy q

B
its

Mean communication for member departure

a=4, L=6
a=4, L=8
a=4, L=10

(b)

Figure 4.6: The expected amount of communication for a degree 4 tree with 6, 8,

and 10 levels as a function of the probability q that a leaf node is occupied. (a)

Member Join, (b) Member Departure.

140

we must determine the keys associated with populated children nodes. These keys

are then used to encrypt the update, and the rekeying message is then of the form:

α = {EKj1
(Kσ)‖EKj2

(Kσ)‖ · · · ‖EKjm
(Kσ)}. (4.12)

Here we have used the sequence {jk} to denote index the symbols of the valid

children nodes. In addition to sending the rekeying message, it is necessary to

send the number of valid children nodes m, and the sequence {j1, j2, · · · , jm}.
The worst case scenario for communication overhead in updating a tree is

when a of the children nodes are used to update each parent node. In this case,

the communication overhead required is

CO = (a + 1)dlog2 aedloga ne. (4.13)

This equation is obtained by considering both the communication needed to send

the amount of valid children nodes, and the symbols for each valid child node.

This amount of communication overhead was calculated for different group sizes

n and different tree degrees a. The resulting amount overhead is depicted in Figure

4.7. In this figure we have also drawn a baseline corresponding to Bµ = 64 bits,

which is the amount of communication overhead required if one uses the Member

Departure protocol of Section 4.4. Examining the case of a = 4, which corresponds

to the optimal value of the tree-degree as previously determined, shows that for

values of n > 10000, the Member Departure protocol described in this chapter

requires less communication overhead in the worst case scenario. Additionally,

observe that if we use a higher degree tree, which is better suited to scenarios

where more users are joining than departing, then the efficiency of the Member

Departure protocol is even more pronounced.

The use of a broadcast seed can gain further improvement if we choose to use

141

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

50

100

150

200

250

Number of Users

N
um

be
r

of
 B

its

Communication Overhead

a=2
a=3
a=4
a=6
a=8
Baseline

Baseline

Figure 4.7: The worst-case member departure communication overhead required

in a conventional tree-based rekeying for different tree degrees versus the baseline

communication required when using the polynomial interpolation scheme. The

baseline communication corresponds to Bµ = 64 bits.

µ(t) = Ks(t− 1). In this case, the broadcast seed does not have to be sent since it

is known by the remaining users. Therefore, there is no communication overhead

associated with updating during member departure, and we may consider the

baseline at Bµ = 0. In this case, the benefits of using a broadcast scheme becomes

even more pronounced.

4.5.4 Computational Complexity

We have seen that one advantage of broadcast schemes is that they reduce the

amount of communication overhead associated with sending flagging messages. It

should be apparent that a message form like equation (4.3) takes less computation

to form than a message form like equation (4.4) assuming that calculating EK(Kσ)

142

has comparable computation as f(Kσ, µ(t)). Hence, to rekey using our message

form requires more computation than when using a conventional rekeying message

structure.

We now compare the worst-case computational complexity of the rekeying form

of this chapter with the residue-based rekeying form proposed in [76]. We shall

only focus on the update of the KEKs during a member departure since the other

operations are identical.

In the residue-based rekeying form, each level of the key tree is rekeyed by

calculating the product of a numbers, each requiring B + 1 bits to represent, and

the addition of a B bit number with a (B + 1)a bit number. Using the fact that

adding a k bit number to an l bit number requires max(k, l) bit operations, and

multiplying a k bit number by an l bit number requires O(kl) bit operations [83],

we therefore find that for an L level tree, the computational complexity of the

residue-based message form is O(LBa).

Similarly, in the scheme of this paper, we have L levels of KEKs to update. At

each level of the tree we must calculate the coefficients of a degree a−1 interpolating

polynomial, except at the bottom level where we must calculate the coefficients of

a degree a− 2 polynomial.

In order to calculate the coefficients of a s-degree interpolating polynomial,

we use the Newton form of the interpolating polynomial [84]. Algorithm 5 is a

modification of the polynomial interpolation algorithm of [85], that can be used

to determine the coefficients βj of the s-degree polynomial that interpolates the

points (zj, gj) ∈ Zp × Zp, where j ∈ {0, 1, · · · , s}. The algorithm writes the βj

values into the input array values gj.

This algorithm requires addition, multiplication, inversion, and modulo oper-

143

for k=0:s-1 do

for j=s:-1:k+1 do

g(j) = (g(j)− g(j − 1))(z(j)− z(j − k − 1))−1 (mod p)

end
end

for k=s-1:-1:0 do

for j=k:s-1 do

g(j) = g(j)− g(j + 1)z(k) (mod p)

end
end

Algorithm 5: Algorithm for determining the coefficients of an interpolating

polynomial.

ations to take place modulo p. The most intensive operation of these is that of

inverting a number. Assume that the prime p is chosen to have B bits, then the

amount of bits operations needed to calculate the inverse of a number modulo p

using the Euclidean algorithm is O(B3) [83]. The above algorithm requires s(s+1)
2

inversions in order to determine a degree s interpolating polynomial. Therefore,

the amount of bit operations needed to update an L level degree a key tree using

the polynomial interpolation scheme is O(a2LB3).

Comparing the two computational estimates O(LBa) and O(a2LB3) indicates

that for higher tree degrees a, the scheme based upon polynomial interpolation

asymptotically requires less bit operations and is more computationally efficient.

144

4.6 Chapter Summary

In order to address the problem of managing keys for securing multicasts, we

proposed a framework that is suitable for dynamic group environments. Advanced

protocol operations that update the keys during member joins, member departures,

and the transferal of access rights were built using basic protocol operations which

we call protocol primitives.

We described several desirable features for a multicast key management scheme,

and which our scheme satisfied. In particular, our architecture provides a method

for renewing session keys and key encrypting keys needed to control access to

content. By using either the basic protocol operations, or more advanced protocol

operations, the session key or key encrypting keys can be refreshed when a key’s

lifetime expires due to age or changes in membership. It is also evident that if users

were to collude, they would not be able to figure out keys that they did not have.

Users may survive accidents or move across terminals by sending a request for

reinsertion to the server, upon which the server performs the member reinsertion

protocol operation. We also provided a description of a protocol operation that

would allow users to transfer their access rights to other parties. The server can

revoke access to an individual by using the member departure operation to remove

the member from the key hierarchy. Finally, our protocol uses a tree-structured

key hierarchy in order to achieve desirable communication requirements during

changes in the group membership.

A novel feature of this scheme is that it uses polynomial interpolation in con-

junction with a broadcast seed to handle member departure operations. We studied

the communication associated with performing member join and member depar-

ture operations. It was observed that higher tree degrees are best for member join

145

operations, whereas a tree degree of 3 or 4 was best for the member departure

operation. When equally weighting the join and depart operations, a degree 4 tree

stood out as optimal. The communication overhead of the polynomial interpolation

scheme is reduced in comparison to a model conventional scheme. We provided a

comparison between the communication overhead of our scheme and the overhead

of an example conventional scheme that used ID messages to flag the users which

parts of the rekeying message were intended for them. As group size and tree de-

gree increased, the communication overhead for the conventional scheme increases

and ultimately becomes more burdensome than sending the broadcast seed. For

example, when the group size was n = 100000 and the tree degree was a = 4, the

communication overhead in the conventional scheme was approximately 25 % more

than the overhead associated with a broadcast seed of size Bµ = 64 bits. Finally, if

one uses the previous session key Ks(t−1) as the seed µ(t), then no communication

overhead is associated with our protocol during member departures.

We presented a study of the communication needed when using our architecture

to perform member joins and member departures. These two operations are the

most important operations that a multicast server will have to face when operating

in dynamic environments. The communication requirements of the member join

and member departure operations lead to conflicting tree design considerations. By

explicitly computing these two quantities as functions of the degree of the tree and

computing the communication overheads, we studied the tree selection criterion.

From our computations, the communication during a member join is reduced when

using a higher degree tree, while the optimal tree degree for a member departure

is either a = 3 or a = 4. We considered the average of the communications for the

two operations, which gave strong support to choosing a = 4 as the optimal tree

146

degree. We presented a stochastic population model that allows one to study the

mean behavior of our architecture for varying amounts of users. It is observed that

for both the join and departure operation, the amount of communication needed to

update the key tree rapidly increases as the tree approaches 10% population. Above

10% occupancy, the communication needed for both operation stabilizes. We also

compared the computational requirements of the tree-based rekeying schemes using

polynomial interpolation and residue arithmetic. Estimates of the amount of bit

operations needed in both cases indicates that the polynomial interpolation scheme

requires less computation for higher degree trees.

We have now completed the discussion of new security techniques to establish

and maintain the information needed to provide access control to group communi-

cations. In the next chapter, we shall shift the focus to addressing the important

security issue of controlling content usage and redistribution after the data leaves

the protection of access control technologies.

147

Chapter 5

Anti-Collusion Fingerprinting for Multimedia

5.1 Introduction

The advancement of multimedia technologies, coupled with the development of

an infrastructure of ubiquitous broadband communication networks, promises to

facilitate the development of a digital marketplace where a broad range of multime-

dia content, such as images, video, audio and speech, will be available. However,

such an advantage also posts the challenging task of insuring that content is ap-

propriately used. Before viable businesses can be established to market content

on these networks, mechanisms must be in place to ensure that content is used

for its intended purpose, and by legitimate users who have purchased appropriate

distribution rights.

Although access control is an essential element to ensuring that content is used

by its intended recipients, it is not sufficient for protecting the value of the content.

The protection provided by encryption disappears when the content is no longer

in the protected domain. Whether the content is stored in an unencrypted format,

or decrypted prior to rendering, it is feasible for users to access cleartext represen-

tations of the content. Users can then redistribute unencrypted representations,

148

which affects the digital rights of the original media distributors.

In order to control the redistribution of content, digital fingerprinting is used

to trace the consumers who use their content for unintended purposes [10, 11,

86]. These fingerprints can be embedded in multimedia content through a variety

of watermarking techniques [12, 13]. Conventional watermarking techniques are

concerned with robustness against a variety of attacks such as filtering, but do

not always address robustness against a coalition of users with the same content

that contains different marks. These attacks, known as collusion attacks, can

provide a cost-effective approach to removing an identifying watermark. One of the

simplest approaches to performing a collusion attack is to average multiple copies

of the content together [87]. Other collusion attacks might involve forming a new

content by selecting different pixels or blocks from the different colluders’ content.

By gathering a large enough coalition of colluders, it is possible to sufficiently

attenuate each of the colluders’ identifying fingerprints and produce a new version

of the content with no detectable fingerprints. It is therefore of ample importance

to design fingerprints that are not only able to resist collusion, but also identify the

colluders. Such a scheme also provides a means to discourage attempts at collusion

by the users.

The problem of designing fingerprints that are resistant to collusion has been

considered for generic digital data in [10, 11]. Such generic schemes, however, do

not consider the actual marking process associated with specific applications and

media types. Indeed, the design of collusion resistant fingerprinting should consider

application-specific issues such as the inherent, special properties of multimedia

data since the fingerprinting process for multimedia involves a chain of events

including the selection of the embedding method, appropriate choice of detection

149

statistics, and the application environments.

In this chapter, we investigate the problem of making fingerprints for multime-

dia content, such as images and video, that are resistant to collusion attacks by

averaging. We show that under reasonable assumptions, the optimal fair strategy

for a group of colluders performing an averaging collusion attack is to perform an

average where each user weighs their marked content equally. We then study the

effect that collusion has upon the constellation points in orthogonal and simplex

modulation. In order to overcome the linear complexity associated with traditional

detection schemes for orthogonal modulation, we develop a tree-based detection

scheme that is able to efficiently identify K colluders with an amount of correlations

that is logarithmic in the number of basis vectors. A drawback of orthogonal mod-

ulation for embedding is that it requires as many orthogonal signals as users. Since

many applications will desire to distribute content to vast quantities of consumers,

it is desirable to squeeze more users into fewer signals. We propose to exploit

the important interplay between the coding, embedding and detection process to

design a family of anti-collusion codes (ACC) that are appropriate for different

multimedia scenarios and can accommodate more users with fewer orthogonal sig-

nals than in orthogonal modulation. The purpose of ACC is not only to resist

collusion, but also to trace who the colluders are. The proposed ACC are used

with code modulation to fingerprint multimedia, and have the property that the

composition of any subset of K or fewer codevectors is unique, which allows us to

identify groups of K or fewer colluders. We present a construction of binary-valued

ACC under the logical AND operation that uses the theory of combinatorial de-

signs and is suitable for both the on-off keying and antipodal form of binary code

modulation. Our code construction is able to accommodate n users, while requir-

150

ing only O(
√

n) basis vectors. This is a reduction in the amount of signals needed

when using orthogonal modulation for embedding fingerprints. Our approach is

suitable for both averaging-based collusion attacks, and for collusion attacks that

interleave values or pixels from differently marked versions of the same content. To

demonstrate the concept of ACC and fingerprinting, we will focus on additive em-

bedding with correlation-type detection. The proposed ACC concept is applicable

to all multimedia data types. For the convenience of discussion, we will use images

as an example, while the extension to audio or video is quite straightforward.

This chapter is organized as follows: In Section 5.2 we describe multimedia

fingerprinting, and introduce the problem of user collusion for a class of additive

watermark schemes. We then review orthogonal modulation in Section 5.3, and

describe the effect that collusion has upon the constellation points of the modula-

tion scheme. We describe an efficient detection scheme, and present simulations to

demonstrate the behavior of our efficient detector in a collusion scenario. In Section

5.4, we present our design of anti-collusion codes, which are used in conjunction

with binary code modulation to accommodate more users for a given amount of

orthogonal signals. Our ACCs are based upon assumptions about the behavior

of the detector, and we therefore study the detector and present simulations for

both an abstract model consisting of Gaussian signals, and real images. Finally,

we present conclusions in Section 5.5.

5.2 Fingerprinting and Collusion

We begin by introducing the techniques of additive data embedding, which may be

used to embed fingerprints into multimedia sources. The problem of embedding

fingerprints is closely married to the problem of detecting the fingerprints, and

151

we therefore provide a brief review of the elements of detection theory that are

relevant to the problem. Later in this section we will introduce the averaging-

based collusion attack.

5.2.1 Fingerprint Detection

In this section, we will review additive embedding, where a watermark signal is

added to a host signal. Suppose that the host signal is a vector denoted as x and

that we have a family of watermarks {wj} that are fingerprints associated with

the different users who purchase the rights to access x. Before the watermarks are

added to the host signal, every component of each wj is scaled by an appropriate

factor that corresponds to an amplification, i.e. sj(k) = α(k)wj(k), where we

refer the the kth component of a vector wj by wj(k). One possibility for α(k) is

to use the just-noticeable-difference (JND) based on human visual system models

[13]. Corresponding to each user is a marked version of the content tj = x + sj,

which typically experiences additional distortion zj that is due to such factors

as compression and attacks made to remove the embedded fingerprints. We will

denote the combination of the noise and the interference of the original signal by

dj = x + zj. We can thus assume that each user will be given a marked content

yj, where

yj = x + sj + zj = tj + zj = sj + dj. (5.1)

Typically, the watermarks {wj} are chosen to correspond to orthogonal noiselike

signals [12], or are represented using a basis of orthogonal noiselike signals ui via

wj =
B∑

i=1

bijui, (5.2)

where bij ∈ {0, 1} or bij ∈ {±1} [51].

152

One important application of fingerprinting is identifying a user who is redis-

tributing marked content yj by detecting the watermark associated with the user

to whom yj was sold. By identifying a user, the content owner may be able to

more closely monitor future actions of that user, or gather evidence supporting that

user’s illicit usage of the content. There are two different detection strategies that

might arise in fingerprinting applications. They are differentiated by the presence

or lack of the original content in the detection process. We will refer to non-blind

detection as the process of detecting the embedded watermarks with the assistance

of the original content x, and refer to blind detection as the process of detecting the

embedded watermarks without the knowledge of the original content x. Non-blind

fingerprint detection requires that the entity performing detection first identify

the original version corresponding to the test image from a database of unmarked

original images. This database can often be very large and requires considerable

storage resources. Blind detection, on the other hand, offers more flexibility in

detection, such as distributed detection scenarios. It does not require vast stor-

age resources, and does not have the computational burden associated with image

registration from a large database. In addition, restricting to non-blind detection

may suffer the attacks of multiple ownership claims discussed in [88]. The prob-

lem can be easily overcome by blind detection [89]. However, unlike the non-blind

detection scenario, in the blind detection scenario the host signal is unknown to

the detector and often serves as a noise source that hinders the ability to detect

the watermark. We note that there are other types of watermarking schemes that

do not suffer from interference from unknown host signals [70,90]. Their appropri-

ateness for fingerprinting and anti-collusion capabilities are to be investigated and

will be addressed in future work.

153

The detection of additive watermarks can be formulated as a hypothesis testing

problem, where the embedded data is considered as the signal that is to be detected

in the presence of noise. For the popular spread spectrum embedding [12,13], the

detection performance can be studied via the following simplified antipodal model:

H0 : yi = −si + di (i = 1, ..., N) if b = −1

H1 : yi = +si + di (i = 1, ..., N) if b = +1
(5.3)

where {si} is a deterministic spreading sequence (often called the watermark), b is

the one bit to be embedded and is used to antipodally modulate si, di is the total

noise, and N is the number of samples/coefficients to carry the hidden information.

In non-blind detection, where the original source is available, di comes from the

processing and/or attacks; in blind detection, di consists of the host media as well

as distortion from processing and attacks. If di is modelled as i.i.d. Gaussian

N (0, σ2
d), the optimal detector is a (normalized) correlator [91] with a detection

statistics TN given by

TN = yT s/
√

σ2
d · ‖s‖2 (5.4)

where y = [y1, ..., yN]T , s = [s1, ..., sN]T and ‖s‖ is the Euclidean norm of ‖s‖.
Under the i.i.d. Gaussian assumption for di, TN is Gaussian distributed with unit

variance and a mean value

E(TN) = b ·
√
‖s‖2/σ2

d. (5.5)

If b is equally likely to be “-1” and “+1”, the optimal (Bayesian) detection rule is

to compare TN with a threshold of zero to decide H0 against H1, in which case,

the probability of error is Q(E(TN)), where Q(x) is the probability P (X > x) of a

Gaussian random variable X ∼ N (0, 1). The error probability can be reduced by

154

raising the watermark-to-noise-ratio (WNR) ‖s‖2/(Nσ2
d), or increasing the length

N of the spreading sequence. The maximum watermark power is generally de-

termined by perceptual models so that the changes introduced by the watermark

are below the just-noticeable-difference (JND) [13]. Assuming that both {si} and

{di} are zero mean, σ2
d is estimated from the power of yi and si, for example via

σ̂2
d = (‖y‖2 − ‖s‖2)/N .

The i.i.d. Gaussian noise assumption is critical for the optimality of a correlator-

type detector, but it may not reflect the statistical characteristics of the actual noise

and interference. For example, the noise and interference in different frequency

bands are different. In such a scenario, we should first normalize the observations

{yi} by the corresponding noise standard deviation to make the noise distribution

i.i.d. before taking the correlation [92]. That is,

T ′
N =

N∑

i=1

yi · si

σ2
di

/

√√√√
N∑

i=1

si
2

σ2
di

(5.6)

and

E(T ′
N) = b

√√√√
N∑

i=1

s2
i

σ2
di

(5.7)

This can be understood as a weighted correlator with more weight given to less

noisy components. Similarly, colored noise needs to be whitened before correlation.

In general, an optimal detector can be derived using realistic distributions for

noise and host interference [91]. In this chapter, we will use the correlator with

normalized noise variance as described in (5.6).

Another model, used often for conveying ownership information [12, 13], leads

to a similar hypothesis testing problem described by:

H0 : yi = di (i = 1, ..., N) if watermark is absent

H1 : yi = si + di (i = 1, ..., N) if watermark is present
(5.8)

155

This is often referred as On-Off Keying (OOK). The detection statistics is the same

as shown in (5.4) or (5.6). The threshold for distinguishing the two hypotheses is

a classic detection problem, for which we can use a Bayesian rule or a Neyman-

Pearson rule [91]. The probability of detection errors can be obtained accordingly.

5.2.2 Collusion Scenarios

When two parties with the same image (but fingerprinted differently) come to-

gether, they can compare the difference between the two fingerprinted images.

Collusion attack generates a new image from the two fingerprinted images so that

the traces of either fingerprint in the new image is removed or attenuated. For

fingerprinting through additive embedding, this can be done by averaging the two

fingerprinted images yc = λ1y1+λ2y2 where λ1+λ2 = 1, so that the energy of each

of the fingerprints is reduced to λi
2 of the corresponding original. The requirement

that λ1 +λ2 = 1 is necessary in order to retain the pixel magnitudes of the original

image. As a result of this weighted average, the detection statistics with respect

to the i-th fingerprint is scaled by a factor of λi. Alternatively, the new image can

be formed by taking part of the pixels or transform coefficients from each of the

two images

yc = Λy1 + (I−Λ)y2

where I is the N×N identity matrix and Λ = diag(λ1, λ2, ..., λN) with λi ∈ {0, 1}.
In terms of the effects on the energy reduction of the original fingerprints and the

effect it has upon the detection performance, this alternating type of collusion is

similar to the averaging type. For the simplicity of discussion, we will focus on the

averaging type of collusion in this chapter.

Collusion can be extended to more than two parties. In a K-colluder averaging-

156

collusion the watermarked content signals yj are combined according to
∑K

j=1 λjyj.

The objective of each colluder is to avoid being detected, yet remain fair to his

fellow colluders and retain good image quality. We will present two perspectives of

fairness for which the colluders may try to combine their watermarks, and observe

that, under realistic assumptions about the detection statistics for each user, both

scenarios yield the optimal values for λj as λj = 1/K for all j. In the theorem

that follows, we consider that each user’s watermarked content is undistorted by

compressions and attacks.

Theorem 2. Suppose that the content x is watermarked differently for each user to

produce marked content yj = x + sj. Assume that we have a group of K colluders

who conspire by forming colluded version of the content

yc =
K∑

j=1

λjyj, (5.9)

where
∑

j λj = 1. Further, if the probability of detecting the jth user’s watermark,

pj(λ), is such that all users have identical detection properties, i.e. pj(λ) = p(λ)

for all j, and p(λ) is a differentiable, strictly monotonic increasing function in λ

whose derivative p′ is also monotonic, then

1. Under the group fairness rule that the users seek to maximize the probability

that all colluders are undetected, the optimal allocation of the scaling param-

eters is λj = 1/K for all j.

2. Under the min-max fairness rule that the colluders will seek to minimize the

maximum probability of a colluder being detected, the optimal allocation of

the scaling parameters is λj = 1/K for all j.

Proof. (1): Obviously, the smaller in magnitude λj0 is, the less likely user j0 will be

detected. In order to incorporate fairness to the other users, we seek to minimize

157

the probability that none of the colluders are detected. Suppose that the proba-

bility of detecting wj0 given that user j0 scales his watermark by λj0 is denoted by

pj0(λj0). It is reasonable to assume that each watermark has the same detection

properties as the others for the same scaling factor, i.e. pj(λ) = p(λ) for all j and

for all λ. It is also reasonable to assume that p(λ) and its derivative p′ is monotonic

since the effect of scaling y by λ on a correlation detection statistics is to scale the

correlation statistics by λ. The probability that all colluders are undetected is

G(λ) =
K∏

j=1

(1− p(λj)) =
K∏

j=1

g(λj).

We would like to maximize G(λ) subject to the constraint
∑

j λj = 1. To simplify

the derivation, define h(λ) = log g(λ). Maximizing G(λ) is equivalent to max-

imizing H(λ) =
∑K

j=1 h(λj). Now define the LaGrangian Dual function L(λ, µ)

by

L(λ, µ) = H(λ) + µ

∑

j

λj − 1

 .

Taking the derivative of L(λ, µ) with respect to λj gives

dL

dλj

= h′(λj) + µ

Setting this to 0, and observing that the conditions on p and p′ are sufficient for

(h′)−1 to exist, we may conclude that λj = −(h′)−1(µ) for all j and hence λj = 1/K

for all j.

(2): We want to minimize the maximum probability of a colluder getting de-

tected:

p̂ = min
λ

max
j

p(λj).

Observe that when we fix λ, the maximum p(λj) corresponds to the maximum λj,

which we denote λmax. Since λmax ≥ 1/K, we have that p̂ ≥ p(1/K). Observe that

158

the choice of λj = 1/K for all j achieves the lower bound and hence the min-max

assignment is the choice of λ that achieves this lower bound.

5.3 Orthogonal Modulation and Anti-Collusion

In this section we will focus on the methods of orthogonal, and simplex modulation

[93] for embedding unique fingerprints to multiple copies of images. We also observe

that biorthogonal modulation is not appropriate for fingerprinting.

In orthogonal modulation, there are v orthogonal signals sj that are used to

convey B = log2 v bits by inserting one of the v signals into the host signal. These

B bits can be used to identify the n users by identifying a B-bit ID sequence

with each user, and therefore we have n = v. The detector determines the B

information bits by performing the correlation of the test signal with each of the

v signals, and decides the signal that has the largest correlation above a minimum

threshold. The corresponding B-bit index of this signal is the ID sequence of the

user. Typically, v correlations are used to determine the embedded signal, and the

computational complexity associated with performing v correlations is considered

one of the drawbacks of orthogonal modulation. In Section 5.3.2, we present an

improved detection strategy that cuts the computational complexity from O(v) to

O(log v).

An additional drawback for using orthogonal modulation in data embedding is

the large number of orthogonal signals needed to convey B bits. In many situations,

it might not be possible to find 2B orthogonal signals in the content. In audio

applications, it might be desirable to periodically repeat a watermark embedding

in the content in order to fingerprint clips from the audio. In this case the number of

orthogonal basis signals available is limited by the sample rate. For example, if we

159

repeat a watermark every second in audio with a 44.1kHz sample rate, then we can

allow for at most 44, 100 users to purchase the content if orthogonal modulation is

used in fingerprinting. Although other media, such as images and video, might have

more points per embedding period, many of these degrees of freedom will be lost

since embedding should only take place in perceptually significant components [12].

In particular, some content, such as smoothly textured images and binary images,

are known to have a significantly lower embedding rate than what is suggested

by the amount of points in the image. Further, the necessary bookkeeping and

storage of the v = 2B basis vectors is another drawback of orthogonal modulation.

In Section 5.4, we build watermarks using code modulation that are able to handle

more users than orthogonal modulation for the same amount of orthogonal vectors.

A variation of orthogonal modulation is biorthogonal modulation, which con-

sists of v orthogonal basis signals and their negatives [93]. Biorthogonal modulation

has the advantage that it is able to convey B + 1 bits using v orthogonal basis. A

second variation of orthogonal modulation is simplex modulation. Simplex mod-

ulation makes more efficient usage of the energy by maximizing the amount of

angular separation for v signals in v − 1 dimensional space [93]. The constellation

points for v-ary simplex modulation are all spaced at equal distances on the v− 1

dimensional sphere. The simplex signals have the property that all pairs of signals

have the same correlation. The v − 1 dimensional constellation points for v-ary

simplex modulation can be calculated by subtracting the mean from the constel-

lation points for v-ary orthogonal modulation. With the same amount of energy,

v-ary simplex modulation increases the separation between constellation points

when compared with v-ary orthogonal modulation. For reference, in Figure 5.1,

we depict an example of the constellation points for 3 signals for the orthogonal

160

� �

� �

� �

�

� � �

� �

� 	
 � � � � � � � 	 � � � � � � 	 � � � � �
 � � � � � � � � � � � � 	 � � �

Figure 5.1: An example the constellation points for v = 3 orthogonal and simplex

modulation.

and simplex modulation schemes.

5.3.1 Anti-Collusion Performance

We now study the behavior of the different modulation schemes under averaging

collusion attacks. We start by discussing the effect of collusion upon biorthogonal

modulation. In biorthogonal modulation, it is possible that two users with the wa-

termarks sj and −sj might decide to collude. The average of these two watermarks

would completely erase the presence of any identifying watermark. Therefore, it is

not appropriate for use in fingerprinting applications, and we shall not consider it

in the remainder of the chapter.

We can study the effect of collusion on orthogonal and simplex modulation by

calculating the distance between the constellation points and averages of the con-

stellation points. Additionally, since the goal of collusion is to create a new content

whose watermarks have been sufficiently attenuated that they are undetectable,

we would like to calculate the distance between the averages of the constellation

161

points and the origin.

We start by considering the case of orthogonal modulation. Suppose each

watermark is embedded using E energy. If we average K watermarks, then the

distance from the colluded mark to any of the watermarks used in forming it is
√
E(K − 1)/K. The distance from the colluded mark to any of the other water-

marks not used in the collusion is
√
E(K + 1)/K. Further, the distance of the

colluded mark from the origin is
√
E/K. Thus, as K increases, the identifying

watermarks in the colluded mark will become harder to detect.

Next, we calculate the distances for v-ary simplex modulation. In order to

calculate the various distances, we will describe the watermark signals wj in terms

of the standard v-dimensional basis, in which case

w1 =
(

v − 1

v
,
−1

v
,
−1

v
, · · · , −1

v

)

w2 =
(−1

v
,
v − 1

v
,
−1

v
, · · · , −1

v

)

...

wv =
(−1

v
,
−1

v
,
−1

v
, · · · , v − 1

v

)
.

Each wj has amplitude β =
√

(v − 1)/v, and we may now normalize the w’s to

produce sj =
√Ewj/β. We define the colluded mark sc by

sc =
1

K

K∑

j=1

sj.

The distance between any two w vectors is easily seen to be
√

2. By scaling by
√E/β we get that any two simplex constellation points are separated by a distance

of
√

2Ev/(v − 1). The distance of sc from the origin is

‖sc‖ =

√E
β

√
1

K
− 1

v
. (5.10)

162

5.3.2 Efficient Detection Strategy for Orthogonal

Modulated Fingerprints

The classical method for estimating which signal was embedded in the host signal

is done via v correlators, and determines the B bit message that identifies which

user’s watermark was present. This has been considered a major drawback of the

method of orthogonal modulation [12,94]. In this section we present an algorithm

that dramatically reduces the computation needed to detect which watermarks

are present in a host signal. The algorithm that we present is an example of a

tree-based search algorithm used in group testing [95–98].

Suppose that K colluders are involved in forming a colluded signal yc. We

desire to identify the basis vectors of these K colluders. If there are a total of

n = v orthogonal signals, one for each user, then testing for these K colluders’

basis vectors can be done by correlating the received watermark with each of the

n orthogonal signals. This can be prohibitive for large n as it leads to significant

computational requirements.

For a set A = {wj}j∈J where J is an indexing set, we define the sum of A by

SUM(A) =
∑

j∈J wj. We start by considering the case of detecting 1 watermark.

Let us denote by S = {wj} the set of orthogonal watermark signals, and suppose

the test signal is y. Suppose that we break S into two complementary subsets S0

and S1. If we correlate the test signal y with SUM(S0) then the correlation will

satisfy

〈y,
∑

wj∈S0

wj〉 =
∑

j∈J

〈y,wj〉, (5.11)

where 〈y, w〉 denotes a correlation process, such as is described in (5.4). If the

one watermark we desire to detect belongs to the set S0 then 〈y, SUM(S0)〉 will

experience a large contribution from that one waveform, and all the other terms

163

will have small values. If this watermark is not present in S0, then 〈y, SUM(S0)〉
will consist only of small contributions. Therefore, if we test two sets S0 and S1

such that S1 = S\S0, then we are guaranteed to get a large value in one of the two

correlations with the sum of the basis vectors.

We can repeat this idea by further decomposing S0 and S1 if they pass a

threshold test. This idea can be extended to detecting the presence of K orthogonal

signals. At each stage we test two sets S0 and S1, and if a set passes a threshold test,

then we further decompose it. We use this idea to develop a recursive detection

algorithm for detecting the presence of K orthogonal signals in a test signal y.

There are many possible choices for dividing S into S0 and S1 in such an algorithm.

In Algorithm 6 we have chosen S0 such that |S0| = 2dlog2 |S|e−1, which is the largest

power of 2 less than |S|. We chose |S0| = 2dlog2 |S|e−1 in order to ensure that at

least one set had an amount of elements that was a power of 2, which facilitated

an easier calculation of the computational bound in Lemma 10. Another possible

choice, which might be more efficient, would be to take S0 such that |S0| = d|S|/2e.
We now make some observations about the computational performance of this

algorithm. First, we address the number of correlations that must be performed

to identify K signals in a test signal y. Let us denote by C(n,K) the number

of correlations needed in Algorithm 6 to identify K signals from a set S of n

orthogonal signals. Lemma 10 provides a bound C(n,K).

Lemma 10. The number of correlations C(n,K) needed in Algorithm 6 satisfies

C(n,K) ≤ 2
(
−1 + K

(
log2(2

dlog2 ne/K) + 1
))

. (5.12)

Proof. The proof follows a standard counting argument for tree-based algorithms

[28], and similar proofs can be found in [96–99]. We break the proof into two parts.

164

Algorithm: EffDet(y, S)

Divide S into two sets S0 and S1, where |S0| = 2dlog2 |S|e−1, and S1 = S\S0 ;

Calculate e0 = SUM(S0) and e1 = SUM(S1) ;

Calculate ρ0 = 〈y, e0〉 and ρ1 = 〈y, e1〉 ;

if ρ0 > τ then

if |S0| = 1 then

output S0 ;

else

EffDet(y, S0) ;

end
end

if ρ1 > τ then

if |S1| = 1 then

output S1 ;

else

EffDet(y, S1) ;

end
end

Algorithm 6: Efficient detection algorithm, EffDet(y, S)

First, we will calculate a bound for n = 2r, and then we shall extend to general

n. We begin by observing that corresponding to the algorithm is a tree, and can

associate with each internal node either a S0 or a S1 set, as defined in Algorithm

6. We may also associate with each internal node a flag that identifies whether the

magnitude of the correlation of the test signal with the sum of the basis vectors

in the node’s set is larger than a threshold. We shall call such internal nodes

positive-nodes, and we assume the root node is always positive. Examples of the

decision tree associated with the algorithm are presented in Figure 5.2.

165

If n = 2r, the number of levels in the tree is r + 1, where we count the root

node as the first level, and the leaf nodes as belonging to the r + 1 level. Define

L = dlog2 Ke. We now perform a standard counting of the worst-case amount of

positive nodes. The first level that is able to have K positive-nodes is level L + 1,

while the number of positive-nodes in level j < L+1 is at most 2j−1. There are two

cases to consider when bounding the number of positive nodes. First, we look at

the positive nodes from level 1 to level L. This is at most 1+2+· · ·+2L−1 = 2L−1.

Next, from level L+1 to level r we have at most (r−L)K positive nodes and thus

the total number of positive nodes T (n, K) from root to level r is bounded by

T (n,K) ≤ 2L − 1 + (r − L)K

= K2L−log2 K − 1 + K (log2(n/K)− L + log2 K)

≤ −1 + K (log2(n/K) + 1) ,

where we have used the observation that L− log2 K ∈ [0, 1) and hence 2L−log2 K −
L + log2 K ≤ 1. Since each positive nodes corresponds to two correlations, the

total amount of correlations is bounded by

C(n, K) ≤ 2 (−1 + K (log2(n/K) + 1))

for n = 2r. The general case is addressed by observing that C(n+1, K) ≥ C(n,K).

This implies C(2dlog2 ne, K) ≥ C(n, K) which, when combined with the previous

bound for C(n,K), gives the general case

C(n,K) ≤ 2
(
−1 + K

(
log2(2

dlog2 ne/K) + 1
))

.

In particular, the result of this lemma gives us that if we were trying to detect

a single signal, then need to perform at most 2(dlog2 |S|e − 1) correlations as

166

opposed to |S| in a traditional implementation. Also, as K becomes larger, the

improvement in the amount of correlations performed decreases since it becomes

necessary to perform correlations for multiple branches of the tree. For example,

if K = n, then simply correlating with each of the n orthogonal signals is more

efficient than Algorithm 6.

We mentioned earlier that Algorithm 6 is an example of a group testing algo-

rithm. Algorithm 6 does not require knowledge of the the amount of colluders,

or defective items in the parlance of group testing. When the amount of defec-

tive items is known a priori, it is possible to develop more efficient testing proce-

dures [98]. In fact, in [96] a competitive group testing algorithm is designed that at-

tempts to estimate the number of defective items K, and yields a 1.65-competitive

algorithm that is asymptotically more efficient than the simple bisecting algorithm

presented in Algorithm 6 or in [96].

We also observe that although we have achieved an improvement in computa-

tional efficiency, this comes at a tradeoff in detector variance. When we calculate

the correlation with the sums of basis vectors, we get many small, noisy contri-

butions from correlating the test signal with signals not present in the test signal,

as in (5.11). One approach to reduce this increased noise variance, is to modify

the algorithm by dividing S into more, smaller subsets. Another approach to han-

dle the errors introduced due to the increased variance would be to use searching

algorithms robust to errors, such as described in [99].

167

5.3.3 Experiments on Efficient Detection of Orthogonal

Modulated Fingerprints

We desired to study the performance of the efficient detection algorithm, and the

effect that collusion had on the detection statistics. In our experiments, we used

an additive spread spectrum watermarking scheme similar to that in [13], where a

perceptually weighted watermark was added to DCT coefficients with a block size

of 8 × 8. The detection of the watermark is performed without the knowledge of

the host image via the detection statistics as shown in (5.6). The 512× 512 Lenna

is used as the host image for fingerprinting, and the fingerprinted images had no

visible artifacts with an average PSNR of 41.2dB. Figure 5.2 illustrates the pro-

cess of identifying colluders out of 8 users using the efficient detection algorithm

(Algorithm 6). The detection statistics are averaged over 10 different sets of water-

marks, and each set has 8 mutually uncorrelated spread spectrum watermarks for

8 users. These watermarks are generated via a psedudo-random number generator

and used as an approximate orthogonal basis in orthogonal modulation.

Figure 5.2(a) shows the process of detecting colluders from an image with user

1’s fingerprint embedded. The notation “TN‖U?” denotes the detection statistics

when correlating the test image with the sum of the fingerprints U?. Detection

statistics close to zero indicate the unlikely contributions from the corresponding

fingerprints, and the branches of the detection tree below them, indicated by dotted

lines, are not explored further. The number of correlations performed is 6. Figure

5.2(b) shows the process of detecting colluders from an image colluded from user

1,user 2, and user 4’s fingerprinted images. The number of correlations performed

is 8.

We see from Figure 5.2(a) that the detection statistics when correlating with a

168

� � � � � � � � � 	
 � � � �

� �

� ! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 7

8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q

R S T U V W
X Y Z [Y

\] ^ _ ` a
b c d e f

(a)

� � � � � � � � � 	
 � � � �

� � � � � ! " # $ % & ' ()

* + , - . / 0 1 2 3 4 5 5 6 7 8 9 : ; < = > ? @ ? A

B C D E F G H I J K L M M N O P Q R S T U V W X W W

Y Z [\] ^_ ` a _ b c d e f g hi j k l l m n o p q rs t u v w
x y z { | }~ � � � �

(b)

Figure 5.2: Detection trees for identifying colluders using Algorithm 1. The images

for different users are fingerprinted via orthogonal modulation. The fingerprints of

colluders are indicated by shadowed boxes Uj. The notation “TN‖U?” denotes the

detection statistics from correlating the test image with the sum of the fingerprints

U?. Detection statistics close to zero indicate the unlikely contributions from the

corresponding fingerprints, and the branches of the detection tree below them,

indicated by dotted lines, will not be explored.

169

sum of a larger number of basis vectors is smaller than that with a smaller amount

of basis vectors. This reflects the noisy contributions from the basis vectors that

are present in the sum of basis vectors but are not present in the test image. We

mentioned this phenomena earlier in Section 5.3.2. Since the detection statistics we

use has its variance normalized to 1, the noisy contributions lower the detection

statistics values. We also observe in Figure 5.2(b) a decrease in the detection

statistics in images colluded by more users.

5.4 Code Modulation Embedding and

Anti-Collusion Codes

In the previous section, we mentioned that a drawback of the usage of orthogonal

signaling is the large amount of basis vectors needed to convey user information.

In this section we will present another form of modulation that may be used to

convey more bits of information for a given amount of basis vectors than orthogo-

nal modulation. Therefore, we are able to accommodate more users for the same

amount of orthogonal signals than orthogonal modulation. We will use this mod-

ulation technique, in conjunction with appropriately designed codewords, known

as anti-collusion codes, to construct a family of watermarks that have the ability

to identify members of the colluding set of users.

In code modulation, there are v orthogonal basis signals {uj}, and information

is encoded into a watermark signal wj via

wj =
v∑

j=1

bijui, (5.13)

where bij ∈ {0, 1} or bij ∈ {±1}. The first of the two possibilities for choosing the

values of bij corresponds to on-off keying (OOK) while the second choice of {±1}

170

corresponds to an antipodal form [93]. If bij = 0, this is equivalent to having no

contribution in the ui direction. At the detector side, the determination of each bij

is done by correlating with the ui, and comparing against a decision threshold. In

either case, B = v bits of information are conveyed using v orthogonal basis vectors.

If E energy is allocated to each watermark, then the OOK form of binary code

modulation will devote more energy to fewer basis functions than the antipodal

form, which evenly divides E energy amongst all of the v different orthogonal basis

functions.

We assign a different bit sequence {bij} for each user uk. We may view the

assignment of the bits bij for different watermarks in a matrix B, which we call

the derived code matrix, where different columns of B contain derived codevectors

for different users. This viewpoint allows us to capture the orthogonal, simplex,

and coded modulation cases for watermarking. For example, the identity matrix

describes the orthogonal signaling case since the jth user is only associated with

one signal vector uj. In the following section, we shall design a code matrix C

whose elements are either 0 or 1. By applying a suitable mapping that depends on

whether the OOK or antipodal form of code modulation is used, the code matrix

C is used to derive the matrix B that is used in forming the watermark signals.

In binary code modulation, if we average two watermarks, w1 and w2 cor-

responding to bit sequences bj1 and bj2, then when bj1 6= bj2 the contributions

attenuate or cancel depending on whether the OOK or antipodal form is used.

However, when bj1 = bj2 the contributions do not attenuate. For example, if an-

tipodal code modulation is used, the result of averaging two watermark signals is

that many of the components will still have
√
E/v amplitude, which is identical to

the amplitude prior to collusion, while other components will have 0 amplitude.

171

When we average K watermarks, those components in the bit sequences that are

all the same will not experience any cancellation, and their amplitude will remain
√
E/v, while others will experience diminishing (though not necessarily complete

cancellation).

5.4.1 Anti-Collusion Codes

In this section we design a family of codevectors {cj} whose overlap with each

other can identify groups of colluding users. A similar idea was proposed in [100],

where projective geometry was used to construct such code sequences. As we will

explain in this section, our proposed code construction makes more efficient usage

of the basis vectors than the codes described in [100].

For this section, we describe codes using the binary symbols {0, 1}. These

codevectors are mapped to derived codevectors by a suitable mapping depending

on whether the OOK or antipodal form of binary code modulation is used for

watermarking. For example, when used in the antipodal form, the binary symbols

{0, 1} are mapped to {−1, 1} via f(x) = 2x− 1.

We assume, when a sequence of watermarks is averaged and detection is per-

formed, that the detected binary sequence is the logical AND of the codevectors

cj used in constructing the watermarks. For example, when the watermarks cor-

responding to the codevectors (1110) and (1101) are averaged, the output of the

detector is (1100). When we perform 2 or more averages, this assumption might

not necessarily hold since the average of many 1’s and a few 0’s may produce a

decision statistic large enough to pass through the detector as a 1. We discuss

the behavior of the detector in these situations further in Section 5.4.2, and detail

approaches to improve the validity of the AND assumption.

172

We want to design codes such that when K or fewer users collude, we can

identify the colluders. We prefer shorter codes since for embedded fingerprints

longer codes would distribute the fingerprint energy over more basis vectors, which

would lead to a higher error rate in the detection process. In order to identify

colluders, we first require that there is some non-zero component remaining in the

code when the codes for these K colluders are combined. Secondly, we require that

there are no repetitions in the different combinations of K or fewer codevectors. We

will call codes that satisfy these properties anti-collusion codes. In the definition

that follows, we provide a generic definition in terms of semigroups [101], and then

specify the relevant case that we use in this chapter.

Definition 3. Let G be a semigroup with a binary operation ?. A code C =

{c1, · · · , cn} of vectors belonging to Gv is called a K-resilient (G, ?) anti-collusion

code, or a (G, ?) ACC when any subset of K or fewer codevectors combined element-

wise under ? is non-zero and distinct from the element-wise ? of any other subset of

K or fewer codevectors. When G = {0, 1} and ? is the logical AND, a K-resilient

(G, ?) ACC is simply called a K-resilient AND-ACC.

We first present a (n − 1)-resilient AND-ACC. Let C consist of all n-bit bi-

nary vectors that have only a single 0 bit. For example, when n = 4, C =

{1110, 1101, 1011, 0111}. It is easy to see when K ≤ n − 1 of these vectors are

combined under AND, that this combination is unique. This code has cardinality

n, and hence can produce at most n differently watermarked media. We refer to

this code as the trivial AND-ACC for n users.

It is desirable to shorten the codelength to squeeze more users into fewer bits

since this would require the use and maintenance of fewer orthogonal basis vectors.

To do this, we need to give up some resiliency. We now present a construction

173

of a K-resilient AND-ACC that requires O(
√

n) basis vectors for n users. This

construction uses balanced incomplete block designs [102]:

Definition 4. A (v, k, λ) balanced incomplete block design (BIBD) is a pair (X ,A),

where A is a collection of k-element subsets (blocks) of a v-element set X , such

that each pair of elements of X occur together in exactly λ blocks.

A (v, k, λ)-BIBD has n = λ(v2 − v)/(k2 − k) blocks. Corresponding to a block

design is the v × n incidence matrix M = (mij) defined by

mij =

1 if the ith element belongs to the jth block,

0 otherwise.

If we define the codematrix C as the bit-complement of M, and assign the code-

vectors cj as the columns of C, then we have a (k − 1)-resilient AND-ACC.

Our codevectors are therefore v-dimensional, and we are able to accommodate

n = λ(v2 − v)/(k2 − k) users with these v basis vectors. Assuming that a BIBD

exists, for n users we therefore need v ≈ O(
√

n) basis vectors.

Theorem 3. Let (X ,A) be a (v, k, 1)-BIBD, and M the corresponding incidence

matrix. If the codevectors are assigned as the bit complement of the columns of M,

then the resulting scheme is a (k − 1)-resilient AND-ACC.

Proof. We prove the theorem by working with the blocks Aj of the BIBD. The

bitwise complementation of the column vectors corresponds to complementation

of the sets {Aj}. We would like for ∩j∈JAC
j to be distinct over all sets J with

cardinality less than or equal to k − 1. By De Morgan’s Law, this corresponds to

uniqueness of ∪j∈JAj for all sets J with cardinality less than or equal to k − 1.

Suppose we have a set of k − 1 blocks A1, A2, · · · , Ak−1, we must show that there

does not exist another set of blocks whose union produces the same set. There are

174

two cases to consider. First, assume there is another set of blocks {Ai}i∈I with

∪j∈JAj = ∪i∈IAi such that I ∩J = ∅ and |I| ≤ k−1. Suppose we take a block Ai0

for i0 ∈ I. Then Ai0 must share at most one element with each Aj, otherwise it

would violate the λ = 1 assumption of the BIBD. Therefore, the cardinality of Ai is

at most k− 1, which contradicts the requirement that each block have k elements.

Thus, there does not exist another set of blocks {Ai}i∈I with ∪j∈JAj = ∪i∈IAi and

I ∩ J = ∅. Next, consider I ∩ J 6= ∅. If we choose i0 ∈ I\(I ∩ J) and look at Ai0 ,

then again we have that Ai0 can share at most 1 element with each Aj for j ∈ J ,

and thus Ai0 would have fewer than k elements, contradicting the fact that Ai0

belongs to a (v, k, 1)-BIBD. Thus, ∪j∈JAj is unique.

We now present an example that is built from a (7, 3, 1)-BIBD. The (7, 3, 1)-

BIBD is an example of projective geometry and is often called the seven-point

plane [103]. There are many different possible seven-point planes that can be

constructed by permuting the labels of the points. If we take the bit-complement

of the incidence matrix corresponding to one of these possible (7, 3, 1)-BIBDs we

get:

C =

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

0 1 1 1 1 0 0

1 1 0 0 1 1 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

. (5.14)

This code requires 7 bits for 7 users and provides 2-resiliency since any two column

vectors share a unique pair of 1 bits. Each column vector c of C is mapped to {±1}

175

by f(x) = 2x−1. The code modulated watermark is then w =
∑v

i=1 f(ci)ui. When

two watermarks are averaged, the locations where the corresponding AND-ACC

agree and have a value of 1 identify the colluding users. For example, let

w1 = −u1 − u2 + u3 − u4 + u5 + u6 + u7 (5.15)

w2 = −u1 + u2 − u3 + u4 + u5 − u6 + u7 (5.16)

be the watermarks for the first two columns of the above (7, 3, 1) code, then (w1 +

w2)/2 has coefficient vector (−1, 0, 0, 0, 1, 0, 1). The fact that a 1 occurs in the 5th

and 7th location uniquely identifies user 1 and user 2 as the colluders.

The (7, 3, 1) example that we presented had no improvement in bit efficiency

over the trivial AND-ACC for 7 users, and it had less collusion resilience. A useful

metric for evaluating the efficiency of an AND-ACC for a given resiliency is its

rate R = v/n, which describes the amount of basis vectors needed per user. AND-

ACCs with lower rates are better. For codes (v, k, λ)-BIBD AND-ACC, their rate is

R = (k2−k)/(λ(v−1)). Therefore, the efficiency of an AND-ACC built from BIBDs

improves as the codelength v becomes larger. By Fisher’s Inequality [102], we also

know that n ≥ v for a (v, k, λ)-BIBD, and thus R ≤ 1 using the BIBD construction.

In contrast, the k-resilient construction in [100] has rate much larger than 1, and

thus requires more spreading sequences (or marking locations) to accommodate

the same amount of users as our scheme. It is possible to use the collusion-secure

code constructions of [11] in conjunction with code modulation for embedding.

However, the construction described in [11] has codelength O(log4 n log2(1/ε)),

where ε < 1/n is the decision error probability. This codelength is considerably

large for small error probabilities and practical n values. For example, when n =

210, the codelength of [11] is on the order of 104 or higher, while the codelength for

our proposed AND-ACC is on the order of 102. Additionally, for the same amount

176

of users, the use of code modulation watermarking with an AND-ACC constructed

using a (v, k, 1)-BIBD requires less spreading sequences than orthogonal signaling.

A code modulation scheme would need v orthogonal sequences for n = (v2 −
v)/(k2 − k) users, while orthogonal signaling would require n sequences.

In general, (v, k, λ)-BIBDs do not necessarily exist for an arbitrary choice of

v and k. The condition that n must be an integer restricts some possibilities

for v and k, and for a given (v, k, λ) triple there may not exist a (v, k, λ)-BIBD.

We may, however, construct infinite families of BIBDs. For example, (v, 3, 1)

systems (also known as Steiner triple systems) are known to exist if and only if

v ≡ 1 or 3 (mod 6). The Bose construction builds Steiner triple systems when

v ≡ 3 (mod 6), and the Skolem construction builds Steiner triple systems when

v ≡ 1 (mod 6) [104]. Another approach to constructing BIBDs is to use d-

dimensional projective and affine geometry over Zp, where p is of prime power.

Projective and affine geometries yield ((pd+1 − 1)/(p − 1), p + 1, 1) and (pd, p, 1)

BIBDs [102, 105]. Techniques for constructing these and other BIBDs can be

found in [106]. Finally, we mention that other combinatorial objects, such as

packing designs and pairwise balanced designs, have very similar properties to

BIBD, and may be used to construct AND-ACC where the codevectors do not all

have the same weight. The construction and use of AND-ACC built from other

combinatorial objects is beyond the scope of this chapter.

Given that the output of the detector is a vector Γ = (Γ1, Γ2, · · · , Γn), we

must determine who the colluders are. In practice, the noise in the detection

process causes Γ to have errors, and therefore we may not be able to exactly

identify the colluders. Instead, what we would like to do is use Γ to determine

a suspicious set from the entire user set. In Algorithm 7, we determine a vector

177

Algorithm: SuspectAlg(Γ)

Φ = 1;

Define J to be the set of indices where Γj = 1 ;

for t = 1 to |J | do

j = J(t) ;

Define ej to be the jth row of C;

Φ = Φ · ej;

end

Algorithm 7: Algorithm SuspectAlg(Γ), which determines the vector Φ that

describes the suspect set.

Φ = (Φ1, Φ2, · · · , Φn) ∈ {0, 1}n that describes the suspicious set via the location of

components whose value are 1. Thus, if Φj = 1, then the jth user is suspected of

colluding. In the algorithm, we denote the jth row vector of C by ej, and use the

fact that the element-wise multiplication “·” of the binary vectors corresponds to

the logical AND operation. The algorithm starts with Γ and Φ = 1, where 1 is the

n dimensional vector consisting of all ones. The algorithm then uses the indices

where Γ is equal to 1, and updates Φ by performing the AND of Φ with the rows

of the code matrix C corresponding to indices where Γ is 1. The algorithm starts

with the entire group as the suspicious set, and uses the components of Γ that are

equal to 1 to further narrow the suspicious set.

5.4.2 Detector Design and Performance

In this section we focus on the detector involved in collusion for binary code modu-

lation. In order for the detector to determine whether ui, −ui, or neither exists in

the test signal y, we assume that the detector will correlate y with ui. It suffices to

178

consider the detector for a single basis vector, and therefore we drop the subscripts

and just use u.

Suppose that a codevector cj has weight ω = wt(cj). In the OOK case the

remaining v−ω positions would be zeros, while in the antipodal case the remaining

v − ω positions would be −1. If we allocate E energy to this codevector, then the

OOK case would use E/ω energy to represent each 1, while the antipodal case

would use E/v energy to represent each ±1. The amplitude separation between

the constellation points for the 0 and 1 in OOK is
√
E/ω, while the separation

between −1 and 1 in antipodal is 2
√
E/v. Therefore, since it is desirable to have

the separation between the constellation points as large as possible, we should

choose OOK only when ω < v/4. In the AND-ACCs presented in Section 5.4.1,

the weight of each codevector is ω = v−k. OOK is advantageous when (3/4)v < k,

and antipodal modulation is preferable otherwise. Typically, in BIBDs with λ = 1

the block size k is much smaller than v [106] and therefore the antipodal form of

code modulation is preferred.

If K colluders come together and average their marked content, then they

produce an averaged test signal y whose contribution in the u component is the

average of the bij values for that basis vector. In OOK, the bij are either 0 or 1

and therefore the values 0, 1/K, · · · , (K − 1)/K, 1 are possible for the average b of

the bij values for basis vector u. Similarly, for the antipodal case, the values of

−1,−(K−2)/K,−(K−4)/K, · · · , (K−4)/K, (K−2)/K, 1 are possible. From these

possibilities, it is clear that larger values of K are undesirable from a detection

point-of-view. In the antipodal case, the separation between the b = (K − 2)/K

and b = 1 (or b = (K−1)/K and b = 1 for the OOK case) hypotheses is critical to

the validity of using AND as the binary operation in designing an ACC. In order

179

to strengthen the validity of the AND assumption for a K-resilient AND-ACC, the

separation between the b = (K − 2)/K and b = 1 hypotheses can be increased by

devoting more energy E to the watermark, thereby operating at a higher WNR.

Another possibility for improving the validity of the AND assumption is to increase

the coding gain by using longer orthogonal basis vectors {uj}.

5.4.3 ACC Simulations with Gaussian Signals

In this section we study the behavior of our AND-ACC when used with code

modulation in an abstract model, where yj = x + sj = x + α
∑v

i=1 bijui. The host

signal x and the orthogonal basis signals ui are assumed to be independent and

each of them are vectors of i.i.d. Gaussian samples. The factor α is applied equally

to all components and is used to control the WNR. We use these simulations to

reveal the basic issues associated with collusion and code modulation. In the

following subsection we present fingerprinting experiments using actual images.

In the simulations that follow, we used a (16, 4, 1) BIBD to construct our AND-

ACC code. The (v, 4, 1) codes exist if and only if v ≡ 1 or 4 (mod 12). We shall

not describe how to construct this BIBD, but refer the reader to [106] for guidelines

on constructing BIBDs. By complementing the incidence matrix, we get the code

matrix presented in Table 5.1.

With this code, we use 16 orthogonal basis vectors to handle 20 users, and can

uniquely identify up to K = 3 colluders.

We assumed that the host signal x was a N = 10000 point vector whose compo-

nents were Gaussian N (0, 1). We generated a family of 16 random N-point vectors

u. The fingerprints for each user were assigned according to the antipodal form

of code modulation, using the columns of C as the codevectors. For each user we

180

C =

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1

1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1

1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0

1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1

1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1

1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1

1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1

1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0

1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0

1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1

1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1

. (5.17)

Table 5.1: Code matrix constructed from a (16, 4, 1) BIBD.

181

embedded the fingerprints in x by adding a scaled version of the user’s fingerprint

to the host signal to produce a marked content signal yj. The scaling factor was

applied equally to each component of the watermark, and was determined from

the desired WNR = 10 log10 ‖s‖2/‖x‖2dB.

We first wanted to study the behavior of the detector and the legitimacy of the

AND logic for the detector under the collusion scenario. We randomly selected 3

users as colluders and averaged their marked content signals to produce yc. The

colluded content signal was correlated using TN , as described in (5.4).

For three colluders, there are 4 possible values for b, namely −1,−1/3, 1/3,

and 1. We refer to the cases −1,−1/3 and 1/3 as the non-1 hypothesis. We

examined the tradeoff between the probability p(1|1) of correctly detecting a 1

when a 1 was expected from the AND logic, and the probability of p(1|non-1),

where the detector decides a 1 when the correct hypothesis was a non-1. The

receiver operating characteristics (ROC) for a WNR of −25dB, −22.5dB, and

−20dB were calculated and are presented in Figure 5.3. The ROC curve was

generated using 2000 independent realizations of watermarking process for each

threshold. There are a few interesting phenomena to point out. First, we observe

that p(1|1) = 1 occurs at roughly p(1|non-1) = 0.6 for all three WNRs. This point

corresponds to choosing a threshold τ = 0, and indicates that the detector will

falsely classify the b = 1/3 case as a 1. However, this threshold appears to almost

perfectly detect classify the true 1 cases.

We next calculated p(1|1) and p(1|non-1) as a function of WNR for differ-

ent thresholds. The thresholds used were τ1 = 0.9E(TN) , τ2 = 0.7E(TN), and

τ3 = 0.5E(TN). In order to calculate E(TN), we used (5.5) and assumed that the

detector knows the the WNR and hence the power of the distortion. The plot of

182

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prob(1|non−1)

P
ro

b(
1|

1)

ROC Curves for different WNR

−20dB WNR
−22.5dB WNR
−25dB WNR

Figure 5.3: The receiver operating characteristic curve (p(1|non-1 vs. p(1|1)) for

WNRs of −25dB, −22.5dB, and −20dB.

p(1|1) for different threshold strategies is presented in Figure 5.4(a), and the plot

of p(1|non-1) is presented in Figure 5.4(b). We observe that for the smaller thresh-

old of 0.5E(TN) the probability p(1|1) is higher, but at an expense of a higher

probability of false classification p(1|non-1). Increasing the threshold allows us to

decrease the probability of falsely classifying a bit as a 1, but at an expense of also

decreasing the probability of correctly classifying a bit as a 1.

In order to see the effect that the properties of the detector have on identifying

the colluders, we calculated the fraction of colluders that were captured as well

as the fraction of the total group that were falsely placed under suspicion for

different WNRs and different thresholds. In this experiment, we assumed that

there were always 3 colluders, which were randomly selected from the entire user

set. Using Algorithm 7, the locations of the 1s from the output of the detector

were used to determine a set of users who are placed under suspicion. The fraction

183

−25 −20 −15 −10 −5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WNR

P
ro

b(
1

| 1
)

Probability(1|1)

τ
1
 = 0.9E(T

N
)

τ
2
 = 0.7E(T

N
)

τ
3
 = 0.5E(T

N
)

−25 −20 −15 −10 −5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WNR

P
ro

b(
1

| n
on

−
1

)

Probability(1 | non−1)

τ
1
 = 0.9E(T

N
)

τ
2
 = 0.7E(T

N
)

τ
3
 = 0.5E(T

N
)

(a) (b)

Figure 5.4: (a) The probability of detection p(1|1) and (b) the probability of false

alarm p(1|non-1) for different WNR and different thresholds.

of the colluders that belong to the suspicious set, and the fraction of the total

user set that are innocents falsely placed under suspicion were calculated and

averaged over 2000 realizations for each WNR. The results are presented in Figure

5.5. Compared to lower thresholds, for all WNRs, the higher threshold is able to

capture more of the colluders, but also places more innocent users falsely under

suspicion. As WNR increases, the detector has lower p(1|non-1), and therefore

does not incorrectly eliminate colluders from suspicion. Similarly, at higher WNR,

the detector has a higher p(1|1), thereby correctly identifying more 1’s, which

allows for us to eliminate more innocents from suspicion. Therefore, at higher

WNR we can capture more colluders as well as place less innocent users under

suspicion. We note, however, that in Figure 5.5(b), at low WNR between −25dB

and −15dB, the fraction of innocents under suspicion using threshold τ1 is lower

than at slightly higher WNR. This behavior can be explained by examining Figure

5.4(a) and Figure 5.4(b). We observe that at low WNR, the p(1|non-1) is higher

184

−25 −20 −15 −10 −5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WNR (dB)

F
ra

ct
io

n
C

ap
tu

re
d

Fraction of Colluders Captured

τ
1
 = 0.9E(T

N
)

τ
2
 = 0.7E(T

N
)

τ
3
 = 0.5E(T

N
)

−25 −20 −15 −10 −5 0
0

0.05

0.1

0.15

0.2

0.25

WNR (dB)

In
no

ce
nt

 F
ra

ct
io

n

Fraction of Group That Are Innocents Under Suspicion

τ
1
 = 0.9E(T

N
)

τ
2
 = 0.7E(T

N
)

τ
3
 = 0.5E(T

N
)

(a) (b)

Figure 5.5: (a) The fraction of colluders that are successfully captured, or placed

under suspicion, and (b) the fraction of the total group that are innocent and

falsely placed under suspicion for different WNR and different thresholds.

than slightly higher WNR, particularly for the threshold τ1. However, for τ1 the

p(1|1) at these WNR is relatively flat. These two observations combined indicate

that at lower WNR we falsely decide 1 more often than at slightly higher WNR,

while we do not experience much difference in the amount of correctly identified

1’s. As more 1’s pass through the detector we remove more users from suspicion.

Therefore, since the amount of correctly detected 1’s is roughly constant for WNRs

between −25dB and −15dB, the additional 1’s from false detections at lower WNR

eliminates more innocent users (as well as colluders) from suspicion.

5.4.4 ACC Experiments with Images

In order to demonstrate the performance of our AND-ACC with code modulation

fingerprinting on real images for fingerprinting users and detecting colluders, we

used an additive spread spectrum watermarking scheme similar to that in [13],

185

User 1: −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1 1 1

User 4: −1 1 1 1 1 1 1 1 1 1 −1 −1 −1 1 1 1

User 8: 1 −1 1 1 1 1 −1 1 −1 1 1 1 1 1 −1 1

User(1,4) Average: −1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1

User(1,4,8) Average: −1
3
−1

3
1
3

1
3

1 1 1
3

1 1
3

1 1
3

1
3

1
3

1 1
3

1

After thresholding: 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1

Table 5.2: The derived codevectors from a (16, 4, 1) AND-ACC for user 1, user

4, and user 8. Also presented are the vectors from a two colluder scenario, and a

three colluder scenario. The bottom row corresponds to the desired output of the

detector using the AND logic for the three colluder case.

where the perceptually weighted watermark was added to 8× 8 block DCT coeffi-

cients. The detection of the watermark is performed without the knowledge of the

host image via the detection statistics as shown in (5.6). We used the same code

matrix, given in Table 5.1, for the AND-ACC as in the simulations for Gaussian

signals. The 512×512 Lenna and Baboon images were used as the host signals for

the fingerprints. The fingerprinted images have no visible artifacts with an average

PSNR of 41.2dB for Lenna, and 33.2dB for Baboon. Figure 5.6 shows the original

images, the fingerprinted images, and the difference with respect to the originals.

The three derived code vectors that were assigned to user 1, 4, and 8 via

antipodal mapping as well as the colluded versions are presented in Table 5.2.

Two collusion examples are illustrated in Figure 5.7 and the detection statistics of

the two examples are shown in Figure 5.8: In one example we averaged the Lenna

images fingerprinted with user 1 and 4’s codes, and the other is for averaging user

1, 4, and 8’s. The colluded images are further compressed using JPEG with quality

186

Figure 5.6: The original images (top), fingerprinted images (middle), and difference

images (bottom) for Lenna and Baboon. In the difference images, gray color

indicates zero difference between the original and the fingerprinted version, and

brighter and darker indicates larger difference.

187

� � � � � �

� � � � 	
 � � � � � � � � � � �

� � � � 	
 �
 � � � �
 �

� � � � � � � � � � � �

� � � � 	
 �
 � � � �
 �

� � � � 	
 � � � � � � � � � � �

Figure 5.7: Illustration of collusion by averaging two and three images fingerprinted

with ACC codes, respectively.

factor (QF) 50%. Also shown in Figure 5.8 are the thresholds determined from the

estimated mean of the detection statistics E(TN). We then estimate the fingerprint

codes by thresholding the detection statistics using a threshold of τ via

Th(x) =

+1 if x ≥ τ

−1 if x ≤ −τ

0 otherwise

.

The threshold τ was calculated by scaling the estimated mean (5.7) with an empir-

ical factor in the range of 0.5 to 0.8. The estimated fingerprint codes are identical

to the expected ones shown in Table 5.2. We can see in Figure 5.8 and Figure

5.9 that non-blind detection increases the separation between the values of the

detection statistics that are mapped to {−1, 0, +1}.
We present histograms of the TN statistics from several collusion cases with

different distortions applied to the colluded Lenna images in Figure 5.9. For each

collusion and/or distortion scenario, we used 10 independent sets of basis vectors

188

2 colluders 3 colluders

0 2 4 6 8 10 12 14 16
−15

−10

−5

0

5

10

15

ACC code bit index

D
et

ec
tio

n
S

ta
tis

tic
s

(o
)

an
d

T
hr

es
ho

ld
s

(x
)

Blind Detection Statistics on Colluded Lenna Image

0 2 4 6 8 10 12 14 16
−6

−4

−2

0

2

4

6

8

10

12

ACC code bit index

D
et

ec
tio

n
S

ta
tis

tic
s

(o
)

an
d

T
hr

es
ho

ld
s

(x
)

Blind Detection Statistics on Colluded Lenna Image

0 2 4 6 8 10 12 14 16
−40

−30

−20

−10

0

10

20

30

40

ACC code bit index

D
et

ec
tio

n
S

ta
tis

tic
s

(o
)

an
d

T
hr

es
ho

ld
s

(x
)

Non−blind Detection Statistics on Colluded Lenna Image

0 2 4 6 8 10 12 14 16
−30

−20

−10

0

10

20

30

40

ACC code bit index

D
et

ec
tio

n
S

ta
tis

tic
s

(o
)

an
d

T
hr

es
ho

ld
s

(x
)

Non−blind Detection Statistics on Colluded Lenna Image

Figure 5.8: Example detection statistics values for 2 users’ and 3 users’ collusion

with a (16, 4, 1)-BIBD AND-ACC fingerprint. (top) Blind detection scenario and

(bottom) non-blind detection scenario. (left) User 1 and 4 perform averaging,

resulting in the output of the detector as (−1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1).

(right) User 1, 4, and 8 perform averaging, resulting in the output of the detector

as (0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1).

189

to generate the fingerprints. Each set consists of 16 basis vectors for representing

16 ACC code bits. Figure 5.9 shows the histograms of the blind and non-blind

detection scenarios, as well as the single user, two colluders and three colluders

cases. We see that there is a clear distinction between the three decision regions.

This implies that the average magnitude of TN , when the bit values agree, is much

larger than the average magnitude for where the bit values disagree, facilitating

the accurate determination of the AND-ACC codes from colluded images. The

separation of the three decision regions can also be observed from an aggregated

histogram shown in Figure 5.10. The histogram depicts the blind detection statis-

tics from a total of 8 collusion scenarios ranging from 1 to 3 colluders, and 4

distortion settings including no distortion, JPEG compression with quality factor

of 50% and 90%, and low pass filtering.

Summarized in Table 5.3 are the bit error rates for the extracted fingerprint

codes. The errors due to 1’s being decoded as non-1’s and non-1’s being decoded as

1’s are tallied separately. It should be noted that a significant portion of bit errors

are caused by the inaccurate estimation of the mean of detection statistics, which

directly affects the threshold setting, even though there is sufficient separation

between the detection statistics corresponding to {−1, 0, +1}. This is especially

the case for low bit rate JPEG compression and low pass filtering, where the

assumption of i.i.d. Gaussian noise for estimating the mean detection statistics as

described in (5.7) becomes less realistic. Improved detection statistics and mean

estimation would reduce the bit errors, and in turn enhance the performance of

fingerprinting.

190

Blind Detection Non-blind Detection

1 user
−15 −10 −5 0 5 10 15
0

5

10

15

20

25

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

(a) (b)

2 colluders
−15 −10 −5 0 5 10 15
0

5

10

15

20

25

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

−60 −40 −20 0 20 40 60 80
0

10

20

30

40

50

60

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

(c) (d)

3 colluders
−15 −10 −5 0 5 10 15
0

5

10

15

20

25

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

−60 −40 −20 0 20 40 60 80
0

10

20

30

40

50

60

70

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

(e) (f)

Figure 5.9: Histograms of detection statistics of embedded fingerprints: (top row)

single fingerprint case, (middle row) 2-user collusion case, (bottom row) 3-user

collusion case; (left column) blind detection, (right column) non-blind detection.

191

no distortion JPG 90% JPG 50% LPF

(non-1 ← 1) 1-user 0 0 0 0.0375

2-user 0 0 0 0.0115

3-user 0 0 0 0.0056

(1 ← non-1) 1-user 0 0 0 0

2-user 0 0 0 0

3-user 0.0667 0.0433 0.0433 0.0133

(a)

no distortion JPG 90% JPG 50% LPF

(non-1 ← 1) 1-user 0 0 0.0042 0.0792

2-user 0 0 0 0.0385

3-user 0 0 0 0.0278

(1 ← non-1) 1-user 0 0 0 0

2-user 0 0 0 0

3-user 0.0167 0.0167 0.01 0.01

(b)

Table 5.3: The bit error rate from the blind detector for (a) τ = 0.7E(TN), and

(b) τ = 0.8E(TN).

192

−15 −10 −5 0 5 10 15
0

20

40

60

80

100

120

140

160

Detection Statistics

of

 O
cc

ur
re

nc
es

Histogram of Detection Statistics of Embedded Fingerprints

Figure 5.10: Aggregated histograms of blind detection statistics of embedded fin-

gerprints covering from 1 to 3 colluders and 4 distortion settings.

5.5 Chapter Summary

In this chapter, we investigated the problem of making fingerprints for multimedia

content that are resistant to collusion attacks. We introduced the collusion problem

for additive embedding, and showed that under reasonable assumptions the optimal

fair strategy for colluders performing an averaging attack is to perform an average

where each user weighs their marked content equally.

We studied the effect that collusion has upon orthogonal, biorthogonal, and

simplex modulation. The traditional detection schemes for orthogonal modulation

in embedding applications require an amount of correlations that is linear in the

amount of orthogonal signals. We presented a tree-based detection algorithm that

reduces detection from linear to logarithmic complexity, and is able to efficiently

193

identify K colluders.

The drawback of orthogonal modulation for embedding is that it requires as

many orthogonal signals as users. We developed a fingerprinting scheme based

upon code modulation that does not require as many signals as orthogonal or

simplex modulation in order to handle n users. We proposed anti-collusion codes

(ACC) that are used in conjunction with modulation to fingerprint multimedia

sources. Our anti-collusion codes have the property that the composition of any

subset of K or fewer codevectors is unique, which allows for the identification of

subgroups of K or fewer colluders. We constructed binary-valued ACC under the

logical AND operation using combinatorial designs. Our construction is suitable

for both the on-off keying and antipodal form of binary code modulation. Further,

our codes are efficient in that they require only O(
√

n) orthogonal signals to ac-

commodate n users. For practical values of n this is an improvement over prior

work on fingerprinting generic digital data.

We performed experiments to evaluate the proposed ACC-based fingerprints.

We first used a Gaussian signal model to examine the ability of the ACC to identify

the colluders, as well as reveal the amount of innocent users that would be falsely

placed under suspicion. We observed a close interplay between the detector and

the ability to capture colluders as well as the side-effect of placing innocent users

under suspicion. We further observed that decreasing WNR increases the amount

of false 1s that pass through the detector, which explains the small amount of

colluders that are captured at low WNR. By raising the threshold, we improve the

ability to capture colluders at all WNR, but also increase the amount of innocents

who are falsely placed under suspicion. We also evaluated our fingerprints on real

images, and observed that in both the blind and non-blind detection cases, the

194

values of the detection statistics were well-separated. This behavior allows the

detector to accurately determine the colluders by correctly extracting a fingerprint

codevector that corresponds to the colluder set.

195

Chapter 6

Conclusions

6.1 Thesis Summary

In this thesis we have examined the issue of multi-user security at three different

stages of the media delivery and consumption process. In particular, the three

stages that we focused on are the establishment of group keying material prior to

content delivery, mechanisms that must occur during content delivery to address

dynamic multicast group membership, and fingerprinting measures that must be

in place to protect intellectual property following content delivery. Further, rather

than treat security as a layer of a system that is separated from the application, we

have examined issues related to the application or the network at each of the three

stages that have an effect upon the design and operation of a secure application.

Prior to the delivery of group data, it is important to initially establish keying

material used to secure the data in a group application. In Chapter 2, we proposed

the butterfly scheme, a scalable method that constructs the conference key using

the two-party Diffie-Hellman scheme as the basic building block. Underlying the

butterfly scheme is a tree, called the conference tree, that describes the successive

subgroups and subgroup keys that are formed en route to establishing the key for

196

the entire group. The use of tree-based conference key establishment reduces the

amount of rounds needed to establish the conference key from being linear, as is

the case in [4, 5], to being logarithmic in the group size.

The applications that will occur on the future networks will involve group mem-

bers that are heterogeneous in terms of their computing power and communication

capabilities. For applications with a diverse clientele, minimizing the total band-

width or amount of rounds needed to form a group key might not be appropriate.

Low-power devices, such as wireless appliances, cannot be expected to expend

the same amount of computational effort as high-power devices, such as personal

computers, when establishing a group secret. Therefore, the establishment of a

conference key should address the varying user costs and resource constraints.

Traditionally, conference keying schemes do not address this issue.

In order to address the different cost profiles that each user might have, in

Chapter 2 we propose to tailor the design of the conference tree to account for

different user costs. We assume that each user has a cost associated with perform-

ing one two-party DH scheme, or a budget that describes the amount of two-party

DH schemes he is willing to participate in. We may seek conference trees with

small average user cost by choosing the conference tree as the tree associated with

coding a source with symbols whose weights are the different user costs. Source

coding techniques, such as Huffman coding, allow for the design of conference trees

that minimize the average user cost. In scenarios where the users have budget con-

straints the necessary conditions on being able to generate a tree-based conference

key is that the vector of user budgets satisfy the Kraft Inequality. We also com-

pared the heterogeneous tree-based scheme with other conference keying schemes

by introducing the PESKY measure (the probability of establishing the session

197

key). PESKY quantifies the likelihood that a conference key can be established

for a heterogeneous clientele of users whose budgets are drawn according to an un-

derlying probability distribution. The PESKY of the proposed tree-based schemes

was found to be larger than the PESKY for other schemes [107] when the user

budget distribution did not have a single entity with significantly more resources

than the other users.

Many applications that will occur will not have a static membership, but in-

stead will have a dynamic membership, where users join and leave the service.

The most appropriate framework for handling server-oriented content distribution

with data confidentiality is by using a centralized entity that is responsible for

maintaining the integrity of the users’ keys. In secure multicast services, when

users join and leave the group, it is necessary to update encryption keys in order

to maintain the integrity of application’s security.

Many schemes have been proposed to provide key management for server-based

group applications, though the most common class of multicast key management

schemes employ a tree hierarchy of keys [6]. The deficiency with the current

multicast key management schemes that have been proposed is that their design

has primarily focused on the issue of reducing the size of the payload (the rekeying

information), and not on the size of the entire message (including the rekeying

message and the header). In fact, the transmission of the messages that flag

the users which portion of the message is intended for them can add significant

communication overhead when used in conventional tree-based schemes.

In Chapter 3, we provided background and motivation for the development of

a new message format for multicast key distribution. This new message format,

which we call the residue-based format is constructed using one-way functions and

198

large integer arithmetic and provides a single homogenized message from which

each user can extract the new key. The advantage of the residue-based format lies

in the fact it does not require the usage of header information to flag the users to

their portion of the message. We then provide an analysis of the security of the

message format, and explain the motivation for using one-way functions to achieve

reusability in the private user keys.

The residue-based message format, or other homogenized message formats, may

be used in conjunction with a tree-based key hierarchy to reduce the communica-

tion overhead associated with rekeying and achieve desirable communication scal-

ability. In Chapter 4, we proposed a multicast key management system that uses a

homogenized message format that does not require any additional communication

overhead in order for users to access their rekeying information. We employed a

message format based upon polynomial interpolation [9], where a single message

consists of information needed to build a polynomial from which each user can cal-

culate the new key. Compared with the traditional format of the rekeying messages

used in tree-based multicast key management, where the rekeying message consists

of the concatenation of messages intended for different subgroups, our composite

message format reduces the amount of header information, while maintaining the

same payload size. Further, we optimize the parameters associated with the design

of the tree by introducing a stochastic population model where each leaf node is

occupied according to i.i.d. Bernoulli random variables. We showed that, under

this occupancy model, the average case communication requirements are close to

the worst-case communication requirements. Therefore, we may optimize the tree

for the worst-case and not suffer any significant performance loss.

Mechanisms that provide data confidentiality or access control only protect

199

the content while it remains in the protected, or encrypted domain. Following de-

cryption, it is possible for users to access cleartext representations of the content.

These cleartext representations may then be redistributed, affecting the digital

rights of the content owners and media distributors. Digital fingerprints, which

remain after content decryption, are a powerful technique to control the redistribu-

tion of content, and allow for the possibility of tracing the consumers who use their

content for unintended purposes. Digital fingerprinting for multimedia sources is

accomplished through data embedding, or watermarking techniques.

A cost-efficient attack against multimedia fingerprinting can be waged by a

coalition of users with the same content that contains different marks. One of the

simplest approaches to performing such a collusion attack is to average multiple

copies of the content together. Other collusion attacks might involve forming a new

content by selecting different pixels or blocks from the different colluders’ content.

By gathering a large enough coalition of colluders, it is possible to sufficiently

attenuate each of the colluders’ identifying fingerprints and produce a new version

of the content with no detectable fingerprints.

In Chapter 5, we designed fingerprints for multimedia content, such as images

and video, that are resistant to collusion attacks. We study the effect that collu-

sion has upon the constellation points in orthogonal and simplex modulation, and

present an efficient tree-based detection scheme that is able to identify a set of

colluders with an amount of correlations that is logarithmic in the number of basis

vectors. This is a significant improvement over the linear complexity traditionally

associated with identifying orthogonal fingerprints. We then developed a finger-

printing scheme based upon code modulation that requires only O(
√

n) orthogonal

signals to accommodate n users. We proposed anti-collusion codes (ACC) that are

200

used in conjunction with code modulation to fingerprint multimedia sources. We

constructed binary-valued ACC under the logical AND operation using combina-

torial designs. We then performed experiments using a Gaussian signal model to

examine the ability of the ACC to identify the colluders, as well as reveal the

amount of innocent users that would be falsely placed under suspicion. Further,

we applied ACC-based fingerprints to real images, and observed separation of the

detector hypotheses in the detection statistics. This behavior allows the detector to

accurately determine the colluders by correctly extracting a fingerprint codevector

that corresponds to the colluder set.

6.2 Future Work

The world is rapidly evolving and, as people are brought closer together, there

will be an increased need for security and digital rights solutions across a broad

range of applications. There are many possible directions for growth in the field

of multi-user security.

As wireless networks truly become ubiquitous, consumers will demand a suite

of multimedia applications for their low-powered, wireless devices. It will be nec-

essary to introduce scalable security solutions, much like scalable coding provides

a scalable solution for source coding, in order to accommodate users with less com-

putational capabilities. Contemporary encryption technologies treat data as either

a block or a stream of bits and usually do not make use of the inherent structures

or the syntax of the data. Applying encryption directly to the bit stream is not

appropriate for multimedia services because of the vast quantity of data to be

processed. Many multimedia services, such as pay-per-view and video-on-demand,

require the real-time encryption of a huge amount of data. Encrypting and de-

201

crypting the vast quantities of data associated with multimedia sources requires

significant processing resources that may not be available, especially for mobile

and portable devices. It may be possible to address these concerns by reducing the

amount of computational resources needed through a suite of different encryption

algorithms of varying power and expense. Stronger and more expensive algorithms

would be used to protect more critical portions of the scalable bit stream, while

less powerful algorithms would be used to protect less important layers of the me-

dia. The challenge here lies in determining an appropriate tradeoff between desired

levels of data confidentiality and the computational budget constraints.

Further, many multimedia applications will involve data that is distributed in

multi-layered or multi-object format. For example, in an HDTV broadcast, users

with a normal TV receiver can receive the normal format, while other users with

an HDTV receiver can receive both the normal format and the extra information

needed to achieve HDTV resolution. As another example, the MPEG-4 standard

allows for the composition of multiple media streams corresponding to different

object planes [45]. In both of these cases, it will be desirable for service providers

to have efficient schemes for maintaining access control to the different layers of

media. Traditional multicast key management schemes are not designed to handle

the key management issues associated with multiple services occurring concur-

rently that have correlated memberships. Multi-layered or multi-object services,

as is prevalent in multimedia applications, will consist of users that subscribe to

different objects or layers. New key management schemes should be designed that

exploit the overlap in the memberships of the different objects or services, while

incorporating new functionalities that are not present in conventional multicast

key management schemes. Specifically, it is necessary to introduce new rekeying

202

events that allow users to subscribe or cancel membership to some layers while

maintaining their membership to others. Preliminary work into this problem was

presented in [14,76,108].

There is further work that can be done to provide collusion-resistant finger-

printing for multimedia content. The current solutions to this problem, which

were presented in Chapter 5, have only scratched the surface of the interplay be-

tween the detector and the coding aspect of the fingerprint’s design. One direction

for further exploration is to consider the design of ACC for more general detector

logics. Currently, our construction assumes that the detector treats the collusion

of a set of bits as the logical AND of those bits. In the data embedding scenario,

this assumption is only an approximation that becomes less valid as the amount

of colluders increases. A more sophisticated approach for joint detector and code

design would use soft-decision decoding, which would allow for the design of an

ACC that can handle larger colluder sets. Another avenue of exploration would be

in the design of the fingerprints themselves. Currently, the fingerprints are built

by using binary-valued codes in conjunction with code modulation. This means

that the fingerprints are constructed from linear combinations of orthogonal basis

signals where each coefficient in the expansion has only two possible values. Due

to this restriction, the code vectors of our ACC codes are forced to be the vertices

of a multidimensional hypercube. A further direction for examination would be

to examine the possibility of using real-valued coefficients in the expansion. The

relaxation of the coefficients to be real-valued would allow the code vectors to lie

on a unit sphere that circumscribes the hypercube. Since the sphere contains the

hypercube, it might be possible to form more code vectors for a given amount of

orthogonal waveforms, and hence allow for us to accommodate more users.

203

In addition to the directions for security solutions for multimedia applications,

there are many possibilities to apply networking techniques to develop a secu-

rity framework for more general multicast applications consisting of heterogeneous

clientele. To address security for the generic heterogeneous applications, we may

divide the users into different classes that would be assigned to different multi-

cast groups and treated independently of each other by the network. Multicast

routing protocols would build different routing trees for each user class, and thus

the necessary rekeying messages for different classes of users would be sent via

separate routes. Changes in the membership for one class of users would affect

the routing tree for that class only, and not require that other classes update their

multicast tree. Additionally, the use of different multicast groups might increase

the reliability of the delivery of rekeying messages.

The future will be an exciting time to perform research in the area of security

and digital rights management. The rapid advancements in technology promises to

create many opportunities to build security solutions through combining techniques

from a broad array of fields, such as cryptography, communications, networking,

and signal processing.

204

BIBLIOGRAPHY

[1] “Secure digital music initiative,” See http://www.sdmi.org.

[2] ISO/IEC JTC1 SC29 WG11 N2614, “MPEG-4 intellectual property man-

agement and protection (IPMP) overview and applications document,”

http://www.cselt.it/mpeg/public/mpeg-4 ipmp.zip, December 1998.

[3] ISO/IEC JTC1/SC29/WG11 N3939, “MPEG-21 proposed draft technical

report,” http://www.cselt.it/mpeg/public/mpeg-21 pdtr.zip, January 2001.

[4] I. Ingemarsson, D. Tang, and C. Wong, “A conference key distribution

system,” IEEE Transactions on Information Theory, vol. 28, pp. 714–720,

September 1982.

[5] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman key distribution

extended to group communication,” in Proc. 3rd ACM Conf. on Computer

Commun. Security, 1996, pp. 31–37.

[6] C. Wong, M. Gouda, and S. Lam, “Secure group communications using key

graphs,” IEEE/ACM Trans. on Networking, vol. 8, pp. 16–30, Feb. 2000.

[7] D.M. Wallner, E.J. Harder, and R.C. Agee, “Key management for multicast:

issues and architectures,” Internet Draft Report, Sept. 1998, Filename: draft-

wallner-key-arch-01.txt.

205

[8] R. Canetti, Juan Garay, Gene Itkis, Daniele Miccianancio, Moni Naor, and

Benny Pinkas, “Multicast security: a taxonomy and some efficient construc-

tions,” in IEEE INFOCOM’99, 1999, pp. 708 –716.

[9] M. Just, E. Kranakis, D. Krizanc, and P. vanOorschot, “On key distribu-

tion via true broadcasting,” in Proc. 2nd ACM Conf. on Computer and

Communications Security, 1994, pp. 81–88.

[10] B. Chor, A. Fiat, M. Naor, and B. Pinkas, “Tracing traitors,” IEEE Tran.

on Information Theory, vol. 46, pp. 893–910, May 2000.

[11] D. Boneh and J. Shaw, “Collusion-secure fingerprinting for digital data,”

IEEE Tran. on Information Theory, vol. 44, pp. 1897–1905, September 1998.

[12] I. Cox, J. Kilian, F. Leighton, and T. Shamoon, “Secure spread spectrum

watermarking for multimedia,” IEEE Tran. on Image Proc., vol. 6(12), pp.

1673–1687, December 1997.

[13] C. Podilchuk and W. Zeng, “Image adaptive watermarking using visual

models,” IEEE Journal on Selected Areas in Communications, vol. 16(4),

pp. 525–540, May 1998.

[14] W. Trappe, J. Song, R. Poovendran, and K.J.R. Liu, “Key distribution for

secure multimedia multicasts via data embedding,” in IEEE Int. Conference

on Acoustics, Speech, and Signal Processing, 2001.

[15] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans.

on Information Theory, vol. 22, pp. 644–654, 1976.

[16] M. Burmester and Y. Desmedt, “A secure and efficient conference key dis-

tribution scheme,” Advances in Cryptology- Eurocrypt, pp. 275–286, 1994.

206

[17] K. Becker and U. Wille, “Communication complexity of group key distribu-

tion,” in 5th ACM Conf. on Computer Commun. Security, 1998, pp. 1–6.

[18] G. Ateniese, M. Steiner, and G. Tsudik, “New multiparty authentication

services and key agreement protocols,” IEEE Journal on Selected Areas of

Communications, vol. 18, pp. 628 –639, 2000.

[19] M. Steiner, G. Tsudik, and M. Waidner, “Key agreement in dynamic peer

groups,” IEEE Transactions on Parallel and Distributed Systems, vol. 11,

pp. 769 –780, 2000.

[20] V. Miller, “Use of elliptic curves in cryptography,” Advances in Cryptology:

Crypto ’85, pp. 417–426, 1986.

[21] W. Trappe, Y. Wang, and K.J.R. Liu, “Group key agreement using divide-

and-conquer strategies,” in Conference on Information Sciences and Sys-

tems, The John’s Hopkins University, March 2001.

[22] W. Trappe, Y. Wang, and K.J.R. Liu, “Establishment of con-

ference keys in heterogenous networks,” in IEEE Int. Con-

ference on Communications, 2002, (Accepted, available at

http://www.eng.umd.edu/˜wxt/papers/grkey icc2002.pdf).

[23] A. Oppenheim and R. Schafer, Discrete-time Signal Processing, Prentice

Hall, 1989.

[24] T. Cover and J. Thomas, Elements of Information Theory, John Wiley and

Sons, 1991.

[25] D. Huffman, “A method for the construction of minimum redundancy codes,”

Proc. of IRE, vol. 40, pp. 1098–1101, 1952.

207

[26] D. A. Lelewer and D. S. Hirschberg, “Data compression,” ACM Computing

Surveys, vol. 19, pp. 261–296, 1987.

[27] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Search-

ing, Addison Wesley, 1973.

[28] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, Mc.

Graw Hill, 1998.

[29] A. Turping and A. Moffat, “Practical length-limited coding for large alpha-

bets,” Computer Journal, vol. 38, pp. 339–347, 1995.

[30] D. C. Van Voorhis, “Constructing codes with bounded codeword lengths,”

IEEE Transactions on Information Theory, vol. 20, pp. 288–290, March 1974.

[31] L. Larmore and D. Hirschberg, “A fast algorithm for optimal length-limited

Huffman codes,” Journal of the ACM, vol. 37, pp. 464–473, July 1990.

[32] R. Milidiu and E. Laber, “The warm-up algorithm: a Lagrangian construc-

tion of length restricted Huffman codes,” SIAM Journal of Computation,

vol. 30, pp. 1405–1426, 2000.

[33] M. R. Garey, “Optimal binary search trees with restricted maximal depth,”

SIAM Journal of Computing, vol. 3, pp. 101–110, June 1974.

[34] E. Gilbert, “Codes based on inaccurate source probabilities,” IEEE Trans.

on Inform. Theory, vol. 17, pp. 304–314, 1971.

[35] H. Murakami, S. Matsumoto, and H. Yamamoto, “Algorithm for construc-

tion of variable length code with limited maximum word length,” IEEE

Transactions on Communications, vol. 32, pp. 1157–1159, Oct. 1984.

208

[36] B. Fox, “Discrete optimization via marginal analysis,” Management Science,

vol. 13, pp. 210–216, 1966.

[37] L. A. Wolsey, Integer Programming, John Wiley and Sons, 1998.

[38] T. C. Hu, Integer Programming and Network Flows, Addison Wesley, 1969.

[39] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization,

John Wiley and Sons, 1999.

[40] A. H. Land and A. G. Doig, “An automatic method for solving discrete

programming problems,” Econometrica, vol. 28, pp. 497–520, 1960.

[41] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”

Operations Research, vol. 14, pp. 699–719, 1966.

[42] D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel, “An algorithm for

the traveling salesman problem,” Operations Research, vol. 11, pp. 972–989,

1963.

[43] T. Nemetz, “On the word-length of Huffman codes,” Probl. Contr. and

Inform. Theory, vol. 9, pp. 231–242, 1980.

[44] F. Fabris, A. Sgarro, and R. Pauletti, “Tunstall adaptive coding and mis-

coding,” IEEE Trans. on Inform. Theory, vol. 42, pp. 2167–2180, 1996.

[45] A. Puri and T. Chen, Multimedia Systems, Standards, and Networks, Marcel

Dekker Inc., 2000.

[46] J. Chen, U. Koc, and K. J. R. Liu, Design of Digital Video Coding Systems,

Marcel Dekker Inc., 2002.

209

[47] K. Ngan, C. Yap, and K. Tan, Video Coding for Wireless Communication

Systems, Marcel Dekker Inc., 2001.

[48] M. Sun and A. Reibman, Compressed Video over Networks, Marcel Dekker

Inc., 2001.

[49] R. Canetti, T. Malkin, and K. Nissim, “Efficient communication-storage

tradeoffs for multicast encryption,” Eurocrypt, pp. 456–470, 1999.

[50] F. Hartung and B. Girod, “Digital watermarking of MPEG-2 coded video

in the bitstream domain,” IEEE Int. Conf. Accostic Speech and Signal Proc.

’97, pp. 2621–2624, 1997.

[51] M. Wu and B. Liu, “Modulation and multiplexing techniques for multimedia

data hiding,” in Proc. of SPIE ITcom’01, SPIE vol 4518, Aug. 2001.

[52] C. Blundo, L.A. Frota Mattos, and D. R. Stinson, “Multiple key distribution

maintaining user anonymity via broadcast channels,” J. Computer Security,

vol. 3, pp. 309–323, 1994.

[53] S. Paul, Multicasting on the Internet and its Applications, Kluwer Academic,

1998.

[54] D. Balenson, D. McGrew, and A. Sherman, “Key management for large dy-

namic groups: one-way function trees and amortized initialization,” Internet

Draft Report.

[55] R. Poovendran and J.S. Baras, “An information theoretic approach for de-

sign and analysis of rooted tree-based multicast key management schemes,”

Advances in Cryptology: Crypto ’99, pp. 624–638, 1999.

210

[56] U. Horn, K. Stuhlmller, M. Link, and B. Girod, “Robust internet video

transmission based on scalable coding and unequal error protection,” Image

Communication, vol. 15, pp. 77–94, Sept 1999.

[57] H. Zheng and K.J.R. Liu, “Optimization approaches for delivering multime-

dia services over digital subscriber lines,” IEEE Signal Processing Magazine,

vol. 17, pp. 44–60, July 2000.

[58] W. Trappe and L.C. Washington, Introduction to Cryptography with Coding

Theory, Prentice Hall, 2002.

[59] C. Herpel, A. Eleftheriadis, and G. Franceschini, “MPEG-4 systems: elemen-

tary stream management and delivery,” in Multimedia Systems, Standards,

and Networks, A. Puri and T. Chen, Eds., pp. 367–405. Marcel Dekker Inc.,

2000.

[60] J. Mitchell, W. Pennebaker, C. Fogg, and D. LeGall, MPEG Video Com-

pression Standard, Chapman & Hall, 1997.

[61] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang, “A reliable

multicast framework for light-weight sessions and application level framing,”

IEEE/ACM Transactions on Networking, vol. 5, pp. 784–803, 1997.

[62] J. Lin and S. Paul, “RMTP: A reliable multicast transport protocol,” in

INFOCOM, San Francisco, CA, Mar 1996, pp. 1414–1424.

[63] S. Paul, K. K. Sabnani, J. Lin, and S. Bhattacharyya, “Reliable multicast

transport protocol (RMTP),” IEEE Journal of Selected Areas in Communi-

cations, vol. 15, pp. 407–421, 1997.

211

[64] R. Poovendran and J.S. Baras, “An information-theoretic approach for de-

sign and analysis of rooted-tree-based multicast key management schemes,”

IEEE Trans. on Information Theory, vol. 47, pp. 2824 –2834, 2001.

[65] J. Song, R. Poovendran, W. Trappe, and K.J.R. Liu, “A dynamic key dis-

tribution scheme using data embedding for secure multimedia multicast,” in

Proceedings of SPIE 2001 Security and Watermarking for Multimedia, San

Jose, CA, 2001.

[66] A. Westfeld and G. Wolf, “Steganography in a video conferencing system,” in

Proc. 2nd International Workshop on Information Hiding, 1998, pp. 32–47.

[67] J. Song and K. J. R. Liu, “A data embedding scheme for H.263 compatible

video coding,” IEEE ISCAS, vol. 4, pp. 390–393, June 1999.

[68] J. Song and K. J. R. Liu, “A data embedded video coding scheme for error-

prone channels,” IEEE Trans. on Multimedia, vol. 3, pp. 415–423, Dec.

2001.

[69] A. Menezes, P. vanOorschot, and S. Vanstone, Handbook of Applied Cryp-

tography, CRC Press, 1997.

[70] M. Wu, Multimedia Data Hiding, Ph.D. thesis, Princeton University, 2001.

[71] J. Nonnenmacher, E. W. Biersack, and D. Towsley, “Parity-based loss re-

covery for reliable multicast transmission,” IEEE/ACM Trans. Networking,

vol. 5, pp. 349–361, Aug 1998.

[72] D. Stinson, Cryptography: Theory and Practice, CRC Press, 1995.

212

[73] J. B. Conway, Functions of One Complex Variable, Springer-Verlag, 2nd

edition, 1978.

[74] ITU-T Rec. H263, “Version 2, video coding for low bitrate communication,”

Jan. 1998.

[75] S. Keshav, An Engineering Approach to Computer Networking: ATM Net-

works, the Internet, and the Telephone Network, Addison Wesley, 1997.

[76] W. Trappe, J. Song, R. Poovendran, and K.J.R. Liu, “A dynamic key dis-

tribution scheme using data embedding for secure multimedia multicast,”

Submitted to IEEE Trans. on Multimedia, 2000.

[77] H. Eriksson, “Mbone: The multicast backbone,” Communications of the

ACM, vol. 37, pp. 54–60, August 1994.

[78] H. Harney and C. Muckenhirn, “Gkmp specification,” Internet Request for

Comments 2094, July 1997.

[79] A. Fiat and M. Naor, “Broadcast encryption,” Advances in Cryptology:

Crypto ’93, pp. 480–491, 1993.

[80] R. Poovendran, “A convex optimization approach for addressing storage-

communication tradeoffs in multicast encryption,” Tech. Rep. CS-TR-4082,

Department of Computer Science, University of Maryland, 1999.

[81] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” See

http://crsc.nist.gov/encryption/aes, 2000.

[82] ITU-T Recommendation X.509 (1997), “The director: Authentication frame-

work,” 1997.

213

[83] N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag,

2nd edition, 1994.

[84] K. Atkinson, An Introduction to Numerical Analysis, John Wiley & Sons,

2nd edition, 1989.

[85] G. Golub and C. Van Loan, Matrix Computations, The Johns Hopkins

University Press, 3rd edition, 1996.

[86] N. Heintze, “Scalable document fingerprinting,” in 1996 USENIX Workshop

on Electronic Commerce, November 1996.

[87] H. S. Stone, “Analysis of attacks on image watermarks with randomized

coefficients,” NEC Technical Report 96-045, 1996.

[88] S. Craver, N.Memon, B-L. Yeo, and M.M. Yeung, “Resolving rightful own-

erships with invisible watermarking techniques: Limitations, attacks, and

implications,” IEEE Journal on Selected Areas in Communication, vol. 16,

pp. 573–586, May 1998.

[89] W. Zeng and B. Liu, “A statistical watermark detection technique without

using original images for resolving rightful ownerships of digital images,”

IEEE Tran. on Image Proc., vol. 8(11), pp. 1534–1548, November 1999.

[90] B. Chen and G.W. Wornell, “Quantization index modulation: A class of

provably good methods for digital watermarking and information embed-

ding,” IEEE Trans. on Info. Theory, vol. 47, pp. 1423–1443, May 2001.

[91] H. V. Poor, An Introduction to Signal Detection and Estimation, Springer

Verlag, 2nd edition, 1994.

214

[92] M. Wu, H. Yu, and A. Gelman, “Multi-level data hiding for digital image and

video,” in Proceedings of SPIE, Photonics East Conference on Multimedia

Systems and Applications, 1999, vol. 3845.

[93] J. G. Proakis, Digital Communications, McGraw-Hill, 3rd edition, 1995.

[94] A. Herrigel, J. Oruanaidh, H. Petersen, S. Pereira, and T. Pun, “Secure

copyright protection techniques for digital images,” in Second Information

Hiding Workshop (IHW), Lecture Notes in Computer Science, vol. 1525.

Springer-Verlag, 1998.

[95] M. Sobel and P. Groll, “Binomial group-testing with an unknown proportion

of defectives,” Technometrics, vol. 8, pp. 631–656, Nov. 1966.

[96] D. Z. Du, G. L. Xue, S. Z. Sun, and S. W. Cheng, “Modifications of compet-

itive group testing,” SIAM Journal of Computing, vol. 23, pp. 82–96, Feb.

1994.

[97] D. Z. Du and H. Park, “On competitive group testing,” SIAM Journal of

Computing, vol. 23, pp. 1019–1025, Oct. 1994.

[98] D. Z. Du and F. K. Hwang, Combinatorial Group Testing and Its Applica-

tions, World Scientific Publishing Co., 2000.

[99] J. Aslam and A. Dhagat, “Searching in the presence of linearly bounded

errors,” in Proceedings of the 23rd ACM Symposium on Theory of Coputing,

May 1991, pp. 486–493.

[100] J. Dittmann, P. Schmitt, E. Saar, J. Schwenk, and J. Ueberberg, “Combining

digital watermarks and collusion secure fingerprints for digital images,” SPIE

Journal of Electronic Imaging, vol. 9, pp. 456–467, 2000.

215

[101] T. W. Hungerford, Algebra, Springer-Verlag, 1974.

[102] J. H. Dinitz and D. R. Stinson, Contemporary Design Theory: A Collection

of Surveys, John Wiley and Sons, 1992.

[103] I. Anderson, Combinatorial Designs and Tournaments, Oxford University

Press, 1997.

[104] C.C. Lindner and C.A. Rodger, Design Theory, CRC Press, 1997.

[105] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Appli-

cations, Cambridge Press, 1994.

[106] C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial

Designs, CRC Press, 1996.

[107] W. Trappe, Y. Wang, and K.J.R. Liu, “Conference key establishment for

heterogeneous networks,” Submitted to IEEE/ACM Trans. on Networking,

2002.

[108] W. Trappe, J. Song, R. Poovendran, and K.J.R. Liu, “Dynamic M4: A

dynamic multicast key management scheme for groups of mobile multimedia

users,” Presented at MPEG-4 IPMP Meeting in La Baule, France, 2000.

216

